高频单调谐回路放大器

高频单调谐回路放大器
高频单调谐回路放大器

实验报告

课程名称高频电子线路

专业班级电子0941

姓名金志超刘衡牛超朱光明

学号18号21号27号42号

电气与信息学院

和谐勤奋求是创新

一、实验目的

1.熟悉谐振放大器的幅频特性、通频带和选择性;

2.熟悉信号源内阻及负载对谐振回路的影响,了解展宽频带的方法;

3.掌握放大器的动态范围及其测试方法。

二.实验仪器

1.示波器

2.高频信号发生器

3.万用表

4. 高频电子线路试验箱

三、实验原理

1.调谐放大器的基本原理

调谐放大器的作用是有选择地对某一频率范围的高频小信号进行放大。由于信号小,从而可以认为放大器工作在晶体管的线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路。这种放大器对谐振频率

f及附近频率的信号具有较强的放大作用,而对

其它远离

f的频率信号,放大作用很差。

高频小信号调谐放大器是我主要质量指标如下:

1.增益:放大器输出电压与输入电压之比,用来表示高频小信号调谐放大器放大微弱信号的能力。

2.通频带:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。

3.选择性:从含有各种不同频率的信号总和(有用和有害的)中选出有用信

号排除有害(干扰)信号的能力,称为放大器的选择性。衡量选择性的基本指标一般有两个:

表示,且矩形系数越小,选择性越好,其抑制邻近矩形系数和抑制比。矩形系数通常用K

0.1

无用信号的能力就越强。抑制比见末尾附录,此处略。

4.稳定性:指放大器的工作状态(直流偏置)、晶体管的参数、电路元件参数等发生可能的变化时,放大器的主要特性的稳定程度。

5.噪声系数:高频放大器由多级组成,降低噪声系数的关键在于减小前级电路的内部噪声。因此,在设计前级放大器时,要求采用低噪声器件,合理地设置工作电流等,使放大器在尽可能高的功率增益下噪声系数最小。越接近1越说明噪声越小,电路的性能越好。2.实验箱电路图如下:

图l-l高频单调谐回路放大器实验原理图

四.实验内容及步骤

实验电路如图 l-l所示,按电路图接好地线、12V线。接12V线时,要先用万用表检查12V是否正常,无误后,断电再接。接线正确后接通电源,指示灯亮。

1.测量三极管静态

在Re=2K,Re=1K,R=200Ω时测V B、V E,计算I C、V CE,判断三极管T的工作状态。

表1—1 高频单调谐回路放大器三极管静态工作点数据表

其中:工作状态填写“截止”、“放大”、“饱和”。

2.测量三极管动态

A点接5K,Re取 200Ω,输入端接高频信号,输出端接示波器,输入信号频率选4.5

-5.OMHZ ,幅度0.1V ,微调输入信号频率,使输出信号最大。然后使输入信号从OV 变到1V ,选出10个点,记录输出信号的幅值。

改变Re 为1K 、2K 时,重复上述过程。

在同一坐标系内,画出Ic 不同时,输入、输出动态范围曲线,并分析比较。

表l -2 高频单调谐回路放大器三极管动态数据表

3.测量放大器的频率特性

Re 取

200Ω,A 点接5K ,选择正常的放大区的输入电压,频率为4.5~6.OMHZ 左右,调节输入频率使输出最大。此时可认为是谐振频率。保持输入幅度不变,改变输入频率f ,以谐振频率为中心向两边偏移,用示波器测得不同频率f 时输出电压峰-峰值,记录下来。频率偏离步长可根据实测情况来确定。 A 点接 2K 、500Ω时,重复上述过程,比较通频带情况。

表l -3 高频单调谐回路放大器频率特性数据表

填表注意事项:数据表格中间为谐振频率。两边递加(递减),建议步长为0.3~1MHz 。0.5MHz 较为理想。

五.实验数据分析

1.测量三极管静态

测试目的:

因为高频小信号调谐放大器中的三极管要工作在放大状态,才能保证电路的正常工作,如果出现失真,则该电路是毫无意义的。而静态工作点决定了电路是否会产生失真,因此,

通过测量三极管静态性能来设置合适的静态工作点,以保证放大电路中的三极管工作在放大状态而不产生失真是非常必要的。

结论:

发射极偏置电阻Re起到直流负反馈电阻的作用,Re不同的阻值不仅会影响三极管的静态工作点,而且还会影响三极管的放大倍数。

该结论对工作的意义:

通过对基本共射放大电路的具体分析,求解静态工作点,来分析失真出现的条件,从而保障放大电路工作在放大区,体现出设置静态工作点目的在于限制最大的输入信号,进一步来限制放大电路的最大输出电压。高频小信号调谐放大器三极管不仅要有稳定的静态工作点,而且还要有适当的放大倍数,而发射极Re对两者都有影响,因此要根据对高频小信号调谐放大器的要求选择合适的Re。

