调节阀的阀杆与阀芯联接方法的改进

调节阀的阀杆与阀芯联接方法的改进
调节阀的阀杆与阀芯联接方法的改进

调节阀的阀杆与阀芯联接方法的改进

沈新群

摘要:调节阀是大型合成氨厂不可缺少的控制元件。由于调节阀阀杆与阀芯联接处产生疲劳断裂及脱落事故,将会给生产带来不同程度的影响。为了避免这类事故的出现,现介绍几种阀杆与阀芯的联接新方法。

关键词:断裂阀杆脱落联接方法

调节阀是大型合成氨厂自控设备终端最重要的执行元件,阀内件又是调节阀不可缺少的重要组件。如果阀杆与阀芯产生脱落,势必影响大型合成氨厂的平稳生产。由此看来,调节阀的阀杆与阀芯联接方法将影响整机的使用寿命。为了提高调节阀的使用寿命,以增加阀杆联接螺纹强度,采用新的联接结构方法,很大程度上提高了调节阀整机的使用寿命。乌鲁木齐石化公司化肥厂最近几年采用几种新的阀芯与阀杆联接方法,解决了许多长期以来阀杆断裂脱落事故,效果很好。

1 阀杆与阀芯断裂脱落事故原因分析

乌石化公司化肥厂调节阀主要有世界五大调节阀公司(约占95%)及国内三大生产厂家生产提供。从整体上来讲,其阀杆与阀芯联接方法大致相同,都是用螺纹联结外加圆锥销固定,见图一。这种联接方法的优点是拆卸方便,更换备件容易,但螺纹联接处是阀杆断裂脱落的要害部位。经过认真分析,其原因有以下两点:

阀杆阀芯圆锥销

图一、原阀杆与阀芯联接方法示意图

1.1 阀杆联接螺纹处强度不足

在阀杆与阀芯联接过程中,一般都是用细牙螺纹联接,并用圆锥销固定。对于阀杆在φ16mm以上,其强度基本上能够满足。如果小于φ16mm,其强度就

不能满足阀杆的强度要求,这是因为阀杆在流体介质的压力、温度、冲蚀及其材质上发生变化,联接螺纹处首先产生间隙并且松弛,联接螺纹失去联接作用。由于联接螺纹处钻有圆锥销孔,几乎所有应力集中落在阀杆圆锥销孔处,最后导致阀杆断裂脱落。根据计算,阀杆钻孔在φ4mm以上,其强度减弱40%-60%以上,这是阀杆强度减弱突出点,也是阀杆断裂主要表现形式之一。例如我厂最早油锅炉减温水阀四台、尿素投料阀、合成碳黑洗涤高压角阀、汽化工段的高压角阀经常从阀杆联接螺纹圆锥销孔处断裂脱落,阀杆材质为SUS316,阀杆粗分别φ9.525mm、φ12.7mm,圆锥销φ4mm,其联接方法如图一,每年发生断裂脱落事故都在2-5次。

1.2 联接螺纹处圆锥销断裂

圆锥销断裂是造成阀杆脱落的另一种表现形式。阀芯在受到流体偏转压力作用下,迫使阀杆与阀芯产生一个扭矩应力,这个应力作用在阀杆联接螺纹与阀芯内孔、径向圆锥销两相切面上。另外,阀芯还受到温度热胀冷缩变化,当联接螺纹失去联接作用时,几乎所有拉应力及剪切应力都作用在圆锥销上,圆锥销受轴上拉应力和剪切应力,最后导致圆锥销断裂事故。例如合成装置4113-PV-1-1和尿素NS-HV-601、2NS-HV-301、2NS-FV-151等多台调节阀的阀杆脱落破坏事故,阀杆分别为φ15.875mm和φ12.7mm。类似这种破坏形式每年发生3-5次。

实际上,以上两种破坏形式在一个阀内件上可交替产生,也可同时产生。类似这样的事故对生产影响较大。尤其是尿素装置NS-HV-601、2NS-HV-301调节阀事故,当该阀产生失控现象时,尿素造粒装置就要被迫停车。针对以上问题,改进了阀芯和阀杆联接结构方法,采用新的联接方法效果很好,由原来年事故率较高几乎将为零。

2 增加阀杆联接螺纹强度,改进联接机构

阀杆断裂脱落事故主要表现在联接螺纹处强度不足,针对联接螺纹强度不足问题,提出以下几个改进方法:

首先要提出阀杆与阀芯联接螺纹两者实体外径比值问题,比值大小直接对改进方法有较大的影响。当阀杆实体外径/阀芯实体外径>0.4时,采用联接螺纹加强法;当比值<0.4时,应采用压块焊接方法和螺母固定方法。

2.1 联接螺纹加强法

联接螺纹加强法是以增加阀杆联接螺纹强度为目的,另加圆锥销固定。这种加强法只是与常用联接螺纹处加大外径而言,其优点是加工简单,连接螺纹强度高,能承受较大的抗拉应力和剪切力,其缺点是阀杆和阀芯的同轴度较低。例如我厂2NS-FV-151在2001年9月曾经发生过因阀杆螺纹连接处与圆锥销脱落发生阀杆窜出事故,后改进就是采用此种连接方法已经安全运行五年时间没有发生过阀杆螺纹连接处与圆锥销脱落事故,其连接如图二所示:

阀杆圆锥销阀芯

图二.改进后采用螺纹加强法示意图

目前,我厂多数调节阀都是采用图二联接方法改进联接螺纹加强法,事故率下降为零,减少了工人的劳动强度,同时也节省了备件开支费用,对装置平稳运行提供了充分的条件。

2.2 压块焊接法

压块焊接方法是将原阀杆螺纹加大,并加工一个固定压盖,然后进行焊接固定压盖并加工成光面。对于较大件可用圆锥销固定,对于小件不用圆锥销固定,如图三所示。这种联接方法的优点是:增加螺纹处强度,焊接压块不易脱落,阀杆轴向拉应力不致使联接螺纹产生间隙或松弛,螺纹处克服了介质腐蚀(封闭式)。例如合成装置4113-PCV-1-1调节阀和尿素装置NS-HV-601、2NS-HV-301、调节阀的阀杆联接采用了此种方法,解决了长期以来阀杆断裂脱落事故。这种连接方法是我厂最常用的改进调节阀阀杆与阀芯连接方法,其效果相当突出。

图三.改进后采用压块焊接方法示意图

2.3 螺母固定方法

螺母固定方法是将阀杆螺纹加大外径,然后在阀芯上加工一个被紧螺母,拧紧后进行点焊。此方法优点是拆卸方便,抗拉强度大。但其缺点是加工比较复杂,我们化肥厂使用这种连接方法只有一小部分,但其特点显然易见,不同程度解决了许多阀芯与阀杆联接强度低的问题。如图四所示。

阀杆被紧螺母圆锥销阀芯

图四.改进后采用螺母固定加强法示意图

3 结束语

乌石化公司化肥厂是(年产60万吨、108吨尿素)全国最大的氮肥厂之一。作为仪表自控终端执行调节阀是保证大氮肥厂平稳运行基本保证。化肥厂上千台调节阀,采用上述改进阀杆与阀芯联接方法已平稳运行多年。

作者简介:沈新群,男,从事多年调节阀检维修工作。

2006年3月3日

参考文献:

1.《金属机械性能》编写组编, 金属机械性能.北京:机械工业出版社.1978.

