氢燃料电池电堆系统控制方案

氢燃料电池电堆系统控制方案
氢燃料电池电堆系统控制方案

氢燃料电池电堆系统控制方案

2

2020年4月19日

AIR OUT

AIR IN

H2IN

DI-WEG IN

DI-WEG OUT

图1 1号电堆模块系统图

H2PURGE1

24V H2PURGE2

WEXPT

图2 车用1号电堆系统系统图

3 2020年4月19日

表1 模块附件表:

表2 车载系统附件表:

2.1 模块

冷却液与压缩空气热交换器

因冷却液的温度适应电堆要求,该热交换器的作用,一是压缩空气温度过高时降温(起中冷器作用),二是压缩空气温度较低时加热。考虑到要适应低温环境,最好采用。

●氢气入口压力调整器

电堆的氢气入口压力调整,由PT-H3、EPV-H4、PT-H4组成,经过程序采集压力和控制比例阀来实现。为了控制准确和简单管路,将PT-H2、EV-H2、PT-H3、EPV-H4、PT-H4做到一个阀组(manifold)上。

●阳极压力保护

为防止氢气入口压力调整器失效,而使阳极产生高压毁坏电堆。采用安全阀SRV-H5保护。

●外增湿器

外增湿器采用膜增湿器,用电堆的出口湿空气来增湿电堆得入口干空气。具体是否采用,要看电堆的需求。

●氢气循环

氢气循环,一是使阳极的氢气的湿度均匀,二是加热入口的氢气。

●氢气吹扫(排放)阀

氢气吹扫阀,是用1个还是在电堆氢气出口的2端各用1个。要看电堆的阳极结构,因氢气回流后,多少会有一些液态水,若不能及时吹扫掉,会影响水平较低段的节电池性能,也不利于防冻处理。

●电堆空气出口压力

电堆出口压力,采用电磁比例阀EPV-A6和电堆出口压力表PT-A5形成回路来控制。为防止憋压,比例阀为常开阀。

●电堆高压输出正负极对结构接地(搭铁)绝缘电阻检测

电堆高压输出正负极对结构接地的绝缘电阻小时,会危害电堆的安全。在模块中需要加入检测单元。绝缘电阻的要求,单节电池为1200欧,150节为180千欧。

●电机调速器的电源

因空压机的功率一般大于1kW,采用电堆的高压电源,在启动或停止的过程中需要外电源供电。启动和停止时由预充电电源PS-HV6供电。

氢气循环泵,因功率一般小于500W,且只在电堆工作时运行,采用外部24VDC单独供电。

●节电池电压巡检单元

节电池电压巡检单元,与电堆的结构做到一起,自带MPU,与模块控制器采用通讯联系(CAN和RS485)。这样会使检测电缆最短,提高可靠性和美观。

●模块控制器

控制器的MCU选用飞思卡尔的MC9S12CE,硬件和壳体,若能采购满足要求的现成控制器,则采购;实验调试完成后,沿用采购的或公司自主研发。

控制策略和软件编程,公司自主研发。

2.2 车载系统

●高压氢气瓶组

高压氢气瓶组,根据整车要求设置个数,每个氢气瓶都装有瓶口阀组合块。瓶口阀组合块包括温度传感器、压力传感器、截止阀。因数量比较多,一般专做1个氢气瓶组控制器,用于现场采集温度压力信号和截止阀的控制。氢气瓶组控制器与燃料电池系统控制器经过CAN总线通讯。

