探究安培力方向实验现象记录表

探究安培力方向实验现象记录表

探究安培力方向实验现象记录表

用“ ”表示电流垂直纸面向里,“⊙”表示电流垂直纸面向外;用“×”表示磁场垂直纸面向里,用“·”表示磁场垂直纸面向外。

安培力演示实验

1 实验器材与装置 取两块大小相同的立方体磁铁,磁铁选用铁氧体或铝铁硼磁性材料,长是宽的二倍(10cm×5cm),N极向上(或向下);取两条薄铜片P、Q,长约30cm,上下边平行且较光滑,高度比磁铁高度略高0.5cm左右。把两薄铜片用两铁片固定在一块磁铁的两侧,充当导轨,并在一铜片上贴有刻度尺,形成如图1所示的实验装置,在导轨上放置一根轻质圆形导体棒(可选用空心天线),两薄铜片与电源通过导线构成电路,电源可选用蓄电池或干电池。 2 实验原理 将导体棒垂直放在导轨上,闭合开关,导体棒上通有电流,在磁场力(安培力)作用下运动,从指定起点A开始,导体棒在磁场中运动的距离为S0,在导轨上运动的距离为S。由于桌面水平,则f不变,且保持每次实验的导体棒从同一位置A出发,则S0就不变。由动能定理可得:F安S0-fS=0。由此可得:F安/S=f/S0=定值,即F安∝S。要研究F 安与I、L的关系,就只要研究S与I、L的关系。 3 实验方法 (1)在磁场中导体棒长度一定时,研究F安与I的关系 ①按图1装置,将导体棒垂直放在导轨上的固定标记处,电源选用2V蓄电池或二节干电池,闭合开关,导体棒运动的距离为S1(从刻度尺上读出)。②将导体棒垂直放在导轨上的固定标记处,电源选用4V蓄电池或四节干电池,闭合开关,导体棒运动的距离为S2。③比较S1、S2大小,得S2≈2S1,说明S∝I。④结论:F安∝I。

(2)在电流一定时,研究F安与L的关系 ①将两块磁铁并放在一起,N极与上述方向相同,导体棒垂直放在导轨上的固定标记处,此时电流长度变成原来的两倍。保持电源选用2V蓄电池或二节干电池。闭合开关,导体棒运动距离为S3。②比较S1、S3大小,得S3≈2S1,说明S∝I。结论:F安∝I 。 (3)安培力的大小 由上述结论可得:F安∝I。 (4)判断安培力的方向 根据以上实验,分析电流方向,磁场方向,安培力方向,从三者方向关系,可总结出左手定则。

安培力与洛伦力实验专题练习

安培力与洛伦力实验专题练习 学校:___________姓名:___________班级:___________考号:___________ 一、实验题 1.某同学用图中所给器材进行与安培力有关的实验。两根金属导轨ab和a1b1,固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S 极位于两导轨的正下方,一金属棒置于导轨上且与两导轨垂直。(不计金属导轨的电阻和摩擦) (1)在开关闭合后,金属棒向_________(选填“左侧”或“右侧”)移动。 (2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议: A.适当增加两导轨间的距离 B.保持两个导轨间距不变,换一根更长的金属棒 C.将滑动变阻器滑片向左移动 D.把磁铁换成磁性更强的足够大的钕铁硼磁铁 其中正确的是_________(填入正确选项前的字母)。 (3)如果将电路中电流方向反向,磁场也反向,金属棒将会向_____(选填“左侧"或“右侧”)移动。 2.磁体和电流之间、磁体和运动电荷之间、电流和电流之间都可通过磁场而相互作用,此现象可通过以下实验证明:

(1)如图(a)所示,在重复奥斯特的电流磁效应实验时,为使实验方便效果明显,通电导线应______.此时从上向下看,小磁针的旋转方向是_________________(填顺时针或逆时针). A.平行于南北方向,位于小磁针上方 B.平行于东西方向,位于小磁针上方 C.平行于东南方向,位于小磁针下方 D.平行于西南方向,位于小磁针下方 (2)如图(b)所示是电子射线管示意图.接通电源后,电子射线由阴极沿x轴方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,在下列措施中可采用的是__________.(填选项代号) A.加一磁场,磁场方向沿z轴负方向B.加一磁场,磁场方向沿y轴正方向C.加一电场,电场方向沿z轴负方向D.加一电场,电场方向沿y轴正方向 (3)如图(c)所示,两条平行直导线,当通以相同方向的电流时,它们相互________(填排斥或吸引),当通以相反方向的电流时,它们相互___________(填排斥或吸引),这时每个电流都处在另一个电流的磁场里,因而受到磁场力的作用.也就是说,电流和电流之间,就像磁极和磁极之间一样,也会通过磁场发生相互作用. 3.某同学用图中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S 极位于两导轨的正下方,一金属棒置于导轨上且两导轨垂直. (1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.

安培力实验报告(北京科技大学物理实验报告)

北京科技大学实验报告 安培力 实验目的 学会设计简单的实验方案,利用自组仪器合理搭建实验设备;学会用归纳法研究磁场中载流导线的受力规律。实验原理 将一段通电导线置于以均匀磁场中,导线受到的安培力与磁场的方向和强弱、载流方向和强度大小、导体形状和尺寸相关。 实验仪器 天平LGN310、矩形磁极一对、电磁线圈两个、U形铁芯一个、4个尺寸不同的导体、直流电源、电流表、轻质金属导线、开关、导线等。 实验内容及步骤 (1)利用电流秤测量磁场中载流导体的受力。 (2)利用U形铁芯的两个电磁磁极产生较强的匀强磁场。 (3)调节砝码使天平达到平衡。 (4)改变励磁电流、载流线圈电流、载流线圈尺寸测量线圈所受安培力大小。以研究安培力与磁场、载流、导线尺寸的关系。 数据测量结果:

数据分析: 此次实验是为了研究载流导体在磁场中的受力规律的。实验中主要研究安培力大小与励磁电流、载流线圈电流、载流线圈尺寸的关系。实验数据中的“-”号表示反向测量时的电流。并且,实验中以安培力向下方向为正。 需要说明的是,实验中,我们考虑到磁场太小时即使线圈电流很大也不能使得天平有很大偏转。所以我们先在励磁电流为3A的情况下测出不同线圈电流所受的安培力的大小;然后再在线圈电流为3A的情况下测出不同励磁电流(及磁场强度)情况下的安培力大小。这里其实也使用到了控制变量法的基本原理。

用各组数据的前一半数据可画出如下四张图形: 从四张图中可以清楚看到,当磁场、线圈尺寸、线圈匝数不变时,安培力和线圈电流成正比例关系,即:F∝I。 为了方便分析,可以把数据都放到一个图中(如下): 我们先分析一下A,B,C三组。这三组数据的共同点是线圈匝数相同,所以说,在磁场中线圈长度越长,安培力随电流的变化速率越快。那么两者的定量关系又如何呢?我们可以看到,线圈长度关系为:L(C)=2L(B)=4L(A)。而三者对应的安培力是什么关系呢?我们可以从下图中看出,变化率也是两倍关系。即:F∝L

格式示例1师生共同参与创新安培力演示实验装置过程的启示

格式示例1: 师生共同参与创新安培力演示实验装置过程的启示 在高中物理教学中,安培力的学习是广大师生非常感兴趣的内容,看不见摸不到的磁场可以对放入其中的电流产生力的作用,这一神奇的现象引起了同学们的关注,但是在探究安培力大小决定因素的演示实验中,遇到了很多问题,迫使我们必须要创新其演示实验;同时在这一过程中,我们也得到了一定感悟 :一、问题的提出 在教科版高中物理教材选修3——1第三章第2节磁场对通电导线的作用——安培力中,设计了一个演小实验,用以探安培力的大小决定因素,老师和同学们经过实际操作才发现,该演示实验存在诸多问题,导致实验以失败告终。刘耀名同学总结了大家在操作过程中发现的问题,主要包括以下2点 (1)教材中实验采用挂式弹簧测力计直接悬挂线圈于磁铁之上,欲直接通过弹簧测力计的读数得出安培力的大小,但是实过程中发现,读数太小,相对误差太大。 (2)有同学提出可以采用增大电流来提高安培力的大小,从而减小读数的相对误差。然而新的问题出现了,由于线圈并未固定,而仅仅只是悬挂,战线圈出现了通电受力而发生旋转的现象,基无法测量静态安培力的数值。 针对上述总结,刘耀名等3位同学认为解决问题的最好方法就是创新教学演示实验,于是成立了一个实验创新小组,由我担任指导