2.《机械设计手册》联合编写组编. 机械设计手册.上册(第一.二分册).北京.

化学出版社,1985.

十大类型的调节阀功能优缺点比较

1 调节阀结构型式的选择 1.1 从使用功能上选阀需注意的问题 1)调节功能 ①要求阀动作平稳;②小开度调节性能好;③选好所需的流量特性;④满足可调比;⑤阻力小、流量比大(阀的额定流量参数与公称通径之比);⑥调节速度。 2)泄漏量与切断压差 这是不可分割、互相联系的两个因素。 3)防堵 即使是干净的介质,也存在堵塞问题(管道内的不干净介质)、不干净介质更易堵卡。 4)耐蚀 它包括耐冲蚀、汽蚀、腐蚀。主要涉及到材料的选用和阀的使用寿命问题,同时,涉及到经济性问题。 5)耐压与耐温 这涉及调节阀的公称压力、工作温度的选定。 常用材质的工作温度、工作压力与公称压力的关系见下表5-1。 6)重量与外观 小型化、轻型化、仪表化 7)十大类调节阀的功能优劣比较:详见1-1表。 1.2 综合经济效果确定阀型 1) 高可靠性。 2)使用寿命长。 3)维护方便,备品备件有来源。 4)产品价格适宜,性能价格较好。 1.3 调节阀型式的优选次序 ①全功能超轻型调节阀→②蝶阀→③套筒阀→④单座阀→⑤双座阀→⑥偏心旋转阀→⑦球阀→⑧角形阀→⑨三通阀→⑩隔膜阀。

2 执行机构的选择 2.1 执行机构选择的主要考虑因素 ①可靠性;②经济性;③动作平稳、足够的输出力;④重量外观;⑤结构简单、维护方便。 2.2电动执行机构与气动执行机构的选择比较 1)可靠性方面 2)驱动源 3)价格方面 4)推力和刚度 5)防火防爆 2.3 推荐意见 (1)在可能的情况下,建议选用进口电子式执行机构 (2)薄膜执行机构虽存在推力不够、刚度小、尺寸大的缺限,但其结构简单。 (3)活塞执行机构选择 3 材料的选择 材料的选择主要根据介质的温度、腐蚀性、汽蚀、冲蚀四方面决定。 3.1 根据介质的腐蚀性选择 1)金属耐蚀材料的选择5-2。 2)氟塑料成功地用在耐腐蚀阀上 3.2 耐磨损材质的选择 对汽蚀、冲蚀严重的阀;切断类硬密封调节阀,也必须保护密封面。 4 作用方式的选择 气开、气闭阀的选择主要从生产安全角度考虑。 5 弹簧范围的选择 5.1 “标准弹簧范围”错误说法应纠正 弹簧是气动调节阀的主要零件。弹簧范围是指一台阀在静态启动时的膜室压力到走完全行程时的膜室压力,字母用Pr 表示。如Pr 为20~100KPa ,表示这台阀静态启动时膜室压力是20KPa ,关闭时的膜室压力是100KPa 。常用的弹簧范围有20~100KPa 、20~60KPa 、60~100KPa 、60~180KPa 、40~200KPa …由于气动仪表的标准信号是20~100KPa ,因此传统的调节阀理论把与气动仪表标准信号一致的弹簧范围(20~100KPa )定义成标准弹簧范围。调节阀厂家按20~100KPa 作为标准来出厂,这是十分错误的。 5.2 弹簧范围的选择 1) 阀的稳定性上选择 2) 从输出力上选择 3) 从综合性能上选定弹簧范围 4) 特殊情况弹簧范围的选择 6 流量特性的选择 6.1 调节阀理想流量特性 1)定义 调节阀的流量特性是指介质流过阀门的相对流量与相对开度的关系。数学表达式为: )(max L l F Q Q (5—1)

(完整版)调节阀试题

调节阀题库 判断 1.执行器除了能够控制压力.温度.流量外,还能够在装置的安全方面起着重要作用。(√) 2.执行器按照调节形式可分为调节型.切断型.调节切断型。(√) 3.当信号增加时调节阀的推杆向下动作的执行机构为反作用时。(×) 正确答案:执行机构为正作用时,当信号增加调节阀的推杆向下动作。 4.控制机构是执行器的调节部分,它直接与被测介质接触,调节流体的流量。(√) 5.阀门定位器和转换器的作用都是利用反馈的原理来改善执行器的性能,使执行器能调节器调节信号,实现准确定位。(×) 正确答案:阀门定们器的作用都是利用反馈的原理来改善执行器的性能,使执行器能调节器的调节信号,实现准确定位。 6.简单控制系统投运时调节阀投运有两种含义,一种是先人工操作旁路阀,然后过渡到调节 再手动到自动。另一种是直接操作调节阀的手动-自动。(√) 7.涡街流量计的安装遇有调节阀.半开阀门时,涡街流量计应安装在他们的下游。(×)正确答案:涡街流量计应装在他们的上游。 8.蝶阀对于流体方向没有要求。(√) 9.三通合流阀无论开度如何,出口流量不变。(√) 10.不论单芯阀,还是双芯阀,流体都是下进上出。(√) 11.同规格调节阀,在开度相同,其它条件相同的情况下,直流流量特性的对比数流量特性的通过量大。(√) 12.控制阀在检修后进行调校,首先应检查定位器安装位置或定位器反馈杆连接螺栓位置,保证零位置与定位器反馈杆处于水平。(×) 13. 调节阀应垂直、正立安装在水平管道上,DN > 50mm 的阀,应设有永久性支架。(√) 14.调节阀安装在节流装置前后均不影响流量测量准确度。(×) 15.直通单座阀调节阀适用于小口径.低压差.泄露量要求小的场合(√) 16.直通双座阀调节阀适用于大口径.高压差.泄露量要求不高的场合(√) 17.角形调节阀用于侧近底出时,容易发生震荡(×) 正确答案:角形调节阀用于侧近底出时,在小开度下容易发生震荡 18.调节阀的流量特性不能通过改变阀门定位器的反馈凸轮的几何形状来改变(×)