2.测量三极管动态性能

测试目的:

对于高频单调谐回路放大器来说,因为晶体管是放大电路的重要器件,起到电流控制和放大作用。通过测试晶体管的动态性能,以选择合适的输入电压和Rc,也能使我们进一步掌握放大器的动态范围。

结论:

当Re的阻值一定时,输出电压随着输入电压的增加而增加,即输入电压越大,则输出电压也越大。而当输入电压相同时,输出电压随着Rc的减小而增大,即电压放大倍数随着Rc的减小而增大增大。

对高频调谐放大器的认识:

高频小信号单调谐放大电路的放大效果是衡量放大器性能的重要指标,因此确保单调谐放大电路的三极管工作在放大状态至关重要。

通过改组实验数据我们认识到,通过改变输入电压和Rc可以改变放大电路的放大效果,增大输入电压和减小Rc均可使放大电路的放大性能增加。

应用MATLAB进行数据分析得到:

3.测量放大器的频率特性

测试目的:

高频小信号谐振放大器的LC并联谐振回路具有选频作用,它能够够选出我们所想要的频率,同时抑制和滤除无用信号和各种干扰噪声。当输入信号的频率从中心频率往两边递变时,观察谐振回路输出端的电压变化。当A点接入不同的电阻R时,观察该阻值对放大器幅频特性的影响。

结论:

当输入信号的频率从中心频率往两边递变时,放大电路的放大倍数随之减小。当信号频率太高或者太低时,放大倍数都有大幅度的下降。当输入频率为中心频率时,并联回路处于谐振状态,导纳最小,阻抗最大,从而输出电压能达到最大值。A点接入电阻,起到防止自击震荡作用,当接入的阻值不同时,幅频特性随之变化,阻值越大,幅频特性越好。从而我们可以通过改变A点接入电阻来改善放大器对输入信号的适应性。

该组数据所体现的电路特性:

通过数据可以看出,当输入频率从中心频率往两边递变时,输出电压的放大倍数随之减小,当A点接入的阻值越大时,幅频特性越好。

应用MATLAB进行数据分析得到:

六.心得体会

在这个高频实验中,我熟悉高频电路实验箱的组成及其电路中各元件的作用;单调谐回路特点是电路简单,调试容易,但选择性差,增益和通频带的矛盾比较突出;单级单调谐放大器是小信号放大器的基本电路,其电压增益主要决定于管子的参数、信号源和负载,为了提高电压增益,谐振回路于信号源和负载的连接常采用部分接入方式;单调谐回路的矩形系数大,选择性差,这是单调谐回路放大器的主要缺点。通过电路中的负载对谐振回路的影响,从而了解频带扩展,还有单调谐回路谐振放大器的性能指标和测量方法。在报告中遇到了很多困难,又捡起了很多以前的知识,进行了复习,困难都被我们一一克服了。完成这个实验后,我对高频知识有了更深一层的理解。

高频单级、两级小信号单、双调谐放大器通信电子电路硬件实验报告

实验一高频(单级、两级)小信号(单、双)调谐放大器 一、实验目的 1、掌握高频小信号调谐放大器的工作原理; 2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。 二、实验内容 1、测量各放大器的电压增益; 三、实验仪器 BT-3扫频仪(选做)一台、20MHz示波器一台、数字式万用表一块、调试工具一套 四、实验基本原理 1、单级单调谐放大器 图1-1 单级单调谐放大器实验原理图 实验原理图如图1-1所示,本实验的输入信号(10.7MHz)由正弦波振荡器模块的石英晶体振荡器或高频信号源提供。信号从TP5处输入,从TP10处输出。调节电位器W3可改变三极管Q2的静态工作点,调节可调电容CC2和中周T2可改变谐振回路的幅频特性。 2、单级双调谐放大器 图1-2 单级双调谐放大器实验原理图 实验原理图如图1-2所示,单级双调谐放大器和单级单调谐放大器共用了一部分元器件。两个谐振回路通过电容C20(1nF)或C21(10 nF)耦合,若选择C20为耦合电容,则TP7接TP11;若选择C21为耦合电容,则TP7接TP12。 3、双级单调谐放大器 图1-3 双级单调谐放大器实验原理图 实验原理图如图1-3所示,若TP5处输入信号的峰峰值为几百毫伏,经过第一级放大器后可达几伏,此信号幅度远远超过了第二级放大器的动态范围,从而使第二级放大器无法发挥放大的作用。同时由于输入信号不可避免地存在谐波成分,经过第一级谐振放大器后,由于谐振回路频率特性的非理想性,放大器也会对残留的谐波成分进行放大。所以在第一级与第二级放大器之间又加了一个陶瓷滤波器(FL3),一方面滤除放大的谐波成分,另一方面使第二级放大器输入信号的幅度满足要求。 实验时若采用外置专用函数信号发生器,调节第一级放大器输入信号的幅度,使第一级放大器输出信号的幅度满足第二级放大器的输入要求,则第一级与第二级放大器之间可不用再经过FL3。 4、双级双调谐放大器 图1-4 双级双调谐放大器实验原理图 实验原理图如图1-4所示,第一级放大器两谐振回路的耦合电容(C20、C21)可选,第二级放大器两谐振回路的耦合电容不可选(固定为C26,1nF),两级放大器之间是否接FL3及相应原因与两级单调谐放大器相同。