老师。 二、解决方案 1.实验原理 利用电子称的“复零”功能,直接测量线圈受到的安培力大小。 2器材准备 电子台称、匀强磁铁、铜导线制作的线圈 三、器材加工 (1)电子秤的确定 首先确定电子台秤。组内同学提供了很多台秤方案,包括厨房用的台秤、秤蔬菜用的大台秤、秤珠宝用的小台秤等,各有利弊,量程最大的市场用秤精度就低,精度高的如珠宝用秤量程就很小,基本上都无法放置磁铁于其上,综合权衡,决定选用厨房用秤,其精度和量程都还可以,外观小巧,可以使整个装置节约空间。 (2)匀强磁场的确定。 没有现成的匀强磁场,只有利用蹄形磁铁两极间的空间,但实验室中的蹄形磁铁都太小,而且不易固定,易滚动。艾辉同学积极在网上查询终于发现了一款演示实验器材上有符合要求的磁铁,迅速购人,如图1所示。

高中物理练习:探究安培力

5.4 探究安培力 [学科素养与目标要求] 物理观念:1.知道安培力的概念,掌握安培力的公式.2.知道左手定则的内容. 科学思维:1.会用左手定则判定安培力的方向.2.会用安培力的公式F=ILBsinθ进行有关计算. 科学探究:能设计方案、选择器材进行实验,探究安培力F与I、L、B的定量关系,体会控制变量法在实验中的应用. 一、安培力的方向 利用如图1所示的实验装置进行实验. 图1 (1)上下交换磁极的位置以改变磁场方向,导线受力的方向是否改变? (2)改变导线中电流的方向,导线受力的方向是否改变? 仔细分析实验结果,说明安培力的方向与磁场方向、电流方向有怎样的关系? 答案(1)导线受力的方向改变 (2)导线受力的方向改变 安培力的方向与磁场方向、电流方向的关系满足左手定则 [要点总结] 1.左手定则:伸开左手,使大拇指跟其余四个手指垂直,且都跟手掌在同一个平面内,让磁感线穿入手心,使四指指向电流方向,则大拇指所指的方向就是安培力的方向,如图2所示. 图2 2.判断电流的磁场方向用安培定则(右手螺旋定则),确定通电导体在磁场中的受力方向用左手定则.

3.安培力方向的特点 安培力的方向既垂直于电流方向,也垂直于磁场方向,即安培力的方向垂直于电流I和磁场B所决定的平面. (1)当电流方向与磁场方向垂直时,安培力方向、磁场方向、电流方向两两垂直,应用左手定则时,磁感线垂直穿过掌心. (2)当电流方向与磁场方向不垂直时,安培力的方向仍垂直于电流方向,也垂直于磁场方向.应用左手定则时,磁感线斜着穿入掌心. [延伸思考] 电流周围可以产生磁场,磁场又会对放在其中的电流产生力的作用,如果有两条相互平行的、距离很近的通电直导线,它们之间会不会有力的作用?若有力的作用,那么同向电流之间的作用力如何?反向电流之间的作用力如何? 答案有力的作用,同向电流相互吸引,反向电流相互排斥. 例1 画出图3中各磁场对通电导线的安培力的方向(与纸面垂直的力只需用文字说明). 图3 答案如图所示 解析无论B、I是否垂直,安培力总是垂直于B与I决定的平面,且满足左手定则. 学科素养例1用左手定则来判断安培力的方向,这是从物理学视角对客观事物的内在规律及相互关系进行分析,是对基于经验事实建构的理想模型的应用过程,体现了“科学思维”的学科素养.

