实训项目十苯甲酸红外吸收光谱的测绘KBr晶体压片法制样

实训项目十苯甲酸红外吸收光谱的测绘KBr晶体压片法制样
实训项目十苯甲酸红外吸收光谱的测绘KBr晶体压片法制样

实训项目十苯甲酸红外吸收光谱的测绘—KBr晶体压片法制样

一、实验目的

1.学习用红外吸收光谱进行化合物的定性分析;

2.掌握用压片法制作固体试样晶片的方法;

3.熟悉红外分光光度计的工作原理及其使用方法。

二、实验原理

在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简称基频峰)基本上出现在同一频率区域内,例如,CH3(CH2)5CH3,CH3(CH2)4C≡N 和CH3(CH2)5CH=CH2等分子中都有—CH3,—CH2—基团,它们的伸缩振动基频峰与图11-1CH3(CH2)6CH3分子的红外吸收光谱中—CH3,—CH2—基团的伸缩振动基频峰都出现在同一频率区域内,即在<3000 cm-1波数附近,但又有所不同,这是因为同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,使

基频峰频率发生一定移动,例如C O基团的伸缩振动基频率峰频率一般出现在1850~1860 cm-1范围内,当它位于酸酐中时,为1820~1750 cm-1、在酯类中时,为1750~1725 cm-1;在醛中时,υC=O为1740~1720 cm-1;在酮类中时,υ

为1725~1710 cm-1;在与苯环共轭时,如乙酰苯中υC=O为1695~1680 cm-1,C=O

在酰胺中时,υC=O为1650 cm-1等。因此掌握各种原子基团基频峰的频率及其位移规律,就可应用红外吸收光谱来确定有机化合物分子中存在的原子基团及其在分子结构中的相对位置。

由苯甲酸分子结构可知,分子中各原子基团的基频峰的频率在4000~650 cm-1范围内有:

原子基团的基本振动形式基频峰的频率/cm-1

υ=C—H(Ar上)3077,3012

υC=C(Ar上)1600,1582,1495,1450 δC—H(Ar上邻接五氯)715,690

υC=H(形成氢键二聚体)3000~2500(多重峰)

δO—H935

υC=O1400

δC—O—H(面内弯曲振动)1250

本验用溴化钾晶体稀释苯甲酸标样和试样,研磨均匀后,分别压制成晶片,以纯溴化钾晶片作参比,在相同的实验条件下,本别测绘标样和试样的红外吸收光谱,然后从获得的两张图谱中,对照上述的各原子基团频率峰的频率及其吸收强度,若两张图谱一致,则可认为该试样是苯甲酸。

三、仪器与试剂

1.FT-IR红外光谱仪(上海分析仪器厂),或其它型号的红外分光光度计2.压片机

3.玛瑙研钵

4.红外干燥灯

5.苯甲酸、溴化钾均优级纯

6.苯甲酸试样经提纯

四、实验条件

1.压片压力 1.2×105 kPa(约120 kg·cm-2)

2.其它实验条件

五、实验内容

1.开启空调机,使室内的温度为18~20℃,相对湿度≤65%。

2.苯甲酸标样、试样和纯溴化钾晶片的制作取预先在110℃在烘干48 h 以上,并保存在干燥器内的溴化钾150 mg 左右,置于洁净的玛瑙研钵中,研磨成均匀、细小的颗粒,然后转移到压片模具上(见图1和图2),依图11-4顺序放好各部件后,把压模置于图1中的7处,并旋转压力丝杆手轮1压紧压模,顺时针旋转放油阀4到底,然后一边放气,一边缓慢上下移动压把6,加压开始,注视压力表8,当压力加到1×105 ~1.2×105 kPa(约100~120 kg·cm-2)时,停止加压,维持3~5 min,反时针旋转放油阀4,加压解除,压力表指针指“0”,旋松压力丝杆手轮1取出压模,即可得到直径为13 mm,厚1~2 mm透明的溴化钾晶片,小心从压模中取出晶片,并保存在干燥器内。

图1 压模结构 图2 压片机 1.压杆帽;2.压模体;3.压杆; 1.压力丝杆手轮;2.拉力螺柱

3.工作台垫板;

4.顶模片;

5.试样;

6.底模片 4.放油阀;5.基座;6.压把;

7.压模;

8.压力表;

7.底座 9.注油口;10油标及入油口

另取一份150 mg 左右溴化钾置于洁净的玛瑙研钵中,加入2~3 mg 优级纯苯甲酸,同上操作研磨均匀、压片并保存在干燥器中。

再取一份150 mg 左右溴化钾置于洁净的玛瑙研钵中,加入2~3 mg 苯甲酸试样,同上操作制成京,并保存在干燥器内。

注意事项:

1.制得的晶片,必须物裂痕,局部无发白现象,如同玻璃办完全透明,否则应重新制作。表示压制的晶片薄厚不匀,晶片模糊,表示晶体吸潮,水在光谱图中3450 cm-1和1640 cm-1处出现吸收峰。

2.将溴化钾参比晶片和苯甲酸标样晶片分别置于主机的参比窗口和试样窗口上。

3.据实验条件,将红外分光光度计按仪器操作步骤进行调节,测绘红外吸收光谱。

4.相同的实验条件下,测绘苯甲酸试样的红外吸收光谱。

六、据及处理

1.记录实验条件。

2.在苯甲酸标样和试样红外吸收光谱图上,标出各特征吸收峰的波数,并确定其归属。

3.将苯甲酸试样光谱图与其标样光谱图进行对比,如果两张图沙的各特征吸收峰及其吸收强度一致,则可认为该试样是苯甲酸。

七、思考题

1.红外吸收光谱分析,对固体试样的制片有何要求?

2.如何着手进行红外吸收光谱的定性分析?

3.红外光谱实验室为什么对温度和相对湿度要维持一定的指标?

分析实验报告 红外光谱测定苯甲酸 - 最终版

华南师范大学实验报告 学生姓名:杨秀琼学号: 129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转 动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所 需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成 红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤] 1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入 KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S;

红外特征吸收分析: .苯环的测定 A、708 cm-1苯环的单取代CH面外弯曲特征吸收峰 B、3071 cm-1苯环环上CH伸缩振动吸收峰 C、在1601cm-1、1583cm-1,1496cm-1、1453cm-1内出现四指峰,由此确定存在单核芳烃C=C骨架,所以存在苯环。 羧基的测定 A、在1689cm-1存在强吸收峰,这是羧酸中羧基的振动产生的。 B、在3400~2500cm-1区域有宽吸收峰,所以有羧酸的O-H键伸缩振动 C、在1292 cm-1存在C-O伸缩的特征吸收峰 D、933 cm-1存在OH的面外弯曲特征吸收峰 E、1423 cm-1存在OH的面内弯曲特征吸收峰 六、思考题 (1)用压片法制样式时,为什么要求将固体样品试样研磨到颗粒粒度在2um 左右为什么要求KBr粉末干燥、避免吸水受潮 答:因为要把样品与KBr粉末的混合物进行压片,如果颗粒太大,则会导致压片内粉末不均衡,压片不成功。而要求KBr粉末干燥,避免吸水受潮是因为KBr 粉末容易吸收空气中的H2O和CO2,... 从而造成假谱图,影响实验结果。(2)利用标准谱图进行化合物鉴定时要注意什么 A、一是所用仪器与标准谱图是否一致,二是测定的条件(样品的物理状态、样品的浓度以及溶剂等——与标准谱图是否一致 B、IR光谱是测定化合物结构的,只有分子在振动的状态下伴随有偶极矩变化者才能有红外吸收,对应异构体具有相同的光谱,不能用IR光谱来鉴别这类异构体某些吸收峰不存在,可以确信某些基团不存在,相反,吸收峰存在并不是该基团存在的确认,应该考虑杂质的干扰 C、在一个光谱图中的所有吸收峰并不能全部指出其归属,因为有些峰是分子作为一个整体的吸收特征,而有些峰时某些峰的倍频或者组频,另外还有些峰是多个集团振动吸收的叠加] D、在3350 cm-1和1640 cm-1 处出现的吸收峰,很可能是样品中的水引起的 E、高聚物的光谱较之形成这些高聚物的单体的光谱吸收峰的数目少,峰较宽钝,峰的强度也较低,但分子量不同的相同聚合物IR光谱无明显差异.如分子量为100000和分子量为15000的聚苯乙烯,在4000-650的一般红外区域找不到光谱上的差异

苯甲酸红外光谱测定及解析

苯甲酸红外光谱测定及解析 —KBr晶体压片法制样 一、目的要求 (1)学习用红外吸收光谱进行化合物的定性分析, (2)掌握用压片法制作固体试样晶片的方法; (3)熟悉红外分光光度仪的工作原理及其使用方法。 二、实验原理 当一定频率(一定能量)的红外光照射分子时,如果分子某个基团的振动频率和外界红外辐射频率一致,二者就会产生共振。此时,光的能量通过分子偶极矩的变化传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁(由原来的基态跃迁到了较高的振动能级),从而产生红外吸收光谱。如果红外光的振动频率和分子中各基团的振动频率不一致,该部分红外光就不会被吸收。用连续改变频率的红外光照射某试样,将分子吸收红外光的情况用仪器记录下来,就得到试样的红外吸收光谱图。由于振动能级的跃迁伴随有转动能级的跃迁,因此所得的红外光谱不是简单的吸收线,而是一个个吸收带。 测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析: ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~600cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。 三. 实验仪器及试剂 仪器: Tensor 近红外傅利叶红外光谱仪、粉未压片机、玛瑙研钵、 试剂: KBr(A.R.) 苯甲酸(G.R.)