实验一小信号调谐(单调谐)放大器实验指导

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,微调C3,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

实验1__单调谐回路谐振放大器

—、实验准备 1.做本实验时应具备的知识点:(1)放大器静态工作点(2)LC并联谐振回路(3)单调谐放大器幅频特性 2.做本实验时所用到的仪器:单调谐回路谐振放大器模块、双踪示波器、万用表、频率计、高频信号源 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐回路谐振放大器的基本工作原理; 3. 熟悉放大器静态工作点的测量方法; 4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响; 5.掌握测量放大器幅频特性的方法。 三、实验内容 1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性; 3.用示波器观察静态工作点对单调谐放大器幅频特性的影响; 4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。 四、基本原理 1.单调谐回路谐振放大器原理 小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。 为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

BG Cb C Ce Cc Re OUT Rb 2Rb 1Rc L IN 图1-1 单调谐回路放大器原理电路

1R1 1R21Q01 9018 1R3 1C25-20p F 1C04 1R41C03 1R5 1C05 1C06 1R6 1Q029018 1R8 1C07 +12V1 1 GND1 X 1Y 2 1V01X 1 Y 2 1VO21W 01 1W 02 1D01 L E D 1R9 VCC GND +12V 12V VCC GND +12V -12V 1K01 +12V1 +12V C O M M O N 2 N C 1 N O 31K02 1C01 4 466 33 22 11 1T 01T RANS6 1L 01 1C02 1C08 IN OUT 1 1T P01 1 1T P02 输入 输出 图1-2 单调谐回路谐振放大器实验电路图 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,1C 2用来调谐,1K 02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q 值)的影响。1W 01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q 值)的影响。1Q 02为射极跟随器,主要用于提高带负载能力,1W 02用来改变1Q 02的基极偏置。 五、实验步骤 1.实验准备 ⑴ 插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关1K 01 接通电源,此时电源指示灯亮。 2.单调谐回路谐振放大器静态工作点测量 调整1W 01,使放大器工作于饱和状态、截止状态、放大状态。用万用表测量各点(对地)电压V B 、V E 、V C ,并填入表1.1内(发射极电阻1R4=1K Ω)。 表1.1 调整 1W01 实测(V) 计算(V,mA) V B V E V C V BE V CE I e 饱和状态 截止状态 放大状态 3.单调谐回路谐振放大器幅频特性测量 测量幅频特性通常有两种方法,即扫频法和点测法。扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。步骤如下: (1)1K 02置“off “位,即断开集电极电阻1R3,调整1W 01,使放大器工作于放大状态。高频信号源输出连接到单调谐放大器的输入端(1V01)。示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰——峰值)为100mv (示波器CH1监测)。调整单调谐放大器的电容IC 2,使放大器的输出为最大值(示波器CH2监测)。此时回路谐振于6.3MHZ 。

高频 谐振功率放大器

高频谐振功率放大器实验 121180166 赵琛 1、实验目的 1.进一步掌握高频丙类谐振功率放大器的工作原理。 2.掌握丙类谐振功率放大器的调谐特性和负载特性。 3.掌握激励电压、集电极电源电压及负载变化对放大器工作状态的影响。 4. 掌握测量丙类功放输出功率,效率的方法。 二、实验使用仪器 1. 丙类谐振功率放大器实验板 2. 200MH泰克双踪示波器 3. FLUKE万用表 4. 高频信号源 5. 扫频频谱仪(安泰信) 6 . 高频毫伏表 三、实验基本原理与电路 1.高频谐振功率放大器原理电路 高频谐振功率放大器是一种能量转换器件,它可以将电源供给的直流能量转换为高频交流输出。高频谐振功率放大器是通信系统中发送装置的重要组件,其作用是放大信号,使之达到足够的功率输出,以满足天线发射和其它负载的要求。 高频谐振功率放大器研究的主要问题是如何获得高效率、大功率的输出。放大器电流导通角θ愈小,放大器的效率η愈高。如甲类功放的θ=180,效率η最高为50%,而丙类功放的θ<90°,效率η可达到80%。谐振功率放大器采用丙类功率放大器,采用选频网络作为负载回路的丙类功率放大器称为高频谐振功率放大器。高频谐振功率放大器原理电路如图3-1。 图中U b为输入交流信号,E B是基极偏置电压,调整E B,改变放大器的导通角,以改变放大器工作的类型。E C是集电极电源电压。集电极外接LC并联振荡回路的功用是作放大器负载。放大器工作时,晶体管的电流、电压波形及其对应关系如图3-1所示。晶体管转移特性如图3.2中虚线所示。由于输入信号较