探究安培力的影响因素参考资料

师:[设疑]前面学习了电场和磁场,电和磁之间是否存在着某种内在联系? [flash演示]奥斯特实验 [提问] 小磁针的偏转说明了什么? [分析与讨论] 小磁针在磁场中受磁场力的作用才会发生偏转,实验结果说明,不仅磁铁能产生磁场,电流也能产生磁场。通电导线通过周围产生的磁场对磁体有力的作用(电流→磁场→磁体)。那根据牛顿第三定律可知,磁体通过周围的磁场对通电导线也应该有力的作用(磁体→磁场→电流?)。下面我们就用一个迷你小实验来探究一下磁场对通电导线是否也有力的作用呢? 2、学生回答:不仅磁铁能产生磁场,电流也能产生磁场。 [板书] 一、探究磁场对电流的作用 1、安培力 [迷你实验] 第一种第二种第三种第四种 [分析与讨论] 实验中观察到什么现象?可以得到什么实验结果? [总结] 当通电导线附近有磁体时,通电导线会受到力的作用。物理学上把磁场对电流的作用力称为安培力。 2、方向的判断—— [提出问题] 从前面的实验中发现,当通电导线的电流方向改变或磁体的磁极位置交换时,通电导线的受力方向也会发生改变。说明安培力的方向与电流方向和磁场方向有关。怎样具体确定安培力的方向? [过渡] 安培力是个矢量,之前我们已经研究了它的方向,那么它的大小到底会与哪些因素有哪些? 3、大小的探究——控制变量法 [提出问题] 请同学们在上述实验的基础上提出猜想,安培力的大小可能与哪些因素有关? [猜想与假设] 引导学生在上述实验的基础上提出猜想,安培力可能与通电导线的长度

(通电导线在磁场中的长度)、电压(电流)以及磁场(磁感应强度)等因素有关。(导线材料?横截面积?) [总结] 基于有些因素前任已经排出了其可能性,今天我们就研究一下安培力与电流大小I、磁场中导线长度L及磁感应强度B的关系。 (引导学生进行讨论交流设计实验) [研究方法] 从上面的分析可知,影响安培力的因素很多,如果将它们混在一起考虑,无法知道每个因素是怎样影响安培力的。因此,实验中通常只让某个因素(变量)变化,不让其他因素变化(控制变量),这样便知道这个因素是如何影响安培力的了。这就是物理学中一种重要的思想方法——控制变量法。(类似于探究牛顿第二定律a与F、m的关系) [设计实验] (1)研究F与I的关系: 控制B、L不变 如何改变I?通过调整滑动变阻器的滑片位置改变电流的大小(一种短路,一种较大电阻)如何通过现象判断F与I的关系?观察通电导线摆动后悬线与竖直方向的夹角(安培力越大,摆动角度越大) [实验方案] ①将导体棒用细铜丝悬挂起来,细铜丝与电源相连,导体棒置于蹄形磁铁中,并与磁感线垂直。(蹄形磁铁中间的磁场可以近似认为是匀强磁场) ②在磁感应强度和通电导线在磁场中的长度不变的情况下,合上开关,移动滑片位置改变电流的大小,探究电流的大小对安培力的影响。观察其现象。 [由学生分析现象] 当增大流过通电导线的电流时,通电导线摆动后悬线与竖直方向的夹角变大。(由力的平衡条件可得,F越大,夹角越大)→(定性研究得出)I越大,F越大;I越小,F越小→(经物理学家的进一步定量研究得出)F与I成正比。 (2)研究F与L的关系: 控制B、I不变(使滑动变阻器处于被短路状态) 如何改变L?通过并列放置2块磁感应强度磁铁改变磁场中导体的长度。