因高压氢气瓶组,属于特种行业,需要有资质的单位设计施工。

●氢气气源的选择

电堆模块的氢气气源,设置2个手动截止阀,一个接入氢气气源,一个接入氮气气源。氮气气源不在现场布置,只是在温度低,需要长期停机或存贮时,将阳极的氢气置换成氮气。

●氢气浓度传感变送器

氢气浓度传感变送器,用于检测空间氢气浓度,用于氢气泄漏报警,设置6个。布置在氢气可能泄漏的上方。

●氢气气源安全阀

用于泄放气源地高压,出口接到空气排放口。

●氢气气源隔离阀

一是作为氢气气源地总开关,在出现氢气泄漏报警时,关闭该阀,用于截断氢气气源。

●空气排放口混合器

该混合器,以空气回路为主通道,电堆氢气排放口混合

接入此处,用流动的空气来稀释排放的氢气,该处安装一个氢气浓度传感器。报警时,关断氢气气源隔离阀。

●空气进口过滤器

空气进口过滤器,需要双层过滤,外层为物理过滤,主要过滤微粒;内层为化学过滤器,主要过滤危害阴极触媒的化学成分。而且压损要小于3kpag。

●冷却回路

冷却回路采用散热水箱和补水膨胀水箱的结构。采用电动三通比例阀构成2个分支回路:冷启动加热和电堆小功率回路(内回路),电堆大功率散热器回路(外回路)。

水温控制执行元件有:EMV-D13、FAN-DRV、WP-DRV、HEX-D14。组合控制达到各种工况的温度要求。

FLT-D11、FLT-D16为网状物理过滤器,主要过滤颗粒物。

FLT-DI17去离子过滤器,安装在微循环分支上,用于去除冷却液中的离子。

●电机调速器电源

冷却液循环水泵和散热器风扇电机调速器电源全部用外接的24VDC蓄电池电源。

●燃料电池系统控制器

控制器的MCU选用飞思卡尔的MC9S12CE,硬件和壳体,若能采购满足要求的现成控制器,则采购;实验调试完成

后,沿用采购的或公司自主研发。

控制策略和软件编程,公司自主研发。

DC/DC

将DC/DC归入燃料电池系统,是因为电堆的工况跟DC/DC密切相关。

1.节点参数

节点参数是根据系统工艺正常工作和控制策略要求而提出。3.1电堆参数

●单节电池电特性参数(用于健康度、生命期评估)额定电流: ADC

终止电压: VDC

表2 电压 VS 电流

●冷却流道参数

冷却液为去离子水或防冻液(50%V/V乙二醇)。

最大入口压力: kPa(绝压)

最大出口温度:

最大出入口温差:

表3压损VS 流量(去离子水):

表4压损VS 流量(防冻液):

表5温度 VS 电流

●阳极(氢气)及阴极参数

工作温度范围:℃

最大阳极和阴极连通后入口压力: kPa 最大阳极对阴极压力: kPa

表6 最小阳极对阴极压力 VS 电流

●其它各项

表7 各项 VS 电流

3.2氢气通道

气源压力范围:7.6-9.6 barg

3.3空气通道

入口最低压力: -3.0kpag

出口最大压力:3.0 kpag

3.4加湿器

最大总压损: 10.0 kpa

3.5热交换器

需根据压缩空气的最大流量、最高温度、最低温度来确定。

水道阻力:

最大气道压损: 5.0 kpag

国内外燃料电池电堆及组件

国内外燃料电池电堆及组件 电堆是发生电化学反应的场所,也是燃料电池动力系统核心部分,由多个单体电池以串联方式层叠组合构成。将双极板与膜电极交替叠合,各单体之间嵌入密封件,经前、后端板压紧后用螺杆紧固拴牢,即构成燃料电池电堆。电堆工作时,氢气和氧气分别由进口引入,经电堆气体主通道分配至各单电池的双极板,经双极板导流均匀分配至电极,通过电极支撑体与催化剂接触进行电化学反应。 图1氢燃料电池电堆构成 国外乘用车厂大多自行开发电堆,并不对外开放,例如丰田、本田、现代等。也有少数采用合作伙伴的电堆来开发发动机的乘用车企业,例如奥迪(采