大,可用折线近似转移特性,如图中实线所示。 图中' B U 为管子导通电压,g m 为特征斜率(跨导)。 图3-1 高频谐振功率放大器的工作原理 设输入电压为一余弦电压,即 u b =U bm cos ωt 则管子基极、发射极间电压u BE 为 u BE =E B +u b =E B +U bm cos ωt 在丙类工作时,E B <' B U ,在这种偏置条件下,集电极电流i C 为余弦脉冲,其最 大值为i Cmax ,电流流通的相角为2θ,通常称θ为集电极电流的通角,丙类工作时,θ<π/2 。把集电极电流脉冲用傅氏级数展开,可分解为直流、基波和各次谐波i C =I C0+i c1+i c2+=I C0+I c1m cos ωt+I c2m cos2ωt+… 式中,I C0为直流电流,I c1m 、I c2m 分别为基波、二次谐波电流幅度。 i R L

实验一_高频小信号调谐放大器实验报告

本科生实验报告 实验课程高频电路实验 学院名称信科院 专业名称物联网工程 学生姓名刘鑫 学生学号201313060108 指导教师陈川 实验地点6C1001 实验成绩 二〇年月二〇年月

高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验仪器与设备 高频电子线路综合实验箱; 扫频仪; 高频信号发生器; 双踪示波器 三、实验原理 (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻R A1、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f0的表达式为

∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑ C 为调谐回路的总电容,∑ C 的表达式为 ie oe C P C P C C 2221++=∑ 式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,用扫频仪测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,g Σ为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o 而是为(180o + Φfe )。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1中R L 两端的电压V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0 = V 0 / V i 或 A V0 = 20 lg (V 0 /V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为 BW = 2△f 0.7 = fo/Q L 式中,Q L 为谐振回路的有载品质因数。 分析表明,放大器的谐振电压放大倍数A V0与通频带BW 的关系为 ∑ = ?C y BW A fe V π20

高频小信号调谐放大器

高频电子线路课程设计报告 题目: __ 高频小信号谐振放大器 __ 院系:_xxxxxxxxxxxxxxxxxxxxxxxx_ 专业:____电子信息科学与技术 班级: xxxxxxxxxxx 姓名: xxxxxx 学号: _ xxxxxxxxxxxxxxx __ 指导教师: xxxxxxxx 报告成绩: 2016年12月16日

目录 一设计目的 (1) 二设计思路 (1) 2.1 电路的功能 (1) 2.2 设计的基本要求 (1) 三设计过程 (1) 3.1 设计电路 (1) 3.2 测量方法 (4) 3.2.1谐振频率 (4) 3.2.2电压增益 (4) 3.2.3通频带 (5) 3.2.4矩形系数 (5) 四系统调试与结果 (6) 4.1 设置静态工作点 (6) 4.2 计算谐振回路参数 (6) 4.3 利用Multisim 对电路的仿真图 (7) 4.4 设计结果与分析 (8) 五主要元器件与设备 (10) 5.1 元器件与设备 (10) 5.2相关参数 (11) 六课程设计体会与建议 (11) 6.1 设计体会 (11) 6.2 设计建议 (12) 七参考文献 (12)

一设计目的 (1)了解LC谐振回路的选频原理和回路参数对回路特性的影响。 (2)掌握高频单调谐放大器的构成和工作原理。 (3)掌握高频单特性放大器的等效电路、性能指标要求及分析设计。 (4)掌握高频单调谐放大器的设计方案和测试方法。 二设计思路 2.1 电路的功能 所谓谐振放大器,就是采用谐振回路作负载的放大器。根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。所以,谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。高频小信号放大器的作用是无失真的放大某一频率围的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 2.2设计的基本要求 (1)通过具体计算,选择器件给出电路设计电路 (2)给出最终实现电路 (3)进行仿真校验 (4)作出设计总结 三设计过程 3.1设计电路

单调谐回路谐振放大器及通频带展宽实验说课讲解

课程名称:高频电子线路 题目:单调谐回路谐振放大器及通频带展宽实验 学生姓名: 专业:电子信息科学与技术 班级: 学号: 指导教师: 日期: 2013 年 6 月 28 日