安培力的演示实验二

安培力的演示实验 目的:观察载流直导体,在磁场中受力的情况,验证载流直导体在磁场中受力的方向与磁场和电流的方向三者之间的关系,即验证左手定则。 观察磁聚焦现象实验目的:演示运动电荷在磁场中受到的洛仑兹力和磁场对电子束的聚焦作用。 视错觉演示实验目的:通过对物理现象的观察与实验,深入了解人体的感觉机制。本实验就是观察光的视错觉现象。 弹性球碰撞演示实验目的: 1、演示等质量球的弹性碰撞过程,加深对动量原理的理解。 2、演示弹性碰撞时能量的最大传递。 3、使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。 安培力的演示实验仪器: ①为马蹄形永磁铁,它是由高强度钕铁硼材料制成。②是将马蹄形电磁铁固定在竖直支柱上的顶丝。③是带动马蹄形永磁铁沿水平方向左右移动的滑块。④是双道滑轨。⑤是载流直导体。⑥是导轨,它用来支承载流直导体受力移动。⑦是通电接线柱。⑧是底座。 光电效应实验器材:光电效应演示仪器 磁聚焦现象实验器材:磁聚焦现象演示仪

①为马蹄形永磁铁,它是由高强度钕铁硼材料制成。②是将马蹄形电磁铁固定在竖直支柱 上的顶丝。③是带动马蹄形永磁铁沿水平方向左右移动的滑块。④是双道滑轨。⑤是载流直导体。⑥是导轨,它用来支承载流直导体受力移动。⑦是通电接线柱。⑧是底座。 光电效应实验器材:光电效应演示仪器 磁聚焦现象实验器材:磁聚焦现象演示仪

② ③视错觉演示实验器材:视错觉演示仪 ④ ⑤1、转速为10转/分的电机,带动直径为1.5cm的竖直圆柱沿一定方向转动。 2、圆柱上端有一固定梯形平面窗。

弹性球碰撞演示实验器材:碰撞球实验仪 安培力的演示实验原理: 通电导体在磁场中,会受到磁场力的作用,称为安培力。实验发现,对直导线,安培力的大小与方向由下式表示:可见,力、电流和磁场三者成右手法则。当然,也可以用左手定则来确定安培力的方向。即:伸直左手,使大拇指与其余四指相垂直,磁场穿过手心,让四指指向导体中通电电流的方向,则大拇指的方向就是磁场对电流作用力的方向,即导体所受的安培力的方向。 观察磁聚焦现象实验原理: 如图1所示,当带电粒子沿与磁场成角方向以速度斜向 进入磁场时,磁场对其的分运动作用,使之在垂直的平面内作匀速率圆周 运动,磁场对的分运动无作用,粒子在沿方向上作匀速直线运动。结果带 电粒子沿方向作螺旋线运动。 ⑥ ⑦带电粒子的回旋半径:(1) 带电粒子的回旋周期:(2) 带电粒子的螺距:(3) 从式(2)可知,带电粒子的回旋周期与速度大小无关。

安培力演示仪实验报告

安培力演示仪实验报告 篇一:安培力演示仪 安培力演示仪 实验现象 观察载流直导体,在磁场中受力的情况,验证载流直导体在磁场中受力的方向与 磁场和电流的方向三者之间的关系,即验证左手定则。将载流直导体铜棒水平放在支 承导轨上,并调节其水平位置,使铜棒在马蹄形磁铁的磁场中间,接通电源并观察载 流直导体铜棒在导轨上滑动的方向;改变电流流通的方向(电源后面板的红色开关), 此时,载流铜棒将在导轨上沿相反方向滑动;通过底座导轨的滑块移动马蹄形磁铁, 使磁场相对载流铜棒移动,可以观察到载流铜棒也跟着一起运动。 物理原理 ???通电导体在磁场中,会受到磁场力的作用,称为安培力。实验发现,对直导线,安培力的大小与方向由下式表示:F?Il?B。可 见,力、电流和磁场三者成右手法则。当然,也可以用