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

苯甲酸红外吸收光谱的测定

苯甲酸红外吸收光谱的测定 —KBr晶体压片法制样 一 (1)学习用红外吸收光谱进行化合物的定性分析, (2)掌握用压片法制作固体试样晶片的方法; (3)熟悉红外分光光度仪的工作原理及其使用方法。 二、基本原理 在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简称基频峰)基本上出现在同一频率区域内,例如,CH3(CH2)5CH3、CH3(CH2)4C≡N和CH3(CH2)5CH=CH2等分子中都有-CH3,-CH2-基团,它们的伸缩振动基频峰与图 1 CH3(CH2)6CH3分子的红外吸收光谱中-CH3,-CH2-基团的伸缩振动基频峰都出现在同一频率区域内,即在<3000cm-1波数附近,但又有所不同,这是因为同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,使基频峰频率发生一定移动,例如-C=O基团的伸缩振动基频峰频率一般出现在1850~1860cm-1范围内,当它位于酸酐中时,νC=O为1820~1750cm-1、在酯类中时,为1750~1725cm-1;在醛中时,为1740~1720cm-1;在酮类中时,为1725~17l0cm-l;在与苯环共轭时,如乙酞苯中νC=O为1695~1680cm-1,在酰胺中时,νC=O为1650cm-1等。因此,掌握各种原子基团基频蜂的频率及其位移规律,就可应用红外吸收光

谱来确定有机化合物分子中存在的原子基团及其在分子结构中的相对位置。苯甲酸分子中各原子基团的基频峰如下图: 晶片,测绘试样的红外吸收光谱。 三、仪器 1.FT 670型双光束红外分光光度计 2.压片机 3.玛瑙研钵 4.红外干燥灯 四、试剂 1.溴化钾光谱纯 2.苯甲酸试样 五、实验条件 压片压力1.2×105kPa,测定波数范围4000-650cm-1(波长2.5-15μm),参比物:空气

红外光谱法习题[1]

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物的结构,了解红外 吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符 6.判断正误。 (1)对(2)错(3)错(4)对(5)错(6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH3 CO2H CO2CH3 (2)C2H3COCH3CH3CH2CH2CHO (3) 解:(1)CH3——COH 在3300~2500cm-1处有v O—H, 其v C=O位于1746~1700cm-1 COCH3无v OH吸收,其v C=O位于1750~1735cm-1(2)C2H5CCH3其v C=O位于1720~1715cm-1 CH3CH2CH2CH 其2820cm-1及2720cm-1有醛基费米共振双峰。 O O O

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) ~ (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 \ 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为

KBr压片法测定苯甲酸红外光谱及谱图解析

实验KBr 压片法测定苯甲酸红外光谱及谱图解析 I. 实验目的 1、熟悉傅里叶变换红外光谱仪的工作原理及其使用方法。 2、掌握KBr压片法的操作技能。 3、了解红外光谱谱图解析。 II. 实验用品 仪器:红外光谱仪(岛津FTIR-8400S ),压片机,研钵,红外灯。 试剂:溴化钾(光谱纯)、苯甲酸(分析纯)。 III. 实验原理 傅立叶变换红外光谱仪是根据光的相干性原理设计的测量分子吸收光谱的仪器,属于干涉型光谱仪。傅立叶变换红外光谱仪主要由光源、干涉仪(迈克逊)、吸收池(样 品室)、检测器、计算机和记录系统等组成。傅立叶变换红外光谱仪将各种频率的光信号经干涉作用后调制成干涉图,即时间域光谱图,然后用计算机进行快速傅立叶变换,换算成频率域光谱图即红外光谱图。 FT - IR原理椎图 图2 溥里叶变换红外吸收光谱仪工作原理示意图 S ■光谏* M1M』一动鹽* BS分束器:》操蘭器;?一样品】故夭器* A/> ffi数赛换器」D/A数模转换器* S,-?盘卜0—外部设备 Th 计慷机(傅車叶变抑 光 源 1 A/D计尊机