实验三单调谐回路谐振放大器及通频带展宽实验 一、实验目的: 1. 熟悉高频电路实验箱的组成及其电路中各元件的作用; 2. 熟悉并联谐振回路的通频带与选择性等相关知识; 3. 熟悉负载对谐振回路的影响,从而了解频带扩展; 4. 熟悉和了解单调谐回路谐振放大器的性能指标和测量方法。 二、预习要求: 1. 复习选频网络的特性分析方法; 2. 复习谐振回路的工作原理; 3. 了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。 三、实验电路说明: 本实验电路如图7-3所示。 图7-3 W、R1、R2和Re1(Re2)为直流偏置电路,调节W可改变直流工作点。C2、L1构成谐振回路,R3为回路电阻,RL为负载电阻。 四、实验仪器: 1.双踪示波器 2.数字频率计 3.万用表 4.实验箱及单、双调谐放大模块 5.高频信号发生器 五、实验内容和步骤:

1.测量谐振放大器的谐振频率: 1)拨动开关K3至“RL”档; 2)拨动开关K1至“OFF”档,断开R3 ; 3)拨动开关K2,选中Re2; 4)检查无误后接通电源; 5)调整谐振放大器的动态工作点; 6)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3; 7)使高频信号发生器的正弦信号输出幅度为300mV左右(本实验指导书中所说幅度都是指峰峰值),其频率在2—11MHz之间变化,找到谐振放大器输出电压幅度最大且波形不失真的频率并记录下来;(注意:如找不到不失真的波形,应同时调节W来配合;幅度最大不失真的输出频率在8.3MHZ左右。) 2.测量放大器在谐振点的动态范围: 1)拨动开关K1,接通R3; 2)拨动开关K2,选中Re1; 3)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3; 4)调节高频信号发生器的正弦信号输出频率为8MHz,调节C2使谐振放大器输出电压幅度u0 最大且波形不失真。此时调节高频信号发生器的信号输出幅度由300mV变化到1V,使谐振放大器的输出经历由不失真到失真的过程,记录下最大不失真的u0值(如找不到不失真的波形, 表3-1 5)再选Re1=2KΩ,重复第4)步的过程; 6)在相同的坐标上画出不同Ic(由不同的Re决定)时的动态范围曲线,并进行分析和比较。 3.测量放大器的通频带: 1)拨动开关K1,接通R3; 2)拨动开关K2,选中Re2; 3)拨动开关K3至“RL”档;

高频小信号调谐放大器设计-要点

《高频电子线路》课程设计说明书高频小信号调谐放大器设计与制作 院、部:电气与信息工程学院 学生姓名: 指导教师:职称副教授 专业:通信工程 班级:通信1103班 完成时间:2013年12月16日

摘要 高频小信号调谐放大器是为了对一些幅度比较小的高频信号进行有目的放大,在广播和通信设备中有广泛的应用,通常用于各种发射机的接收端。 本设计围绕高频小信号调谐放大器设计工作进行研究和实现,详细介绍了高频小信号调谐的整体结构,硬件设计,系统方案,单元电路模块和仿真情况的具体实现,介绍了一种利用三极管放大,LC并联谐振选频将特定的信号进行放大和选出相对应频率的信号,达到了设计要求,该设计适用于高频电路发射机的接收端。 关键词高频小信号; LC谐振;放大器;谐振电压放大倍数

ABSTRACT High frequency small signal for some smaller amplitude tuned amplifier is to have a purpose on high frequency signal amplification, widely used in radio and communication equipment. This design around the high frequency small signal tuned amplifier design work for research and implementation, introduces in detail the overall structure of the high frequency small signal tuning, hardware design, system solutions, unit circuit module and the concrete realization of the simulation conditions, the paper introduces a using triode amplifier, LC parallel resonant frequency selective specific signal amplification and to select the corresponding frequency of the signal, meet the design requirements, the design is suitable for hf transmitter circuit at the receiving end. Keywords triode High frequency small signal; LC resonance; Amplifier; Resonant voltage magnification

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。 下图中绿色为输入波形,蓝色为输出波形

Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。

Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作用。 2次谐波 4次谐波 6次谐波

单调谐回路谐振放大器

单调谐回路谐振放大器 —、实验准备 1.做本实验时应具备的知识点:(1)放大器静态工作点(2)LC并联谐振回路(3)单调谐放大器幅频特性 2.做本实验时所用到的仪器:单调谐回路谐振放大器模块、双踪示波器、万用表、频率计、高频信号源 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐回路谐振放大器的基本工作原理; 3. 熟悉放大器静态工作点的测量方法; 4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响; 5.掌握测量放大器幅频特性的方法。 三、实验内容 1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性; 3.用示波器观察静态工作点对单调谐放大器幅频特性的影响; 4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。 四、基本原理 1.单调谐回路谐振放大器原理 小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。 为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。 图1-1 单调谐回路放大器原理电路