左手定则来确定安培力的方向。即:伸直左手,使大拇指与其余四指相垂直,磁场穿过手心,让四指指向导体中通电电流的方向,则大拇指的方向就是磁场对电流作用力的方向,即导体所受的安培力的方向。仪器功能 演示通电直导线在磁场中受力——安培力问题。 篇二:安培力的演示实验二 安培力的演示实验 目的:观察载流直导体,在磁场中受力的情况,验证载流直导体在磁场中受力的方向与磁场和电流的方向三者之间的关系,即验证左手定则。 观察磁聚焦现象实验目的:演示运动电荷在磁场中受到的洛仑兹力和磁场对电子束的聚焦作用。 视错觉演示实验目的:通过对物理现象的观察与实验,深入了解人体的感觉机制。本实验就是观察光的视错觉现象。 弹性球碰撞演示实验目的: 1、演示等质量球的弹性碰撞过程,加深对动量原理的理解。 2、演示弹性碰撞时能量的最大传递。 3、使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。安培力的演示实验仪器: ①为马蹄形永磁铁,它是由高强度钕铁硼材料制成。②

安培力测试及答案

高二物理11月22日测试题 一、单选题 1.静电场,磁场和重力场在某些特点上具有一定的相似性,结合有关“场”的知识,并进行合理的类比和猜想,判断以下说法中可能正确的是() A.电场和磁场的概念分别是奥斯特和楞次建立的 B.重力场与静电场相类比,重力场的“场强”等于重力加速度,其“场强”大小的决定式为 C.静电场与磁场相类比,如果在静电场中定义“电通量”这个物理量,则该物理量表示穿过静电场中某一(平或曲)面的电场线的多少 D.如果把地球抽象为一个孤质点,用于形象描述它所产生的重力场的所谓“重力场线”的分布类似于真空中一个孤立的正电荷所产生的静电场的电场线分布 2.如图所示,面积大小为S的矩形线圈a b cd,放在磁感应强度为B的匀强磁场 中,线圈可以绕O1O2转动.下列说法中正确的是() A.当线圈从图示位置转过60°时,穿过线圈的磁通量大小Φ=BS B.当线圈从图示位置转过90°时,穿过线圈的磁通量大小Φ=0 C.当线圈从图示位置转过180°的过程中,穿过线圈的磁通量的变化量大小△Φ=0 D.当线圈从图示位置转过360°的过程中,穿过线圈的磁通量的变化量大小△Φ=2BS 3.两根长直导线a、b平行放置,如图所示为垂直于导线的截面图,图中O点为两根导线连线ab的中点,M、N为ab的中垂线上的两点且与a、b等距,两导线中通有等大、同向的恒定电流,已知直线电流在某点产生的磁场的磁感应强度B的大小跟该点到通电 导线的距离r成反比,则下列说法中正确的是( ).A.M点和N 点的磁感应强度大小相等,方向相同 B.M点和N点的磁感应强度大小相等,方向相反 C.在线段MN上各点的磁感应强度都不可能为零 D.若在N点放一小磁针,静止时其北极沿NO由N点指向O点 4.倾角为θ的光滑固定斜面体处于竖直向下的匀强磁场中,在斜面上有 一根长为L、质量为m的导线,导线与磁场垂直,导线中电流为I,方向

探究安培力教案

《探究磁场对通电导线的作用——安培力》教案 龙台中学:杨世洲 一、教学目标: 1.知识与技能 (1)知道磁场中垂直于磁场方向的通电直导线所受安培力的大小跟电流的大小、导线在磁场中的长度和磁场的强弱等因素有关。 (2)理解磁场的基本性质——磁场对电流有力的作用,掌握用左手定则判断安培力的方向。2.过程与方法 (1)通过用实验探究影响安培力大小的因素,学习用“控制变量法”研究问题的方法。 (2)经历探究安培力方向与哪些因素有关的过程,体会科学探究的一般方法。 (3)通过学习左手定则,理解磁场方向、电流方向和安培力方向三者之间的关系,培养学生空间想象能力。 3.情感、态度与价值观 (1)本节课通过引导学生对安培力进行探究,培养学生的观察能力、分析能力和与他人合作精神。(2)认识安培力的应用给我们的生活带来的影响。 二、教学重点: (1)定性地了解决定磁场对电流的作用力大小的有关因素及关系。 (2)掌握左手定则。 三、教学难点: 在探究影响安培力大小的因素中对学生的引导和对左手定则涉及的空间关系的理解是本节课教学的难点。 四、教学用具: 蹄形磁铁、方形线圈、自制安培力方向演示仪、电流表、滑动变阻器、电源、多媒体电脑等。 五、教学过程: (一)、问题引入 学生观看节目《劈空拳》(设置悬念,激发兴趣和求知欲)。 情景1:学生对着悬挂的通电线圈隔空打过去,线圈不动。(学生好奇) 情景2:老师对着悬挂的通电线圈隔空打过去,线圈运动。(学生迷惑) 问题:老师隔空打线圈为什么线圈会运动?(学生思考、回答) 解密:老师手中有强磁铁,它产生的磁场对通电导体产生力,使线圈运动。磁场对通电导体的作用力称为安培力,本节课我们一起来探究安培力。 (二)、新课教学 提问:我们通常从哪些方面去研究一个力? (引导学生思考从力的大小、方向等要素去探究安培力)