控制阀的设计分析

减温减压控制阀的设计分析 减温减压控制阀是1种在蒸汽系统既能减低温度、又能降低压力且具有调节性能的 自动控制阀。文中对减温减压控制阀设计中的关键技术进行分析,提出阀门各部分 的结构的优化设计方案和材质的选用。 减温减压控制阀是1种在蒸汽系统既能减低温度、又能降低压力且具有调节性能的自动控制阀。文中对减温减压控制阀设计中的关键技术进行分析,提出阀门各部分的结构的优化设计方案和材质的选用。 目前国内还没有针对减温减压控制阀进行更深入的研制和开发,而国内炼油化工企业对减温减压控制阀的需求量还很大。因减温减压控制阀的短缺且无替代产品,每年都需要花费大量外汇从国外进口这种减温减压控制阀。该产品的研制成功,将替代国外进口的产品,满足炼油化工企业的生产需要、节省大量投资。 由于减温减压控制阀使用工况条件比较恶劣,主要用于控制温度高、压差较大的调节。设计选择了输出力大的ZMSZ-4型多弹簧气动薄膜执行机构。即采用8组组合弹簧均匀地分布于膜头之内,这样采用较小的弹簧组替代较大的独立弹簧的方式,降低了加工成本,缩小了整体尺寸,使轴向长度缩短为原来普通结构的1/3左右,特别是减温减压控制阀采用这种结构后体积大大缩小,降低了安装难度,方便了工艺配管的设计。同时节约了材料,降低了制造难度,控制了制造成本,上海明精提高了产品零配件的通用程度。 1.2 阀内件 阀内件是减温减压控制阀的关键部件,它直接影响减温减压控制阀的流量特性。过去通常采用普通单座阀芯、阀座,但这种型式阀内件的可调比较小,使用压差较低。由于现场工作条件苛刻,经过几年冲刷,阀芯的流量特性发生了较大变化,控制阀的减温减压的工作特性逐渐变坏,就经常出现因汽、水分配不匀而产生打水锤现象,伴随着阀芯震动又出现了阀芯转动、卡滞的现象对生产造成较大影响。因此,对减温减压控制阀阀内件型式进行了研究和设计;针对阀芯所受的不平衡力,阀门可调比较小的具体情况,将阀内件设计成为笼式双座结构。提高减温减压控制阀工作稳定性,增大可调比,消除了噪音. 1.3 分流配水器的结构 分流器配水不均一直是困扰减温减压控制阀应用的难题。目前减温减压控制阀分流配水方式主要有2种顶部配水(阀芯中间)和底部配水结构。采用底部配水结构,在阀的底部配水,不将水直接注入在阀芯上使水不在阀芯上汽化,从而避免了阀芯震动的可能。上海明精为了提高注入与过热蒸汽的换热面积,将分流配水器设计成导流罩的形状,同时在上面开出导流槽,水从导流槽里的孔中喷出与被导向的过热蒸汽充分换热汽化。采用分流配水器的结构和阀内件笼式双座结构具有较为先进水平。 2 材料的性能分析 2.1 机械性能 对于阀门的密封面的硬度指标,最重要的是在高温下材料硬度的变化,高温下控制阀材质的硬度变化见图1。

石油化工用调节阀简介

本文由gerichard贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 石油化工用调节阀简介 (提纲) 工程建设公司(SEI)王为华2008 年5 月 石油化工用调节阀简介提纲目录 1. 调节阀工作原理......1 1.1 1.2 1.3 伯努利方程......1 介质流经调节阀时压力分布......1 调节阀的重要地位 (2) 2. 调节阀的阀芯特性......2 2.1 2.2 2.3 阀芯特性......2 调节围R ......3 调节阀的S 值 (3) 3. 调节阀流通能力……3 3.1 3.2 3.4 3.5 3.6 3.7 3.8 3.9 C 值与Cv 值的定义…… 3 液体(粘度(<20 厘沱)Cv 值计算......3 水蒸汽或其他蒸汽Cv 值计算......3 调节阀Cv 值与阀体口径关系表......4 调节阀的Cv 值围......5 调节阀的行程 (5) 调节阀的全行程时间......5 调节阀的阀体尺寸 (5) 4. 5. 6. 调节阀的执行机构选型......5 调节阀的关断差压(shutoff △P)......6 调节阀的结构形式......6 6.1 6.2 6.3 按阀体分......6 按执行机构分......6 角阀的流向 (6) 7. 调节阀的主要辅助装置......6 7.1 阀门定位器,选用原则 (6) 1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 8. 9. 手轮机构……6 行程开关……6 电磁阀(正常励磁式)……6 电磁阀的联接…… 7 气缸式切断阀与四通电磁阀的联接......7 调节切断阀与电气阀门定位器及电磁阀的联接......7 对重要工况采用冗余电磁阀的联接方案 (7) 调节阀的密封填料函(参见API608 规)......7 调节阀的噪音(应符合IEC60534-8 标准)......7 9.1 9.2 9.3 噪音来源......7 应≤85dB(在距阀1 米处)......7 降噪措施 (7) 10. 调节阀阀体材质的选择......7 10.1 10.2 10.3 阀体、阀盖材质的选择......7 阀芯材质的选择......8 软阀座材质的选择 (9) 11. 调节阀的泄漏等级划分......9 11.1 11.2 11.4 相关标准......9 调节阀的泄漏量表......10 调节阀的额定容量计算 (12) 12. 关于闪蒸、空化及气蚀□□......13 12.1 12.2 12.3 闪蒸(Flashing)......13 空化(Cavitation)......13 气蚀(Cavitation) (13) 13. 14. 15. 16. 调节阀供气管路的尺寸......14 对调节阀电气部件的要求......14 调节阀,检验与测试(Inspection Testing)......14 加氢装置用高压调节阀简介 (15)

调节阀阀芯结构形式

阀内件 ①ATS、APS抛物线阀芯 金属阀座结合可快速更换阀芯,有较强的抗杂质破坏能力和抗空气腐蚀能力,由于它的结构对称性,所以,生产加工容易快捷。 ②ATS抛物线阀芯(软密封) 软阀座与快速可更换阀内件结合,PTFE软密封(两面均可使用)由O型弹性圈支承并受到金属挡圈的保护。阀芯对阀座的部分力由金属挡圈承担而直接传到阀座的金属部分,排除PTFE密封圈过载的情况产生。 ③AGT、AGP抛物线阀芯(下导向) 此类阀的特点是金属阀座、阀芯易换且带有双导向。这种双导向结构在全行程上起到了稳定阀芯及阀杆的作用,因此它被推荐用于高压差的工况下。下导向处在阀座的正下方且易换。