图1-2 单调谐回路谐振放大器实验电路图 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。1Q02为射极跟随器,主要用于提高带负载能力,1W02用来改变1Q02的基极偏置。 五、实验步骤 1.实验准备 ⑴插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关1K01 接通电源,此时电源指示灯亮。 2.单调谐回路谐振放大器静态工作点测量 调整1W01,使放大器工作于饱和状态、截止状态、放大状态。用万用表测量各点(对地)电压V B、V E、V C,并填入表1.1内(发射极电阻1R4=1KΩ)。 表1.1 调整1W01 实测(V) 计算(V,mA) V B V E V C V BE V CE I e 饱和状态 截止状态 放大状态 3.单调谐回路谐振放大器幅频特性测量 测量幅频特性通常有两种方法,即扫频法和点测法。扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。本实验采用点测法,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。步骤如下:(1)1K02置“off“位,即断开集电极电阻1R3,调整1W01,使放大器工作于放大状态。高频信号源输出连接到单调谐放大器的输入端(1V01)。示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),

高频实验:小信号调谐放大器实验报告要点

实验一 小信号调谐放大器实验报告 一 实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 所谓“小信号”,通常指输入信号电压一般在微伏 毫伏数量级附近,放大这种信号的放大器工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。这种放大器对谐振频率0f 及附近频率的信号具有最强的放大作用,而对其它远离0f 的频率信号,放大作用很差,如图1-1所示。 图1.1 高频小信号调谐放大器的频率选择特性曲线 小信号调谐放大器技术参数如下: 1 0.707

1.增益:表示高频小信号调谐放大器放大微弱信号的能力 2.通频带和选择性:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。衡量放大器的频率选择性,通常引入参数——矩形系数K0.1。 2.实验电路 原理图分析: In1是高频信号输入端,当信号从In1输入时,需要将跳线TP1的上部连接起来。In2是从天线接收空间中的高频信号输入,电感L1和电容C1,C2组成选频网络,此时,需要将跳线TP1的下部连接起来。电容C3是隔直电容,滑动变阻器RW2和电阻R2,R3是晶体管基极的直流偏置电阻,用来决定晶体管基极的直流电压,电阻R1是射极直流负反馈电阻,决定了晶体管射极的直流电流Ie。晶体管需要设置一个合适的直流工作点,才能保证小信号谐振放大器正常工作,有一定的电压增益。 通常,适当的增加晶体管射极的直流电流Ie可以提高晶体管的交流放大倍数 ,增大小信号谐振放大器的放大倍数。但Ie过大,输出波形容易失真。一般控制Ie在1-4mA之间。 电容C3是射极旁路电路,集电极回路由电容和电感组成,是一个并联的LC 谐振回路,起到选频的作用,其中有一个可变电容可以改变回路总的电容值。电

高频小信号放大器——典型例题分析

高频小信号放大器——典型例题分析 1.集成宽带放大器L1590的内部电路如图7.5所示。试问电路中采用了什么方法来扩展通频带的?答:集成宽放L1590是由两级放大电路构成。第一级由V1、V2、V3、V6构成;第二级由V7~V10构成,三极管V11~V16、二极管V17~V20和有关电阻构成偏置电路。其中第一级的V1、V3和V2、V6均为共射-共基组合电路,它们共同构成共射-共基差动放大器,这种电路形式不仅具有较宽的频带,而且还提供了较高的增益,同时,R2、R3和R4引入的负反馈可扩展该级的频带。V3、V6集电极输出的信号分别送到V7、V10的基极。第二级的V7、V8和V9、V10均为共集-共射组合电路,它们共同构成共集-共射差动放大器,R18、R19和R20引入负反馈,这些都使该级具有很宽的频带,改变R20可调节增益。应该指出,V7、V10的共集组态可将第一级和后面电路隔离。由于采取了上述措施,使L1590的工作频带可达0~150MHZ。顺便提一下,图中的V4、V5起自动增益控制(AGC)作用,其中2脚接的是AGC电压。图7.5 集成宽放L1590的内部电路2.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一

定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。3.超外差接收机(远程接收机)高放管为什么要尽量选用低噪声管?答:多级放大器的总噪声系数为由于每级放大器的噪声系数总是大于1,上式中的各项都为正值,因此放大器级数越多,总的噪声系数也就越大。上式还表明,各级放大器对总噪声系数的影响是不同的,第一级的影响最大,越往后级,影响就越小。因此,要降低整个放大器的噪声系数,最主要的是降低第一级(有时还包括第二级)的噪声系数,并提高其功率增益。综上所述,超外差接收机(远程接收机)高放管要尽量选用低噪声管,以降低系统噪声系数,提高系统灵敏度。4.试画出图7.6所示放大器的交流通路。工作频率f=465kHZ。答:根据画交流通路的一般原则,即大电容视为短路,直流电源视为短路,大电感按开路处理。就可以很容易画出其交流通路。对于图中0.01μF电容,因工作频率为465kHZ,其容抗为,相对于与它串联 和并联的电阻而言,可以忽略,所以可以视为短路。画出的交流通路如图7.7所示。图7.6 图7.75.共发射极单调谐放大器如图7.2所示,试推导出 谐振电压增益、通频带及选择性(矩形系数)公式。解:单