用加拿大巴拉德定制开发的电堆)和奔驰(采用奔驰与福田的合资公司AFCC 的电堆)。乘用车因为空间限制,目前只能采用高压金属板电堆的技术方案。目前国外可以单独供应车用燃料电池电堆的知名企业主要有加拿大的Ballard 和Hydrogenics,欧洲和美国正在运营的燃料电池公交车绝大多数采用这两家公司的石墨板电堆产品,已经经过了数千万公里、数百万小时的实车运营考验,这两家加拿大电堆企业都已经具备了一定产能,Ballard还与广东国鸿设立了合资企业生产9SSL电堆。 此外还有一些规模较小的电堆开发企业,例如英国的Erlingklinger,荷兰的Nedstack等,在个别项目有过应用,目前产能比较有限。 国内能够独立自主开发电堆并经过多年实际应用考验的只有大连新源动力和上海神力两家企业,大连新源动力采用的是金属板和复合板的技术路线,与上汽合作,开发了荣威950乘用车和上汽V80客车。上海神力成立于1998年,是中国第一家专业的燃料电池电堆研发生产企业,目前两家都建成了燃料电池电堆中试线,正处于从小批量到产业化转化的关键阶段。另外有一些新兴的燃料电池电堆企业,例如弗尔塞、北京氢璞、武汉众宇等,也开发出燃料电池电堆样机和生产线,正处于验证阶段。

(完整word版)实验报告5燃料电池电堆测试

《燃料电池电堆测试与分析》实验报告 一.实验目的: 1.掌握PEMFC电堆测试台的基本结构和操作方法; 2.通过实测,掌握电堆极化曲线的测试方法,学会绘制极化曲线、功率曲线等图谱; 3.能将燃料电池电堆的实测性能应用于燃料电池系统的构建上;锻炼运用理论分析、解决实际问题的能力和方法。 二.实验原理: 将所需测量的PEMFC电堆与NBT燃料电池测试系统连接,通过控制平台调节燃料电池的氢气和空气流量,设置负载的电流值(也就是燃料电池电堆的电流值),观察记录电压值和功率值得变化,利用所记录的数据画出燃料电池的i-V和i-P曲线。 三.实验仪器设备和器材 四.测试平台开机顺序测试 1.打开气源,检查氢气、空气(外部供应时)的压力是否正常、去离子水的液位是否正常;室内氢气泄露报警系统是否正常;氢气、空气与水的排放口是否连接妥当,氢气管路的出口必须接于室外。注意测试时的人员与设备的安全。 2.给测试平台上电,380V AC。 3.开启电脑,与设备联机。 4.手动设置适当的氢、空、冷却水温度(注意不应超过80℃)、各流体最低流量、电堆片数、活性面积等参数。 5.设定数据保存路径和文件名,开始记录数据。

6.测试极化曲线。根据电堆所需要氢空流量,手动设置电流,测试极化曲线。 7.实验结束。 五.提前制作电堆运行所需氢气和空气的流量表,如下表所示。 已知条件:电堆片数:19片,单电池活性面积250cm2; 阴/阳极化学计量比:3.5/1.5; 常压 六.绘制电堆的极化曲线和功率密度曲线,需要标明必要的测试条件。

七.绘制上述极化曲线上最大功率时的单片电池电压柱状图,并计算电压的 标准偏差。 学生(签名): 实验日期:2015.5.25

氢燃料电池控制策略培训课件

氢燃料电池控制策略

目录 30KW车用氢燃料电池控制策略 ............................ 错误!未定义书签。目录 (2) 1控制策略的依据 (4) 230KW车用氢燃料电池控制策略 (5) 2.1P&ID (6) 2.2模块技术规范 (7) 2.3用户接口 ................................................... 错误!未定义书签。 2.4系统量定义 (9) 2.5电堆电芯(CELL)电压轮询检测策略 (11) 2.5.1Cell巡检通道断线诊断处理 .................. 错误!未定义书签。 2.5.2Cell巡检通道断线诊断结果处理........... 错误!未定义书签。 2.6Cell电压测算............................................. 错误!未定义书签。 2.7电堆健康度SOH评估............................... 错误!未定义书签。 2.7.1特性曲线电阻段对健康度的评估方法.. 错误!未定义书签。 2.8ALARM和FAULT判定规则 (11) 2.9工作模式(CRM和CDR)策略 (12) 2.10电堆冷却液出口温度设定值策略 (12) 2.11空气流量需求量计算 (12) 2.12阳极氢气循环回路控制策略 .................... 错误!未定义书签。