IV.实验步骤 1、压片制样 准备: 1)保持使用压片机的房间湿度较低; 2)将压片机配件,放入干燥器备用; 3)用玛瑙研钵一次研磨适量KBr晶体干燥,放入干燥器备用; 4)为避免手汗对压片的影响,研磨和压片过程中戴手套;压片操作: 1)取200毫克备用KBr粉末于玛瑙研钵中,加入~19干燥的样品,在红外灯下研细混匀; 2)使用乙醇棉清洗模具等; 3)将样品和KBr混合粉末放到模具中,用抹刀铺平;将装配好的压片模具移至压片机下; 4)压片机阀门拧至lock,加压至~60KN停留适当时间使压片透明;脱模, 样品基本透明为合格; 5)将样品装入样品架; 2、测试 1)将样品架放入仪器内,点击测试按钮; 2)测试结束,保存文件。 3)取出样品架,卸下样品。 3、整理 1)清洁模具等制样器具; 2)如有需测试样品则进入下一样品的制备,如无样品则整理物品、清洁台面后离开。 4、注意事项: 1)操作规范,轻举轻放,不要敲击; 2)研钵材质为玛瑙,易摔碎; 3)全过程要求干燥防水; 4)将溴化钾研细(2卩m ; 5)控制溴化钾与样品的比例; 6)注意保持室内清洁、干燥; 7)不要震动光学台 8)取、放样品时,样品盖应轻开轻闭; 9)眼睛不要注视氦-氖激光,以免受到伤害。 V.实验结果 1、对样品纯度、来源、元素分析及其他物理性质、谱学性质等方面的了解。 2、初步分析特征基团频率、特征宽强峰、倍频(泛频)及合频特征峰。 3、初步确定为某类化合物后,与标准谱图核对 W .问题讨论 1、KBr压片法制备红外吸收光谱固体试样的注意事项? 2、红外光谱实验室为什么要求温度和相对湿度维持一定的指标? 3、怎样进行红外吸收光谱的定性分析?

红外光谱测定水杨酸

水杨酸的红外光谱测定 一、目的与要求 1掌握红外光谱分析时固体样品的压片法样品制备技术。 2了解如何根据红外光谱图识别官能团,了解苯甲酸的红外光谱图。 二、方法原理 1将固体样品与卤化碱 通常是KBr,混合研细,并压成透明片状,然后放到红外光 谱仪上进行分析,这种方法就是压片法。压片法所用碱金属的卤化物应尽可能地纯净和干燥试剂纯度一般应达到分析纯,可以用的卤化物有NaCl KCl KBr KI等。由于NaCl的晶格能较大不易压成透明薄片,而KI又不易精制,因此大多采用KBr或KCl作样品载体。 2由于氢键的作用 苯甲酸通常以二分子缔合体的形式存在。只有在测定气态样品或非极性溶剂的稀溶液时才能看到游离态苯甲酵的特征吸收。用固体压片法得到的红外光谱中显示的是苯甲酸二分子缔合体的特征在2400~3000cm-l处是O-H伸展振动峰,峰宽且散,由于受氢键和芳环共轭两方面的影响,苯甲酸缔合体的C O伸缩振动吸收位移到1700~1800 cm-1区,而游离C O伸展振动吸收是在1730~1710cm-1区,苯环上的C=O伸展振动吸收出现在1500~1480 cm-1和1610,1590cm-l区,这两个峰是鉴别有无芳核存在的标志之一,一般后者峰较弱,前者峰较强。

三、仪器与试剂 1仪器:红外光谱仪及附件KBr压片器及附件。 2试剂:水杨酸(分析纯)、KBr〈分析纯〉。玛瑙研钵、烘箱。 四、内容与步骤 1在玛瑙研钵中分别研磨KBr和水杨酸至2μm细粉,然后置于烘箱中烘4-5h, 烘干后的样品置于干燥器中待用。 2分别取12mg的干燥水杨酸和100-200 mg干燥KBr,一并倒入玛瑙研钵中进行混合直至均匀。 3取少许上述混合物粉末倒入压片器中压制成透明薄片。然后放到红外光谱仪上测试。 五、图谱处理

KBr压片法测定苯甲酸红外光谱及谱图解析

实验 KBr压片法测定苯甲酸红外光谱及谱图解析 I.实验目的 1、熟悉傅里叶变换红外光谱仪的工作原理及其使用方法。 2、掌握KBr压片法的操作技能。 3、了解红外光谱谱图解析。 II.实验用品 仪器:红外光谱仪(岛津 FTIR-8400S),压片机,研钵,红外灯。 试剂:溴化钾(光谱纯)、苯甲酸(分析纯)。 III.实验原理 傅立叶变换红外光谱仪是根据光的相干性原理设计的测量分子吸收光谱的仪器,属于干涉型光谱仪。傅立叶变换红外光谱仪主要由光源、干涉仪(迈克逊)、吸收池(样品室)、检测器、计算机和记录系统等组成。傅立叶变换红外光谱仪将各种频率的光信号经干涉作用后调制成干涉图,即时间域光谱图,然后用计算机进行快速傅立叶变换,换算成频率域光谱图即红外光谱图。 1 2