高频 小信号谐振放大器

高频小信号谐振放大器实验 121180166 赵琛 一、 实验目的 1. 掌握高频小信号调谐放大器的工作原理和基本电路结构。 2. 掌握高频小信号调谐放大器的调试方法。 3. 掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数,1dB 压 缩点)的测试方法。 二、实验使用仪器 1.小信号调谐放大器实验板 2.200MH 泰克双踪示波器 3. FLUKE 万用表 4. 模拟扫频仪(安泰信) 5. 高频信号源 6. 高频毫伏表 三、实验基本原理与电路 1、 小信号调谐放大器的基本原理 小信号调谐放大器是构成无线电通信设备的主要电路, 其作用是有选择地对某一频率范围的高频小信号信号进行放大 。 所谓“小信号”,指输入信号电压一般在微伏~毫伏数量级范围内,对于这种幅度范围的输入信号,放大器一半工作在线性范围内。所谓“调谐”,主要是指放大器的集电极负载为调谐回路(如LC 调谐回路)。此时放大器对谐振频率0f 及附近频率的信号具有最大的增益,而对其它远离0f 频率的输入信号,增益很小,如图1-1所示。 2、小信号调谐放大器技主要技术指标 1. 增益:表示高频小信号调谐放大器对输入信号的放大能力 电压增益的定义:0 10 20log ()i U dB U ? (1_1) 其中输出信号和输入信号的有效值分别为0U ,i U 。

相对增益(d B ) f 图1.1 高频小信号调谐放大器的频率选择特性曲线 功率增益的定义: 0 10 10log ()i P dB P ? (1_2) 其中输出信号和输入信号的功率分别为0P ,i P 。在高频和射频电路中功率的单位常用dBm 表示:dBm 和mW 之间的换算关系: 1010log ()1P dBm mW =?,10dBm =10mW (1_3) 2. 通频带和选择性:通常将小信号放大器的电压增益下降到最大值的0.707倍时所对应的输入信号频率范围定义为放大器的通频带,用B 0.7表示。为衡量放大器的频率选择性,通常引入参数——矩形系数K 0.1,它定义为: 0.1 0.10.7 B K B = (1_4) 式中,B 0.1为电压增益下降到最大值的0.1倍处的输入信号带宽,如图1.1所示。理想的电路频率选择性如图1.1的虚线所示。矩形系数越小,放大器的选择性越好,抑制邻近无用信号的能力就越强。 3.稳定性:高频小信号谐振放大器能够稳定工作是首要条件。由于高频放大器的工作频率较高,根据晶体管的Y 参数模型,当工作频率较高时,晶体管本身存在内反馈参数fe y ,同样当工作频率较高时,需要考虑外电路元器件的引线电感和PCB 布线时的板间分布电容,

单调谐回路调谐放大器仿真

单调谐回路调谐放大器仿真 一、实验目的 1.进一步掌握单调谐回路调谐放大器的工作原理和基本电路结构。 2.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用. 二、实验仪器 PC一台(附有multisim仿真软件) 三、实验原理 1.小信号调谐放大器的基本原理 小信号调谐放大器的作用是有选择地对某一频率范围的高频小信号进行放大。所谓“小信号”,通常指输入信号电压一般在微伏~毫伏数量级附近,由于信号小,从而可以认为放大器工作在晶体管的线性范围内。所谓“调谐”,主 f及附近频率要是指放大器的集电极负载为调谐回路。这种放大器对谐振频率 f的频率信号,放大作用很差。 的信号具有较强的放大作用,而对其它远离 高频小信号调谐放大器是我主要质量指标如下: 1.增益:放大器输出电压与输入电压之比,用来表示高频小信号调谐放大器放大微弱信号的能力 2.通频带:通常规定放大器的电压增益下降到最大值的0.707倍时,所对应的频率范围为高频放大器的通频带,用B0.7表示。 3.选择性:从含有各种不同频率的信号总和(有用和有害的)中选出有用信号排除有害(干扰)信号的能力,称为放大器的选择性。衡量选择性的基本指标一般有两个:矩形系数和抑制比。矩形系数通常用K0.1表示,且矩形系数越小,选择性越好,其抑制邻近无用信号的能力就越强。 4.稳定性:指放大器的工作状态(直流偏置)、晶体管的参数、电路元件参数等发生可能的变化时,放大器的主要特性的稳定程度。 5.噪声系数:高频放大器由多级组成,降低噪声系数的关键在于减小前级电路的内部噪声。因此,在设计前级放大器时,要求采用低噪声器件,合理地设置