探究安培力实验的设计

探究安培力实验的设计 探究安培力是高中物理教学中的一个重要实验。课程标准要求学生通过实验认识安培力,学会判断安培力的方向并计算匀强磁场中安培力的大小。现有的有关安培力的演示器材,其演示效果并不理想,很难让学生对安培力的定量关系(F=BIL)有一个深刻的认识。为此,笔者设计了两套实验器材,用于探究安培力的大小以及方向的规律。 一、背景 现在中学阶段用来演示安培力的器材主要是J2447型安培力演示器。它主要用来演示通电直导线在磁场中的受力情况,以便让学生掌握安培力的产生原理,以及安培力与电流方向、磁场方向三者之间的关系。 安培力演示器是演示安培力的主要实验器材,但实际演示效果并不理想。例如:滚动的导线和导轨经常会接触不良,导致演示实验失败;仪器的可视范围较小,不利于做演示实验。此外,演示通电导线与磁场方向平行和垂直两种不同情况的受力时,还要把两条通电导轨重新拆装。而且如果学生想了解影响安培力大小的三个因素,J2447型安培力演示器无法演示。 为了能让学生在实验中更好地理解安培力以及相关的影响因素,笔者设计和制作了用于安培力教学的两套实验器材:安培力演示仪、探究安培力实验仪。 二、实验器材的制作 1.安培力演示仪 制作底座及导轨 首先,选取60 cm×20 cm 的木板作为底座,对其表面进行打磨、上油漆,并用4个不锈钢支架将其支撑起来。然后,裁剪2条60 cm×2 cm 的紫铜条,用锤子将其弄平整后再用砂纸打磨表面,将表面的氧化物去掉。紧接着再对铜条进行打孔,把它们安装在底板上,并保持铜条间的距离为10 cm。最后,把导线连接到铜条上,并用焊锡固定。 制作匀强磁场 磁场由2块15 cm×10 cm的磁铁相对放置组成。具体操作过程如下:先在铝合金管上分别挖4个10 cm×2 cm的方孔,接着将2块磁铁套在其中。然后利用不锈钢条制作一个U型支架,最后再将套上铝合金管的2块磁铁安装在支架上。 装置示意图如图1所示。 图1

教学设计-探究安培力

第三节探究安培力 【教材分析】 学生在初中已经对磁场有了初步的认识,并且初步了解了通电导体在磁场中受力的情况,但是对于如何用左手定则判断安培力的方向及安培力的大小与哪些因素有关还有一定的疑问。本教材安排了两个实验探究活动,分别探究安培力的方向和大小。定量探究影响安培力大小的因素是本节课的重点,教材采用控制变量法,既可以让学生动手操作,培养学生的探究能力和独立思考的能力,又可以帮助学生理解安培力大小的计算公式。同时,本节课的内容也为后面洛仑兹力的学习打下了基础。 【学情分析】 通过初中的学习,学生已经对安培力有了初步的认识,同时通过前面第二节内容的学习,学生进一步了解了磁场对通电导线的作用,并具有了一定的探究能力和探究意识,同时也具备了在实验中总结规律的能力,为本节课的实验探究奠定了基础。但是对于左手定则所涉及的空间关系的理解还存在一定的疑问。 【教学目标】 1.知识与技能 (1)理解左手定则,并学会用左手定则判断安培力的方向。 (2)知道安培力的大小与哪些因素有关,能够得出安培力的计算公式。 (3)学会利用安培力去分析和计算实际问题。