Ⅳ. 实验步骤 1、压片制样 准备: 1)保持使用压片机的房间湿度较低; 2)将压片机配件,放入干燥器备用; 3)用玛瑙研钵一次研磨适量KBr晶体干燥,放入干燥器备用; 4)为避免手汗对压片的影响,研磨和压片过程中戴手套; 压片操作: 1%干燥的样品,在红外灯 1)取200毫克备用KBr粉末于玛瑙研钵中,加入 ~ 下研细混匀; 2)使用乙醇棉清洗模具等; 3)将样品和KBr混合粉末放到模具中,用抹刀铺平;将装配好的压片模具 移至压片机下; 4)压片机阀门拧至lock, 加压至~60KN,停留适当时间使压片透明;脱模, 样品基本透明为合格; 5)将样品装入样品架; 2、测试 1)将样品架放入仪器内,点击测试按钮; 2)测试结束,保存文件。 3)取出样品架,卸下样品。 3、整理 1)清洁模具等制样器具; 2)如有需测试样品则进入下一样品的制备,如无样品则整理物品、清洁台面 后离开。 4、注意事项: 1)操作规范,轻举轻放,不要敲击; 2)研钵材质为玛瑙,易摔碎; 3)全过程要求干燥防水; 4)将溴化钾研细(2μm); 5)控制溴化钾与样品的比例; 6)注意保持室内清洁、干燥; 7)不要震动光学台 8)取、放样品时,样品盖应轻开轻闭; 9)眼睛不要注视氦-氖激光,以免受到伤害。 Ⅴ.实验结果 1、对样品纯度、来源、元素分析及其他物理性质、谱学性质等方面的了解。 2、初步分析特征基团频率、特征宽强峰、倍频(泛频)及合频特征峰。 3、初步确定为某类化合物后,与标准谱图核对 Ⅵ.问题讨论 1、KBr压片法制备红外吸收光谱固体试样的注意事项? 2、红外光谱实验室为什么要求温度和相对湿度维持一定的指标? 3、怎样进行红外吸收光谱的定性分析?

苯甲酸红外光谱测定及谱图解析1小组

苯甲酸红外光谱测定及谱图解析 一.实验目的 1.掌握红外光谱分析时固体样品的压片法样品制备技术; 2.了解傅里叶红外光谱仪的工作原理、构造和使用方法,并熟悉基本操作; 3.了解如何根据红外光谱图识别官能团,了解苯甲酸的红外光谱图。 二.实验原理 当一定频率(一定能量)的红外光照射分子时,如果分子某个基团的振动频率和外界红外辐射频率一致,二者就会产生共振。此时,光的能量通过分子偶极矩的变化传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁(由原来的基态跃迁到教高的振动能级),从而产生红外吸收光谱。 如果红外光的振动频率和分子中各基团的振动频率不一致,该部分红外光就不会被吸收。用连续改变频率的红外光照射某试样,将分子吸收红外光的情况用仪器记录下来,就得到试样的红外吸收光谱图。由于振动能级的跃迁伴随有转动能级的跃迁,因此所得的红外光谱不是简单的吸收线,而是一个个吸收带。 三.仪器与试剂 仪器:IRAffinity-1傅里叶红外光谱仪、压片机、膜具和干燥器、玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末 四.内容与步骤 1.将所有的膜具擦拭干净,在红外灯下烘烤; 2.在红外灯下研钵中加入KBr进行研磨,至少十分钟; 3.将KBr装入膜具,在压片机上压片,压力上升至35Mpa左右,稳定5分钟; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5.取一定量的样品(样品:KBr=1:4蠟筆)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.在红外光谱仪自带的谱图库中进行检索,检出相关度较大的已知物的标准谱图,对样品的谱图进行解读,参考标准谱图得出鉴定结果。 五.结果与分析

红外吸收光谱法习题与答案解析

六、红外吸收光谱法(193题) 一、选择题 ( 共61题 ) 1. 2 分 (1009) 在红外光谱分析中,用 KBr制作为试样池,这是因为: ( ) (1) KBr 晶体在 4000~400cm-1范围内不会散射红外光 (2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在 4000~400 cm-1范围内无红外光吸收 (4) 在 4000~400 cm-1范围内,KBr 对红外无反射 2. 2 分 (1022) 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪 一结构与光谱是一致的?为什么? ( ) 3. 2 分 (1023) 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构 与光谱是一致的,为什么? 4. 2 分 (1068) 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与 光谱最近于一致? 5. 2 分 (1072) 1072 羰基化合物中, C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 6. 2 分 (1075) 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 7. 2 分 (1088) 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C、H、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 8. 2 分 (1097) 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( ) 9. 2 分 (1104) 请回答下列化合物中哪个吸收峰的频率最高? ( ) 10. 2 分 (1114) 在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 11. 2 分 (1179) 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 12. 2 分 (1180) CO2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ←→ (2) →←→ (3)↑↑ (4 )