④ACB、APC多孔笼式阀内件 金属阀座与快速可更换阀内件相结合,尤其在高压差时对液体和可压缩流体的处理效果更明显。液体流动由于气蚀作用而引起腐蚀,从阀内件孔引出的液流被分成多个气蚀液喷射流,在笼中心,喷射流撞击,蒸汽泡破碎,在这里,它们对阀内件不会造成任何损伤,噪音标准也相应降低(5~10db)。 ⑤ASB、APB平衡式阀内件 平衡式调节阀所需的执行器推力比普通非平衡是调节阀小得多,因而更适合大压差的场合。按平衡密封件的形式分为: ◆?金属活塞环密封 ◆?星型密封圈+聚四氟乙烯挡圈 ◆?纯石墨密封圈

⑥ANS、APP低噪音套筒 金属阀座结合快速更换阀芯与低噪音笼子,有较强的抗噪音能力和抗气蚀能力,由于它的结构对称,生产加工容易快捷。 ⑦ACS可更换耐磨阀芯 阀芯采用优良的耐磨材料1.4112(硬度大于58RC)以及用于及特殊工况的硬质合金,特制陶瓷(硬度可达到2000/1600HVI)。

自立式调节阀工作原理

自立式调节阀工作原理 This model paper was revised by the Standardization Office on December 10, 2020

一、阀前控制原理 自立式阀前压力控制(k),其初始阀芯的位置是在关闭状态。 当阀前压力P1通过阀芯、阀座的节流后变为发后压力P2,通过P1管线输入上膜室作用在膜片上,其作用力与弹簧的反作用力相平衡时阀芯位置决定了阀的开度,从而控制阀前压力。 当阀前压力P1增加时,P1作用在膜片上的作用力也随之增加。此时,膜片上的作用力大于设定弹簧的反作用力,使阀芯向离开阀座方向移动,导致阀的开度变大,流阻变小,P1向阀后泄压,直到膜片上的作用力与弹簧反作用力相平衡为止,从而使P1降为设定值。同理,当阀前压力P1降低时动作方向相反。 自立式阀前压力控制通常情况下是关闭状态,当阀前压力大于设定的压力时,自立式调节阀阀芯开启,起到调压泄压的作用。区别于安全阀的地方时,安全阀为全开,自立式调节阀通过阀前(后)压力控制阀的开度。 二、阀后控制原理 自立式阀后压力控制(B),其初始阀芯的位置在开启状态。 当阀前压力P1通过阀芯、阀座的节流后变为发后压力P2,通过P2管线输入上膜室作用在膜片上,其作用力与弹簧的反作用力相平衡时阀芯位置决定了阀的开度,从而控制阀后压力。 当阀后压力P2增加时,P2作用在膜片上的作用力也随之增加。此时,膜片上的作用力大于设定弹簧的反作用力,使阀芯向阀座方向移动,导致阀的开度变小,流阻变大,P2降低,直到膜片上的作用力与弹簧反作用力相平衡为止,从而使P2降为设定值。同理,当阀前压力P2降低时动作方向相反。

调节阀选型

第1章 调节阀概述 §1.1调节阀的工作原理 调节阀是按照控制信号的的方向和大小,通过改变阀芯行程来改变阀的阻力系数,达到调节流量的目的。了解解调节阀的工作原理,要从伯努利方程开始。 §1.1.1伯努利方程式 在流体力学中,流体的压力通常用高度来表示,人们把它叫做压头或水头。流体因有压力而具有的压头叫做静压头,它的大小等于液柱的压力,用公式表示就是 静压头= ρg p 式中 p ---流体的压力 ρ---流体的密度 g---重力加速度 流体在流动时因流速而造成的压头叫做速度压头,用公式表示就是: 速度压头=g w 22 式中 w ----流体的流速 几何压头、静压头和速度压头的总和就是流体的总压头,用公式表示就是: 总压头=h+ ρg p + g w 22 (1-1) 如果流过管道的流体是理想流体,就是说流体流过管道和阀门时没有能量损 失,根据能量守恒定律,流体的总压头始终是相等的,用公式表示就是 h 1+ ρg 1p + g w 22 1= h 2+ ρg 2p + g w 22 2 (1-2) 这个公式就叫做伯努利方程式,用文字表示就是:当理想流体作稳定流动时, 管道上任一断面的总压头不变,如图1所示。 对于实际流体,由于内摩擦力(总是与运动方向相反)的存在,流体在流过管道和阀门时,总是有机械能转化为热能,使机械能量不守恒,因而实际流体的伯努利方程式为: h 1+ ρg 1p + g w 22 1= h 2+ ρg 2p + g w 22 2+h r (1-3)

与图1相对应,实际流体的总压头示意如图2所示。 对于图2所示的水平管道,如果各处的断面是相同的,即h 1=h 2, w 1=w 2,则 h r = g p p ρ2 1- (1-4) 压头损失h r 也可以用下式来表示: h r =g w i 22 ∑ξ (1-5) 就有 ρ ξ ) (21 21p p w i -= ∑ ρ ξ ) (221p p F Fw Q i -= =∑ (1-6) 式中 ∑i ξ ---管道各处阻力系数之总和,通常ξ i 由实验确定 F ---管道的截面积 这就是实际流体的流量方程式。 §1.1.2调节阀的节流原理

调节阀的组成及作用

调节阀的组成及作用 一:调节阀的组成与分类 调节阀又称控制阀,是执行器的主要类型,通过接受调节控制单元输出的控制信号,借助动力操作去改变流体流量。调节阀一般由执行机构和阀门组成。如果按其所配执行机构使用的动力,调节阀可以分为气动、电动、液动三种,即以压缩空气为动力源的气动调节阀,以电为动力源的电动调节阀,以液体介质(如油等)压力为动力的电液动调节阀,另外,按其功能和特性分,还有电磁阀、电子式、智能式、现场总线型调节阀等。调节阀的产品类型很多,结构也多种多样,而且还在不断更新和变化。一般来说阀是通用的,既可以与气动执行机构匹配,也可以与电动执行机构或其他执行机构匹配。 二:调节阀的作用方式选择 调节阀的作用方式只是在选用气动执行机构时才有,其作用方式通过执行机构正反作用和阀门的正反作用组合形成。组合形式有4种即正正(气关型)、正反(气开型)、反正(气开型)、反反(气关型),通过这四种组合形成的调节阀作用方式有气开和气关两种。对于调节阀作用方式的选择,主要从三方面考虑:a)工艺生产安全;b)介质的特性;c)保证产品质量,经济损失最小。 三:调节阀流,特性的选择 调节阀的流量特性是指介质流过阀门的相对流量与位移(阀门的相对开度)间的关系,理想流量特性主要有直线、等百分比(对数)、抛物线和快开等4种,特性曲线和阀芯形状如图1和图2所示。常用的理想流量特性只有直线、等百分比(对数)、快开三种。抛物线流量特性介于直线和等百分比之间,一般可用等百分比特性来代替,