第2章 高频功率放大器答案

第2章 高频功率放大器 2.1为什么低频功率放大器不能工作于丙类,而高频功率放大器则可工作于丙类? 答:两种放大器最根本的不同点是:低频功率放大器的工作频率低,但相对频带宽度却很宽,因而只能采用无调谐负载,工作状态只能限于甲类、甲乙类至乙类(限于推挽电路),以免信号严重失真;而高频功率放大器的工作频率高,但相对频带宽度窄,因而可以采用选频网络作为负载,可以在丙类工作状态,由选频网络滤波,避免了输出信号的失真。 2.2丙类放大器为什么一定要用调谐回路作为集电极负载?回路为什么一定要调到谐振状态?回路失谐将产生什么结果? 答:选用调谐回路作为集电极负载的原因是为了消除输出信号的失真。只有在谐振时,调谐回路才能有效地滤除不需要的频率,只让有用信号频率输出。此时,集电极电流脉冲只在集电极瞬时电压最低区间流通,因而电流脉冲最小,平均电流co I 也最小。若回路失谐,则集电极电流脉冲移至集电极瞬时电压较高的区间流通,因而电流脉冲变大,co I 上升,同时,输出功率下降,集电极耗散功率将急剧增加,以致烧损放大管。因此,回路失谐必须绝对避免。 2.3提高高频放大器的效率与功率,应从哪几方面入手? 答:(1)使放大器工作于丙类,并用选频网络作为负载; (2)适当选取电流导通角c θ。 2.9晶体管放大器工作于临界状态,200p R =Ω,90mA co I =,30V C E =,90c θ=?。试求o P 与η。 解:查课本后附录得:11()(90) 1.57c g g θ=?= m11()90 1.57141.3(mA)c co c I I g θ==?= ∴232111 (141.310)200 1.997(W)=2W 22 o cm p P I R -==???≈ 3 309010 2.7(W ) D C c o P E I -==??= ∴2 100%74.1%2.7 o D P P η== ?≈ 2.10已知谐振功率放大器的导通角c θ分别为180?、90?和60?时,都工作在临界状态,且三种情况下的C E 、max c I 也都相同。试计算三种情况下效率η的比值和输出功率o P 的比值。 解:(1)22221max 1max 1max 00()()22()2() cm p c c p c p o c D C co C c c C c I R I R I R P P E I E I E αθαθηαθαθ====? ∵C E 、max c I 、p R 相同,因此有 222 2 22111123000 (180)(90)(60)0.50.50.391::::::1:1.567:1.4031:1.57:1.40 (180)(90)(60)0.50.3190.218 αααηηηααα???= ==≈??? (2)22 21max 111()22 o cm p c p c P I R I R αθ== ∴222222 123111::(180):(90):(60)0.5:0.5:0.3911:1:0.61o o o P P P ααα=???=≈

实验一高频小信号调谐放大器实验报告

高频小信号调谐放大器 一、实验目的 1.进一步掌握高频小信号调谐放大器的工作原理和基本电路结构。 2.掌握高频小信号调谐放大器的调试方法。 3.掌握高频小信号调谐放大器各项技术参数(电压放大倍数,通频带,矩形系数)的测试方法。 4.熟练掌握multisim软件的使用方法,并能够通过仿真而了解到电路的一些特性以及各电路原件的作用 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

六、数据处理

()f MHz 7 8 9 9.7 9.8 9.9 10 10.1 10.2 10.3 ()i u mV 15 15 15 15 15 15 15 15 15 15 () o u mV 19 28 55 120 128 138 143 150 140 130 (/) u o i A u u 1.27 1.87 3.67 8.00 8.53 9.20 9.53 10.00 9.33 8.67 ()f MHz 10.4 10.5 10.6 10.7 11 12 13 14 15 16 ()i u mV 15 15 15 15 15 15 15 15 15 15 () o u mV 120 100 90 80 64 39 28 24 20 18 (/) u o i A u u 8.00 6.67 6.00 5.33 4.27 2.60 1.87 1.60 1.33 1.20 78910111213141516 25 50 75 100 125 1 50 f(MHz) 二、实验仿真 利用实验室计算机或者自己计算机上安装的Multisim9(10)软件,参照实验电路图,进行仿真 仿真电路图如下:

实验一小信号调谐(单双调谐)放大器实验

实验一高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验原理 1-1a1-1b (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1(a)所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对

于图1-1(a )所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 ie oe C P C P C C 2221++=∑ 式中,C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,∑g 为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o而是为180o+Φfe 。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1(a )中输出信号V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0=V 0/V i 或A V0=20 lg (V 0/V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为

相关文档
最新文档