苯甲酸的红外光谱分析

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握PE spectrum one 型红外光谱仪的使用方法; 3、掌握固体及液体薄膜样品的制样方法; 4、初步学习红外谱图的解析。 二、实验原理 物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此可对物质进行定性、定量分析。特别就是对化合物结构的鉴定,应用更为广泛。 基团的振动频率与吸收强度与组成基团的原子质量、化学键类型及分子的几何构型等有关。因此根据红外吸收光谱的峰位置、峰强度、峰形状与峰的数目,可以判断物质中可能存在的某些官能团,进而推断未知物的结构。如果分子比较复杂,还需结合紫外光谱、核磁共振谱以及质谱等手段作综合判断。最后可通过与未知样品相同测定条件下得到的标准样品的谱图或已发表的标准谱图(如Sadtler红外光谱图等)进行比较分析,做出进一步的证实。如找不到标准样品或标准谱图,则可根据所推测的某些官能团,用制备模型化合物的方法来核实。 三、仪器与药品 仪器:傅立叶变换红外光谱仪(日本岛津公司);压片机;玛瑙研钵;快速红外干燥箱。 试剂:苯甲酸:于80℃下干燥24h,存于保干器中;溴化钾:于130℃下干燥24h,存于保干器中;无水乙醇。 四、实验内容 1、测绘苯甲酸的红外吸收光谱——溴化钾压片法;取1-2mg苯甲酸,加入100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀,并将其在红外灯下烘10min左右。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上在29、4Mpa压力下,压1min,制成直径为13mm、厚度为1mm的透明薄片。将此片装于固体样品架上,样品架插入型红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 2、测绘聚甲基丙烯酸甲酯(PMMA)的红外吸收光谱——溶液涂膜发;将PMMA 丙酮溶液均匀涂抹于碘化砣盐片上,用风筒吹干,将两盐片重叠(图样品处朝内)并于固体样品架上,样品架插入型红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 3、测绘聚乙烯薄膜的红外吸收光谱,将薄膜直接夹持在样品架上进行测试,从4000-400cm-1进行波数扫描,得到吸收光谱。

仪器分析之红外吸收光谱法试题及答案

红外吸收光谱法习题 一、填空题 1. 在分子的红外光谱实验中,并非每一种振动都能产生一种红外吸收带,常常是实际吸收带比预期的要少得多。其原因是(1)_______; (2)________; (3)_______; (4)______。 2.乳化剂OP-10的化学名称为:烷基酚聚氧乙烯醚, 化学式: IR谱图中标记峰的归属:a_____, b____, c______, d____。 3.化合物的红外光谱图的主要振动吸收带应为: (1)3500~3100 cm-1处,有 ___________________振动吸收峰 (2)3000~2700 cm-1处,有 ___________________振动吸收峰 (3)1900~1650 cm-1处,有 ___________________振动吸收峰 (4)1475~1300 cm-1处,有 ___________________振动吸收峰 4.在苯的红外吸收光谱图中 (1) 3300~3000cm-1处,由________________________振动引起的吸收峰 (2) 1675~1400cm-1处,由________________________振动引起的吸收峰 (3) 1000~650cm-1处,由________________________振动引起的吸收峰 二、选择题 分子在红外光谱图上基频吸收峰的数目为 ( ) 1. Cl 2 (1) 0 (2) 1 (3) 2 (4) 3 2.下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的,非极性分子的各种振动都不是红外活性的 (2)极性键的伸缩和变形振动都是红外活性的 (3)分子的偶极矩在振动时周期地变化,即为红外活性振动 (4)分子的偶极矩的大小在振动时周期地变化,必为红外活性振动,反之则不是 4.用红外吸收光谱法测定有机物结构时,试样应该是 ( ) (1)单质 (2)纯物质 (3)混合物 (4)任何

《红外光谱法测定苯甲酸》

《红外光谱法测定苯甲酸》 一、实验目的 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、实验原理 红外光谱法是鉴别化合物和确定分子结构的常用手段之一,尤其是对于一些较难分离并在紫外可见区找不到明显特征峰的样品也可以方便、迅速地进行分析,因此广泛地应用于有机化学、高分子化学、无机化学、化工、催化、石油、材料、生物、医药、环境等领域。 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等 信息进行测定。红外光谱法所研究的是分子中原子的相对振动,也可以归纳为化学键的振动。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光。物质吸收不同的红外光,将在不同波长出现吸收峰,红外光谱就是这样形成的。红外谱图的横坐标是红外光的波数(波长的倒数)。纵坐标是透过率,它表示红外光照射样品薄膜上,光能透过的程度。不同的样品状态(固体、液体、气体以及粘稠样品)需要相应的制样方法。制样方法的选择和制样技术的好坏直接影响谱带的频率、数目和强度。 三、仪器与试剂 仪器:傅里叶红外光谱仪(岛津 prestige-21); 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、实验步骤