而快开特性主要用于二位调节及程序控制中,因此调节阀特性的选择实际上是直线和等百分比流量特性的选择。 调节阀流量特性的选择可以通过理论计算,但所用的方法和方程都很复杂。目前多采用经验准则,具体从下几方面考虑:①从调节系统的调节质量分析并选择; ②从工艺配管情况考虑;③从负荷变化情况分析。 选择好调节阀的流量特性,就可以根据其流量特性确定阀门阀芯的形状和结构,但对于像隔膜阀、蝶阀等,由于它们的结构特点,不可能用改变阀芯的曲面形状来达到所需要的流量特性,这时,可通过改变所配阀门定位器的反馈凸轮外形来实现。

调节阀设计

调节阀设计计算选型导则(一) 标题:调节阀设计计算选型导则(一) 1 前言 调节阀是生产过程自动化系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。调节阀直接与流体接触,控制流体的压力或流量。人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。自动控制系统一切先进的控制理论,巧秒的控制思想,复杂的控制策略都是通过执行器对被控对象进行作用的。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。 正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。 2 调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座阀、双座阀、角型阀、套筒阀(笼型阀)、三通分流阀、三通合流阀、隔膜阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座阀(VP,JP):泄漏量小(额定Kv值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适用于压差大要求工作平稳、噪音低的场合。 (4)角型阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许

压力调节阀工作原理

工作原理 1、自力式压力调节阀工作原理(阀后压力控制)(如图1) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。P2经过控制管线输入到执行器的下膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀后压力。当阀后压力P2增加时,P2作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯关向阀座的位置,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减少,流阻变大,从而使P2降为设定值。同理,当阀后压力P2降低时,作用方向与上述相反,这就是自力式(阀后)压力调节阀的工作原理。 2、自力式压力调节阀工作原理(阀前压力控制)(如图2) 工作介质的阀前压力P1经过阀芯、阀座后的节流后,变为阀后压力P2。同时P 1经过控制管线输入到执行器的上膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀前压力。当阀后压力P

1增加时,P1作用在顶盘上的作用力也随之增加。此时,顶盘的作用力大于弹簧的反作用力,使阀芯向离开阀座的方向移动,直到顶盘的作用力与弹簧的反作用力相平衡为止。这时,阀芯与阀座的流通面积减大,流阻变小,从而使P1降为设定值。同理,当阀后压力P1降低时,作用方向与上述相反,这就是自力式(阀前)压力调节阀的工作原理。 3、自力式温度调节阀工作原理(加热型)(如图3) 温度调节阀是根据液体的不可压缩和热胀冷缩原理进行工作的。 加热用自力式温度调节阀,当被控对象温度低于设定温度时,温包内液体收缩,作用在执行器推杆上的力减小,阀芯部件在弹簧力的作用下使阀门打开,增加蒸汽和热油等加热介质的流量,使被控对象温度上升,直到被控对象温度到了设定值时,阀关闭,阀关闭后,被控对象温度下降,阀又打开,加热介质又进入热交换器,又使温度上升,这样使被控对象温度为恒定值。阀开度大小与被控对象实际温度和设定温度的差值有关。

调节阀的正确选型及注意事项

调节阀的正确选型及注意事项 调节阀是工业过程控制系统中的终端执行元件,工业过程连续生产自动控制系统中一般均需要用调节阀来控制过程生产中的各种工艺参数,来达到对流体的压力、温度、流量和液位等参数的调节,通常被人们称之为工业过程自动化生产中的“手和脚”。它的应用质量直接反应在系统的调节品质上。作为过程控制中的终端执行元件,人们对它的重要性较过去有了更深刻地认识。调节阀应用的好坏,除产品质量和用户是否正确安装、使用与维护外,正确地计算选型十分重要。由于计算选型的失误,造成系统运行不稳定,有的甚至无法投用的例子很多。所以,用户及系统设计人员要充分认识到调节阀在现场的重要性,必须对调节阀的选型引起足够的重视。 调节阀选型的一般原则是:在满足使用功能的前提下,所选的调节阀应结构简单、性能可靠、价格低廉、寿命长、维护方便等。下面着重介绍调节阀阀型的选择和和附件的选择。 1 调节阀阀型的选择 调节阀的分类方法很多,目前国内和国际上通常采用的一种分类方法是按结构、原理和作用划分,总共为9大类,即直通单座调节阀、直通双座调节阀、套筒调节阀、角形调节阀、三通调节阀、隔膜阀、蝶阀、球阀和偏心旋转阀,这九类产品是最基本、最普通的产品,通常也称为标准型产品,其它在此基础上结合实际应用改进而来的,称为特殊型产品。 1.1 标准型调节阀的特点及正确选择 1.1.1 直通单座调节阀 直通单座调节阀只有一个阀芯和一个阀座,容易实现严格的密封,可采用金属与金属的硬密封,或金属与聚四氟乙烯或其它复合材料的软密封,标准泄漏量为0.01%C(C是额定流量系数),允许压差小,流通能

力小,比如DN100单座调节阀的允许压差仅120kPa,流通能力仅为100。流路复杂,结构简单,适用于泄漏要求严格、工作压差较小的干净介质的场合,但小规格的调节阀(DN1/2、3/4、20)亦可用于压差较大的场合,是应用最为广泛的调节阀之一,当进一步设计后,可作为切断阀使用。阀芯形状决定了流量特性,受冲刷后失去原有特性,更换阀芯可改变流量特性。但流体介质对阀芯的推力大,即不平衡力大,需配推力较大的执行机构,因此,在高压差、大口径的应用场合,不宜采用这类调节阀。选用此阀应特别注意压差校核,防止被顶开。 1.1.2 直通双座调节阀 直通双座调节阀有两个阀芯和两个阀座,由于上阀芯所受向上推力和下阀芯所受向下推力基本平衡,因此,整个阀芯所受不平衡力小,允许压差大,比如DN100双座调节阀允许压差280kPa,流通能力大,与相同口径的其它调节阀相比,双座调节阀可流过更多流体,同口径双座调节阀流通能力比单座调节阀流通能力约大20%~50%。例如,DN100双座调节阀的流通能力达160。因此,为获得相同的流通能力,双座调节阀可选用较小推力的执行机构。双座调节阀采用顶底双导向,因此,正体阀和反体阀的改装方便,即只需将阀芯和阀座反过来安装就能将正体阀改为反体阀,或者将反体阀改为正体阀,而不需要改选执行机构的正作用或反作用类型。双座调节阀的上、下阀芯不能同时保证关闭,泄漏量较大,标准泄漏量为0.1%C(C是额定流量系数);流路复杂,不适用于高压差的应用场合,因为在该种应用场合,阀受到高压流体的冲刷较为严重,并且容易形成闪蒸和空化,加重对阀体的冲刷,同样它也不适用于含纤维介质和高黏度流体的控制。 1.1.3 套筒调节阀 套筒调节阀又称笼式阀,它的阀内件采用阀芯和阀笼(套筒),套筒可以是直通单座调节阀,也可以是双座调节阀或角形调节阀等:有单密封、双密封两种结构,前者相当于单座调节阀,适应于单座调节阀场合;后者相当于双座调节阀,适应于双座调节阀场合。除此之外,它还具有稳定性好、装卸方便、维护方便、有降低噪音和降低空化影响的特点,