2.过程与方法 (1)通过对左手定则的学习,理解磁场方向、电流方向和安培力方向三者之间的关系,从而培养学生空间想象能力。 (2)通过实验探究影响安培力大小的因素,培养学生用“控制变量法”研究问题的方法。 (3)通过实验探究,培养学生动手操作能力和总结归纳能力。 3.情感、态度和价值观 (1)通过对安培力的探究,激发学生探究的兴趣,培养学生探究问题、处理数据、总结归纳的能力,让学生养成良好的科学态度。 (2)通过对本节课的学习,让学生知道安培力是实际应用中很重要的一种力,广泛用于电动机、电流表、发电机等多种设备,进一步激发学生探究的兴趣和好奇心。 【教学重点】 掌握左手定则,并学会用左手定则确定安培力的方向;学会计算安培力的大小。 【教学难点】 对左手定则所涉及的空间关系的理解及左手定则的应用。 【教学过程设计】

第三节 探究安培力说课稿

第三节探究安培力说课稿 一、说教材: 本节教材通过探究安培力的方向和大小的规律,给出了左手定则和磁感应强度的定义。磁场对电流的安培力宏观表现了磁场力的性质,而磁感应强度则描述了磁场力的性质,是磁学的基本概念。学好安培力和磁感应强度,既是前面认识磁场的深化,也为下来学习洛伦兹力和直流电动机打下了基础。至于磁通量,主要为下一章做好知识准备。 根据如上分析,可确定出本节教学的目标: 知识与技能: 1、通过实验认识安培力。知道什么是安培力。会计算匀强磁场中安培力的大小。 2、会判断安培力的方向,知道并能应用左手定则。 3、理解磁感应强度的定义,知道感应强度的单位。会用磁感应强度的定义式进行有关计算。 4、知道用磁感线的疏密程度可以现象地表示磁感应强度的大小。知道什么叫匀强磁场,知道匀强磁场的磁感线是分布均匀的平行直线。 5、知道磁通量的定义,能计算简单情况下的磁通量。 过程与方法: 1、经历安培力方向的探究过程,认识科学探究活动在物理学研究中的重要意义。 2、观察探究安培力大小的演示实验,了解物理学的研究方法。 3、了解磁感应强度定义的思路,重温比值定义法。 情感态度与价值观: 1、通过对安培力规律的探究活动,培养学生尊重事实,实事求是的科学态度。 重点、难点分析: 重点是理解磁感应强度的概念,理解磁场对电流的作用力大小的决定因素,掌握电流与磁场垂直时安培力的大小计算公式。 左手定则既是重点也是难点.磁场方向、电流方向和安培力方向三者之间的空间关系也是一个难点. 二、说教法、学法 通过学生自行实验探究得出安培力方向与电流方向和磁场方向有关,对左手定则的理解可借助墙角(或桌角)帮助学生建立三维坐标空间,再结合练习法使学生掌握左手定则的使用。 教师可通过演示实验法直观教学决定安培力大小的因素,通过启发讲解,帮助学生归纳总结关系式.在上一节的基础上,启发学生回忆电场强度的定义,对比说明引入磁感应强度的定义的思路是通过磁场对电流的作用力的研究得出的。 三、说程序 1、新课引入:介绍安培在研究磁场对电流作用方面的贡献,激起学生学习安培的研究方法和研究成果的兴趣。 2、探究安培力的方向:首先提出问题:安培力的方向如何呢?通过实验探究可知,通电导线在磁场中受到的安培力方向跟导线中的电流方向、磁场方向都有关系.人们通过大量的实验研究,总结出通电导线受安培力方向和电流方向、磁场方向存在着一个规律——左手定则. 左手定则:伸开左手,使大拇指跟其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流方向,那么,拇指所指的方向,就是通电导线在磁场中的受力方向. 应该提醒学生注意的是:若电流方向和磁场方向垂直,则磁场力的方向、电流方向、磁

相关文档
最新文档