1.将所有的膜具擦拭干净,在红外灯下烘烤; 2.在红外灯下研钵中加入KBr进行研磨,至少十分钟; 3.将KBr装入膜具,在压片机上压片,压力上升至16-18Mpa左右,稳定10S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:KBr=100:1)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.在红外光谱仪自带的谱图库中进行检索,检出相关度较大的已知物的标准谱图,对样品的谱图进行解读,参考标准谱图得出鉴定结果。 五、结果与分析 (1)官能团区 1.在1600cm-1~1581cm-1,1419cm-1~1454cm-1内出现四指峰,由此确定存在单核芳烃C=C骨架,所以存在苯环。 2.在2000-1700cm-1之间有锯齿状的倍频吸收峰,所以为单取代苯。 3.在1683cm-1存在强吸收峰,这是羧酸中羧基的振动产生的。 4.在3200~2500cm-1区域有宽吸收峰,所以有羧酸的O-H键伸缩振动。 (2)在指纹区 700cm-1左右的705cm-1和667cm-1为单取代苯C—H变形振动的特征吸收峰; 六、实验结果与讨论 1.未进行检索匹配,不知匹配值为何。(这个不会) 2.谱图的有些峰标不出来。例如,3500-4000、2358和2341强吸收峰、指纹区的一些吸收峰等。(那位看出来了希望你能告诉我) 3.我的感受是仪器操作简单,图谱分析难。

苯甲酸红外光谱的测定实验报告

苯甲酸红外光谱的测定实验报告 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握傅立叶红外光谱仪的结构和操作方法。 3、掌握基本且常用的KBr 压片制样技术。 4、通过实验巩固对常见有机化合物基团特征吸收峰的记忆。 二、仪器及试剂 1、仪器:Nexus 670型傅里叶变换红外光谱仪;BS 124S电子分析天平 2、试剂:苯甲酸样品(分析纯);KBr(光谱纯)。 三、实验原理 苯甲酸为无色,无味片状晶体。熔点122.13℃,沸点249℃,相对密度1.2659。苯甲酸是重要的酸型食品防腐剂。在酸性条件下,对霉菌、酵母和细菌均有抑制作用,但对产酸菌作用较弱。在食品工业用塑料桶装浓缩果蔬汁,最大使用量不得超过2.0g/kg;在果酱(不包括罐头)、果汁(味)型饮料、酱油、食醋中最大使用量1.0g/kg;在软糖、葡萄酒、果酒中最大使用量0.8g/kg;在低盐酱菜、酱类、蜜饯,最大使用量0.5g/kg;在碳酸饮料中最大使用量0.2g/kg。由于苯甲酸微溶于水,使用时可用少量乙醇使其溶解。 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; -1

苯甲酸红外光谱的测定实验报告

苯甲酸红外光谱的测定实验报告 一、目的要求 (1)学习用红外吸收光谱进行化合物的定性分析; (2)掌握用压片法制作固体试样晶片的方法;; (3)熟悉红外分光光度仪的工作原理及其使用方法。 二、实验原理 当一定频率(一定能量)的红外光照射分子时,如果分子某1 个基团的振动频率和外界红外辐射频率一致,二者就会产生共振。此时,光的能量通过分子偶极矩的变化传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁(由原来的基态跃迁到了较高的振动能级),从而产生红外吸收光谱。如果红外光的振动频率和分子中各基团的振动频率不一致,该部分红外光就不会被吸收。用连续改变频率的红外光照射某试样,将分子吸收红外光的情况用仪器记录下来,就得到试样的红外吸收光谱图。由于振动能级的跃迁伴随有转动能级的跃迁,因此所得的红外光谱不是简单的吸收线,而是一个个吸收带。 在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简称基频峰)基本上出现在同一频率区域内,例如,CH3(CH2)5CH3、CH3(CH2)4C?N和CH3(CH2)5CH=CH2等分子中都有-CH3,-CH2-基团,它们的伸缩振动基频峰都出现在同一频率区域内,即在,3000cm-1波数附近,但又有所不同,这是因为同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,使基频峰频率发生一定移动,例如C,O基团的伸缩振动基频峰频率一般出现在1850,1860cm-1范围内,当它位于酸酐中时, C=O为1820,1750cm-1、在酯类中时,为1750,1725cm-1;在醛中时,为1740,1720cm-1;在酮类中时, 2

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1 。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1 。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1 。C C ≡ν峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1 和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动( =C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动( c=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动( =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及OH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的 OH 峰位在955~915 cm -1 范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c