《调节阀计算选型使用》:五、调节阀选型指南

第五章调节阀选型指南 1 调节阀结构型式的选择 1.1 从使用功能上选阀需注意的问题 1)调节功能 ①要求阀动作平稳;②小开度调节性能好;③选好所需的流量特性;④满足可调比;⑤阻力小、流量比大(阀的额定流量参数与公称通径之比);⑥调节速度。 2)泄漏量与切断压差 这是不可分割、互相联系的两个因素。 3)防堵 即使是干净的介质,也存在堵塞问题(管道内的不干净介质)、不干净介质更易堵卡。 4)耐蚀 它包括耐冲蚀、汽蚀、腐蚀。主要涉及到材料的选用和阀的使用寿命问题,同时,涉及到经济性问题。 5)耐压与耐温 这涉及调节阀的公称压力、工作温度的选定。 常用材质的工作温度、工作压力与公称压力的关系见下表5-1。 6)重量与外观 小型化、轻型化、仪表化 表5-1 常用材质的工作温度、工作压力与PN关系 1

7)十大类调节阀的功能优劣比较:详见1-1表。 1.2 综合经济效果确定阀型 1)高可靠性。 2)使用寿命长。 3)维护方便,备品备件有来源。 4)产品价格适宜,性能价格较好。 1.3调节阀型式的优选次序 ①全功能超轻型调节阀→②蝶阀→③套筒阀→④单座阀→⑤双座阀→⑥偏心旋转阀→ ⑦球阀→⑧角形阀→⑨三通阀→⑩隔膜阀。 2 执行机构的选择 2.1执行机构选择的主要考虑因素 ①可靠性;②经济性;③动作平稳、足够的输出力;④重量外观;⑤结构简单、维护方便。 2.2电动执行机构与气动执行机构的选择比较 1)可靠性方面 2)驱动源 3)价格方面 4)推力和刚度 5)防火防爆 2.3推荐意见 (1)在可能的情况下,建议选用进口电子式执行机构 (2)薄膜执行机构虽存在推力不够、刚度小、尺寸大的缺限,但其结构简单。 (3)活塞执行机构选择 3 材料的选择 材料的选择主要根据介质的温度、腐蚀性、汽蚀、冲蚀四方面决定。 3.1 根据介质的腐蚀性选择 1)金属耐蚀材料的选择5-2。 2

气动调节阀阀芯选择

调节阀阀芯的多种分类及固有流量特性 1、概述 调节阀阀芯形面的设计是一项复杂工作,至今在国内外尚未得到根本解决,现有的阀芯形面设计方法基本上都是围绕流量试验进行的。因为在给定阀体的结构后,调节阀的阻力系数主要决定于阀芯和阀座之间的流通截面积,因而,可以先导出阻力系数和流通截面积之间的关系,然后再通过调节阀流量试验数据结合图解法完成设计过程。 2、调节阀的阀芯结构 阀芯是调节阀内最为关键的部件。为了适应不同的需要,得到不同的阀门流量特性,阀芯的结构形状是多种多样的,但一般可将阀芯分为直行程和角行程两大类。 图1直行程阀芯 a)平板型阀芯、b)柱塞型阀芯、c)球型、针型阀芯、d)圆柱体上铣出小槽阀芯、e)窗口型阀芯、f)多级阀芯、g)套筒阀阀芯 2.1如图1所示,直行程阀芯又可分为以下几种类型: 2.1.1平板型阀芯 如图1a所示,这种阀芯的底面为平板形,其结构简单、加工方便、具有快开特性,可

作两位调节用。 2.1.2柱塞型阀芯 它可分为上、下可以倒装,倒装后可以改变调节阀的正、反作用。常见的阀门流量特性有线性和等百分比两种。这两种特性所用的阀芯形状不相同的。图1b右边两种阀芯都为上导向,一般常用于角形阀和高压阀。对于小流量阀,可采用球形、针形阀芯,见图1c;也可以在圆柱上铣出小槽,见图1d。 2.1.3窗口型阀芯 如图1e所示,这种阀芯用于三通调节阀。图中左边为合流型,右边为分流型。由于窗口形状不同,阀门流量特性有直线、等百分比和抛物线三种。 2.1.4多级阀芯 如图1f所示,把几个阀芯串接在一起,好象“糖葫芦"一样,起到逐级降压的作用。用于高压差阀可防止气蚀、噪声。多级阀芯的结构也很多,有的阀芯可串成锥体形状。 2.1.5套筒阀阀芯 如图1g所示,这种阀芯用于套筒型调节阀。只要改变套筒窗口形状,即可改变阀门的流量特性。 2.2角行程阀芯如图2所示:这种阀芯通过旋转运动来改变它与阀座间的流通面积。 图2角行程阀芯 a)偏心旋转阀芯、b)中线式蝶型阀板、c)球型阀芯

阀芯设计计算

调节阀柱塞型阀芯形面数学模型分析与推导 调节阀阀芯形面的设计是一项很复杂的工作,由于涉及的学科较多,到目前为止,在国内还没有一种通用的计算方法。虽然在国内已有相关文献对阀芯设计进行研究[1~3],也产生了相应的数学模型,要么设计的阀芯形面精度不高,要么不适合于编程实现计算机辅助设计。国内目前进行阀芯形面的设计时主要采用流量试验或者修形的方法,设计周期长、成本高,在很多复杂的工况下难以满足实际运行的要求。某公司的调节阀产品系列,在大量流量试验的基础上已经定型,通常在某一型号的同一公称通径DN下,一般只能提供2~3种额定CV值。当客户提出某一特定CV值的需求时,由于成本、质量、交货期等原因,常常不能满足客户的要求。在国外,德国、日本等发达国家已经实现了调节阀阀芯形面的参数化设计技术,但由于技术封锁,国内还无法获得该项技术。如今,如何提高产品的设计水平、缩短产品开发周期、降低产品研发成本已成为制约产品竞争力的重要因素。现有的阀芯形面设计方法已经不能适应现代化生产发展的需要。如果能掌握阀芯形面的正确设计方法,建立适合于编程的工程数学模型,利用CAD技术就可缩短设计和加工周期,满足不断变化的市场需求。 鉴于以上实际情况,本文根据调节阀流量特性的定义,采用曲线包络的方法,推导直线和等百分比特性的阀芯形面数学模型,以实现阀芯形面的计算机辅助设计。 一、流量特性