苯甲酸的红外光谱实验报告

苯甲酸的红外光谱实验 报告 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

班级:食品质安1202班 姓名:季瑶 学号 苯甲酸的红外吸收光谱图的测定 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握傅立叶红外光谱仪的结构和操作方法。 3、掌握基本且常用的KBr压片制样技术。 4、通过实验巩固对常见有机化合物基团特征吸收峰的记忆。 二、仪器及试剂 1、仪器:Nexus 670型傅里叶变换红外光谱仪;BS 124S电子分析天平 2、试剂:苯甲酸样品(分析纯);KBr(光谱纯)。 三、实验原理 苯甲酸为无色,无味片状晶体。熔点℃,沸点249℃,相对密度。苯甲酸是重要的酸型食品防腐剂。在酸性条件下,对霉菌、酵母和细菌均有抑制作用,但对产酸菌作用较弱。在食品工业用塑料桶装浓缩果蔬汁,最大使用量不得超过kg;在果酱(不包括罐头)、果汁(味)型饮料、酱油、食醋中最大使用量kg;在软糖、葡萄酒、果酒中最大使用量kg;在低盐酱菜、酱类、蜜饯,最大使用量kg;在碳酸饮料中最大使用量kg。由于苯甲酸微溶于水,使用时可用少量乙醇使其溶解。 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。 当傅里叶交换红外光谱仪中的迈克尔干涉仪发出的干涉光通过有KBr 和有机化合物制成的样品压片上时,其中频率和样品中有机化合物基团

红外吸收光谱的测定及结构分析

实验八红外吸收光谱的测定及结构分析 一、实验的目的与要求 1.掌握红外光谱法进行物质结构分析的基本原理,能够利用红外光谱鉴别官能团,并根据 官能团确定未知组分的主要结构; 2.了解仪器的基本结构及工作原理; 3.了解红外光谱测定的样品制备方法; 4.学会傅立叶变换红外光谱仪的使用。 二、原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。 三、仪器与试剂 1.Nicolet 510P FT-IR Spectrometer(美国Nicolet公司); 2. FW-4型压片机(包括压模等)(天津市光学仪器厂);真空泵;玛瑙研钵;红外灯;镊子;可拆式液体池;盐片(NaCl, KBr, BaF2等)。 3.试剂:KBr粉末(光谱纯);无水乙醇(AR);滑石粉;丙酮;脱脂棉; 4.测试样品:对硝基苯甲酸;苯乙酮等。 四、实验步骤 1.了解仪器的基本结构及工作原理

实验三苯甲酸红外光谱测定及谱图解析制

苯甲酸红外光谱测定及谱图解析 —KBr晶体压片法制样 一、目的要求 (1)学习用红外吸收光谱进行化合物的定性分析, (2)掌握用压片法制作固体试样晶片的方法; (3)熟悉红外分光光度仪的工作原理及其使用方法。 基本原理 二、实验原理 当一定频率(一定能量)的红外光照射分子时,如果分子某个基团的振动频率和外界红外辐射频率一致,二者就会产生共振。此时,光的能量通过分子偶极矩的变化传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁(由原来的基态跃迁到了较高的振动能级),从而产生红外吸收光谱。如果红外光的振动频率和分子中各基团的振动频率不一致,该部分红外光就不会被吸收。用连续改变频率的红外光照射某试样,将分子吸收红外光的情况用仪器记录下来,就得到试样的红外吸收光谱图。由于振动能级的跃迁伴随有转动能级的跃迁,因此所得的红外光谱不是简单的吸收线,而是一个个吸收带。 在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简 称基频峰)基本上出现在同一频率区域内,例如,CH 3(CH 2 ) 5 CH 3 、CH 3 (CH 2 ) 4 C≡N和 CH 3(CH 2 ) 5 CH=CH 2 等分子中都有-CH 3 ,-CH 2 -基团,它们的伸缩振动基频峰与图 1 CH 3(CH 2 ) 6 CH 3 分子的红外吸收光谱中-CH 3 ,-CH 2 -基团的伸缩振动基频峰都出现在 同一频率区域内,即在<3000cm-1波数附近,但又有所不同,这是因为同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,使基频峰频率发生一定移动,例如-C=O基团的伸缩振动基频峰频率一般出现在1850~1860cm-1范围内,当它位于酸酐中时,nC=O为1820~1750cm-1、在酯类中时,为1750~1725cm-1;在醛中时,为1740~1720cm-1;在酮类中时,为1725~17l0cm-l;在与苯环共轭时,如乙酞苯中nC=O为1695~1680cm-1,在酰胺中时,nC=O 为1650cm-1等。因此,掌握各种原子基团基频蜂的频率及其位移规律,就可应用红外吸收光谱来确定有机化合物分子中存在的原子基团及其在分子结构中的相对位置。苯甲酸分子中各原子基团的基频峰如下图:

相关文档
最新文档