调节阀的流量特性是指介质流过调节阀的相对流量与相对位移之间的关系,最为常用的流量特性有直线和等百分比两种。 直线流量特性:调节阀的相对流量与相对开度成直线关系,积分表达式为: 等百分比流量特性:在行程的某一点上,单位相对位移的变化所引起的相对流量的变化与此点的相对流量成正比关系,积分表达式为: 式中Q/Q max?相对流量 Q?调节阀某开度的流量 Q max?全开流量 L/L max?相对位移 L?调节阀某开度的阀芯位移 L max?全开位移 K、C?常数 二、建立数学模型 若阀门前后压差ΔP为常数,阀体流阻系数ξ已测定且保持不变,那么流量主要与流通面积有关,假设它们之间成比例,显然有: 式中A/Amax?相对流通面积 A?调节阀某开度的流通面积

调节阀的阀杆与阀芯联接方法的改进

调节阀的阀杆与阀芯联接方法的改进 沈新群 摘要:调节阀是大型合成氨厂不可缺少的控制元件。由于调节阀阀杆与阀芯联接处产生疲劳断裂及脱落事故,将会给生产带来不同程度的影响。为了避免这类事故的出现,现介绍几种阀杆与阀芯的联接新方法。 关键词:断裂阀杆脱落联接方法 调节阀是大型合成氨厂自控设备终端最重要的执行元件,阀内件又是调节阀不可缺少的重要组件。如果阀杆与阀芯产生脱落,势必影响大型合成氨厂的平稳生产。由此看来,调节阀的阀杆与阀芯联接方法将影响整机的使用寿命。为了提高调节阀的使用寿命,以增加阀杆联接螺纹强度,采用新的联接结构方法,很大程度上提高了调节阀整机的使用寿命。乌鲁木齐石化公司化肥厂最近几年采用几种新的阀芯与阀杆联接方法,解决了许多长期以来阀杆断裂脱落事故,效果很好。 1 阀杆与阀芯断裂脱落事故原因分析 乌石化公司化肥厂调节阀主要有世界五大调节阀公司(约占95%)及国内三大生产厂家生产提供。从整体上来讲,其阀杆与阀芯联接方法大致相同,都是用螺纹联结外加圆锥销固定,见图一。这种联接方法的优点是拆卸方便,更换备件容易,但螺纹联接处是阀杆断裂脱落的要害部位。经过认真分析,其原因有以下两点: 阀杆阀芯圆锥销 图一、原阀杆与阀芯联接方法示意图 1.1 阀杆联接螺纹处强度不足 在阀杆与阀芯联接过程中,一般都是用细牙螺纹联接,并用圆锥销固定。对于阀杆在φ16mm以上,其强度基本上能够满足。如果小于φ16mm,其强度就

不能满足阀杆的强度要求,这是因为阀杆在流体介质的压力、温度、冲蚀及其材质上发生变化,联接螺纹处首先产生间隙并且松弛,联接螺纹失去联接作用。由于联接螺纹处钻有圆锥销孔,几乎所有应力集中落在阀杆圆锥销孔处,最后导致阀杆断裂脱落。根据计算,阀杆钻孔在φ4mm以上,其强度减弱40%-60%以上,这是阀杆强度减弱突出点,也是阀杆断裂主要表现形式之一。例如我厂最早油锅炉减温水阀四台、尿素投料阀、合成碳黑洗涤高压角阀、汽化工段的高压角阀经常从阀杆联接螺纹圆锥销孔处断裂脱落,阀杆材质为SUS316,阀杆粗分别φ9.525mm、φ12.7mm,圆锥销φ4mm,其联接方法如图一,每年发生断裂脱落事故都在2-5次。 1.2 联接螺纹处圆锥销断裂 圆锥销断裂是造成阀杆脱落的另一种表现形式。阀芯在受到流体偏转压力作用下,迫使阀杆与阀芯产生一个扭矩应力,这个应力作用在阀杆联接螺纹与阀芯内孔、径向圆锥销两相切面上。另外,阀芯还受到温度热胀冷缩变化,当联接螺纹失去联接作用时,几乎所有拉应力及剪切应力都作用在圆锥销上,圆锥销受轴上拉应力和剪切应力,最后导致圆锥销断裂事故。例如合成装置4113-PV-1-1和尿素NS-HV-601、2NS-HV-301、2NS-FV-151等多台调节阀的阀杆脱落破坏事故,阀杆分别为φ15.875mm和φ12.7mm。类似这种破坏形式每年发生3-5次。 实际上,以上两种破坏形式在一个阀内件上可交替产生,也可同时产生。类似这样的事故对生产影响较大。尤其是尿素装置NS-HV-601、2NS-HV-301调节阀事故,当该阀产生失控现象时,尿素造粒装置就要被迫停车。针对以上问题,改进了阀芯和阀杆联接结构方法,采用新的联接方法效果很好,由原来年事故率较高几乎将为零。 2 增加阀杆联接螺纹强度,改进联接机构 阀杆断裂脱落事故主要表现在联接螺纹处强度不足,针对联接螺纹强度不足问题,提出以下几个改进方法: 首先要提出阀杆与阀芯联接螺纹两者实体外径比值问题,比值大小直接对改进方法有较大的影响。当阀杆实体外径/阀芯实体外径>0.4时,采用联接螺纹加强法;当比值<0.4时,应采用压块焊接方法和螺母固定方法。 2.1 联接螺纹加强法

电动调节阀结构图

电动调节阀结构图 2根据国家知识产权局的统计显示,2005年申请中国专利列前10位的国家中,日本、美国分别以36221件、20395件位居前两位,同比分别增长19%、26%,位居第三位的韩国、第五位的荷兰和第八位的 意大利,其同比增幅更是接近40%。 与国外企业的专利申请状况形成鲜明对比的是,截至2005年底,我国拥有自主知识产权核心技术的企业仅为万分之三,99%的企业没有申请专利,60%的企业没有自己的商标,很多企业处在有“制造” 一、产品[电子式电动单座(套筒)调节阀]的详细资料: 产品型号:ZDSJP(M) 产品名称:精小型电子式电动单座(套筒)调节阀 产品特点:工洲牌ZDSJP(M)型电子式精小型电动单座(套筒)调节阀,由低流阻直通单座阀,或低流阻套筒阀配用德国进口PS或3810系列执行机构等组成。电动执行机构内有伺服放大器,无需另配伺服放大器,有输入控制信号(4—20mADC或1-5VDC)及单相电源即可控制运转,实现对压力、流量、温度、液位等参数的调节。该阀具有体积小,重量轻、连线简单、流量大、调节精度高等特点,广泛应用于电力、石油、化工、冶金、环保、轻工、教学和科研设备等行业的工业过程自动控制系统中。精小型电子式电动单座调节阀,精小型调节阀,电子式电动单座调节阀。 二、阀体: 形式:直通倒S铸造阀 公称通径:DN20-200mm 公称压力:PN1.6 4.0 6.4MPa 连接形式:JB78-59 JB/T79.2-94凹式 材料:HT200 ZG230—450 ZG1Gr18Ni9Ti ZG0Cr18Ni12M02Ti

三、上阀盖: 常温型:-20℃-+200℃ 散热型:-40℃―+450℃ 压盖形式:螺栓压紧式 填料:V型聚四氟乙烯,柔性石墨,不锈钢波纹管 四、阀内组织: 阀芯形式:上导向单座柱塞式阀芯, 或上导向单座套筒柱塞式阀芯 流量特性:等百分比特性, 直线特性和快开特性 材料:1Cr18Ni9Ti OCr18Ni12Mo2Ti 五、执行机构: 类型:可选PS、3810、ZAZ(DN100以内)或DKZ(DN100以上)电子式直行程执行机构,防爆型选用3810型,技术参数和性能:请参阅对应的执行机构及阀门定位器说明书。 六、工洲牌ZDSJP(M)型电子式精小型电动单座(套筒)调节阀外形尺寸及参数: 公称通径DN(mm) L(mm) H(mm) H1(mm) R( m m) 重量(kg)0.6,1.6 (MPa) 4.0( MP a) 6.4( MP a) 常 温 型 散 热 型 PN0.6 (MPa) PN1.6 (MPa) PN4.0 (MPa) PN6.4 (MPa) 0.6,1.6 (MPa) 4.0,6.4 (MPa) G3/4”120 120 120 643 / 31 31 31 179 10

调节阀考核试卷习题答案.doc

现场维护调节阀考核试卷 单位姓名日期成绩 一、填空题 1、气动薄膜执行机构结构简单,动作可靠,维修方便,价格低廉,是一种应用最广的执行机构。它分为正、反作用两种形式,当信号压力增加时,推杆向下动作的叫正作用执行机构,反之,当信号压力增加时,推杆向上动作的叫反作用执行机构。 2、在同一开度下,直线直线流量特性小开度变化流量特性的流量大于 大,大开度变化 对数 小 流量特性的流量,相对流量变化, 。对数流量特性相对流量变化为常 数。 3、阀门定位器是基于力平衡原理工作的。 4、定位器和调节阀连接的反馈杆脱落失去反馈时,成了高放大倍数的气动放大器。如果定位 器是正作用的,输出跑到最大,如果是反作用的,则输出跑到零。 5、气动薄膜调节阀主要由一个执行机构和阀体组成。 6、弹簧范围的选择应从主要的压差、阀的稳定性和摩擦力三方面考虑。 7、聚四氟乙烯形填料的角度有60 和 90 两种,它们分别用于普通阀和高压阀。 8、直行程阀芯按其导向来分有双导向和单导向两种。 9、双导向阀芯改变气开、气闭不需要更换执行机构。 10、国标规定;调节阀在倍公称压力下,填料至上、下阀盖连接处不应有渗漏现象,在倍 公称压力下,持续 3 min 以上时间,其法体不应有肉眼可见的渗漏。 二、判断题 1、波纹管密封型是4 种上阀盖形式之一,适用于有毒性、易挥发和贵重流体的场合。(√) 2、气开阀无信号时,阀处于全开位置,气关阀则处于全关位置。(×) 3、调节阀的流量特性用数学表达式为Q F(√ ) Qmax L 4、调节阀的填料装填于上阀盖填料室内,其作用是防止介质因阀杆的移动而向外泄漏。(√) 5、我们知道,对气关阀膜室信号压力首先保证阀的关闭到位,然后再增加的这部分力才把 阀芯压紧在阀座上,克服压差把阀芯顶开。 ( √ ) 6、调节阀的可调范围反映了调节阀可控制的流量范围,用R Qmax 来表示。(√) Qmin 7、调节阀的最小可控制流量就是该阀的泄漏量。(× )

调节阀技术规范

调节阀技术规范 1 总则 1.1 本技术协议书适用于XXXXXXXXXXXXXXXX工程所配的国产调节阀,包括阀门本体、执行机构及其附件的功能设计、性能、结构、制造、试验、安装和质量保证等各方面的技术要求。 1.2 本技术协议书提出的是最低限度的技术要求,并未对一切技术要求作出详细规定,也未充分引述有关标准及规范的条文。卖方提供符合本技术协议书和相关的国际、国内工业标准的优质产品。 1.3 卖方所执行的标准与本技术协议书所引用的标准若发生矛盾时,按较严格的标准执行,且卖方应在投标书中提出,由买方确认。 1.4 卖方对调节阀的成套系统设备(含辅助系统与设备)负有全责,即包括分包(或采购)的产品。 1.5 在合同签定后,买方有权因规范、标准、规程发生变化而提出一些补充要求。卖方满足并遵守这些要求且不另外增加费用。 1.6 产品在化工行业有使用业绩,并经过五年、已证明安全可靠。 1.7 提供的技术文件(包括图纸)中仪表的功能标志与图形符号应符合HG/T20505--2000标准,仪表的功能标志与图形符号标识系统采用买方指定的原则和方法,卖方对其唯一性、规律性、准确性、完整性和可扩展性负全责。 2 技术条件 2.1 基本要求 2.1.1 卖方产品是化工行业装置使用的主流品牌。 2.1.2 卖方产品在国内具有五年以上使用业绩,无不良使用和售后服务记录。 2.1.3 阀门的设计满足介质温度、压力、流量、流向、调节范围以及严密性等要求。阀门的设计压力、设计温度值不低于所连接管道的设计参数。 2.1.4调节阀的口径能满足工艺上对流量的要求,通过阀门的介质流速限制在允许范围之内。卖方提供能证明其产品已经符合上述要求的计算书,并在技术文件中明确所供产品的降压级数。 2.1.5 阀门能在不同工况下平衡地控制流体。 2.1.6阀门具有密封好、泄漏小及阀杆不平衡力小等特点;阀门泄漏等级不低于ANSIB16.104标准中要求的泄漏等级Class V。 2.1.7 阀门能承受管道所传递的力。 2.1.8 卖方需将特殊的安装要求在技术文件中加以说明。 2.1.9 卖方计算并选定阀门Cv值,并给出最低可控Cv值,同时提供阀门在各工况下的开度,要求阀门在正常工况参数下,开度在60%~80%范围,在最大运行工况下,阀门开度为80%~85%。 2.2 设计和构造特征 2.2.1阀门采用标准级,不得使用特殊级和插入级。 2.2.2 阀门与管道的连接采用对夹方式连接。 2.2.3 阀门采用阀体结构型式见设计图的要求。 2.2.4阀门阀盖和阀芯的设计方便维护和检修,阀芯设计为可以快速拆装式结构,阀内零部件

相关文档
最新文档