2.13阴极空气传输回路控制策略 (15) 2.14冷却液传输回路控制策略 ........................ 错误!未定义书签。 2.15阳极吹扫(Purge)过程 (18) 2.16防冻(Freeze)处理过程 (18) 2.17泄漏检查(LeakCheck)机理 (19) 2.17.1在CtrStat17下的LeakCheck (19) 2.17.2CtrState2下的泄漏检查 (19) 2.18注水入泵(Prime)过程 (20) 2.19状态及迁移 (20) 2.19.1状态定义 (20) 2.19.2状态迁移图 (21) 2.19.3状态功能 (22) 2.19.4迁移条件 ................................................ 错误!未定义书签。 2.20CAN通讯协议。........................................ 错误!未定义书签。3未确定事项 ..................................................... 错误!未定义书签。

中国氢燃料电池技术

国际氢能燃料电池技术及汽车发展研讨会
INTERNATIONAL HYDROGEN FUEL-CELL TECHNOLOGY AND VEHICLE DEVELOPMENT FORUM
中国氢燃料电池技术
Overview of China’s Fuel cells Technologies
郑方能 (ZHENG FangNeng)
中国科学技术部
Ministry of Science and Technology of China
2010-9-21 上海(Shanghai)
1

内容Outline:
? 氢能国家战略
National strategy of hydrogen energy
? 制氢与储氢
Hydrogen production & storage
? 汽车能源及动力转型
Automotive energy & power transformation
? 燃料电池 Fuel cells
2

国家战略National strategy
Economy growth
Developing Low-carbon economy
Energy demand
Environmental protection
Save energy
Renewable energy
Fossil fuel
Nucleari power
3

氢能是我国未来能源发展战略的重要方向
Hydrogen energy – important R&D direction in Chinese energy strategy
《国家中长期科学和技术发展规划纲要》(2006-2020) National Program for Long- and Medium-Term Scientific and Technological Development (2006-2020) 前沿技术-先进能源技术:氢作为可从多种途径获取的理想能 源载体,将为能源的清洁利用带来新的变革;具有清洁、灵活 特征的燃料电池动力和分布式供能系统,将为终端能源利用提 供新的重要形式 Cutting-edge technology – Advanced energy technology: Hydrogen, as ideal energy carrier, will revolutionarily bring about clean energy utilization. The green, smart fuel cell power and distributed energy-supply systems will provide new important way for terminal energy use.
4

燃料电池测试系统购置

高功率燃料电池测试系统技术参数高功率燃料电池测试系统,用于25cm2或50cm2质子交换膜燃料电池单电池性能及耐久性研究。详细的技术文件如下: 一、测试系统的所有部件、数据采集与控制、电脑及显示器在一个主机箱中。 二、测试仪器可靠性要求 无故障运行10000小时 三、电子负载 1、最大功率:≥100W; 2、最大电流:≥120A,精度:±0.3% 所选量程,分辨率:1mA 3、电池电压测量范围:-5V~+5V,精度:±1mV;分辨率:1mV 4、最低保护电压:0.3V。 四、加载控制方式:即可电流控制,又可电压控制。 五、气体供应 1、质量流量控制器: 最大流量:H2≥2NLPM,精度:±1%;Air≥5NLPM,精度:±1%,可按过量系数控制流量。 2、带有干气旁通(Bypass)功能,带有氮气吹扫(Purge)功能 六、背压控制 1、程控自动化阴阳极进出口压力控制,电脑控制自动加背压。 2、压力控制范围:≥300KPa(表压),控制稳定性:±5KPa 3、可以监测(电脑显示)阴极和阳极的进出口压力。 七、温度控制 1、最高电池温度:≥110℃,控制精度:±1℃ 2、最高气体温度:≥90℃,控制精度:±1℃,从加湿器到测试电池间的胶管有加热和保温功能,避免水气凝结。 3、露点温度控制范围:室温—90℃,精度:±1℃ 八、热交换器:有 九、交流阻抗:要求带有交流阻抗测试模块,电压控制模式测EIS,频率扫描范围:高频大于10kHz,低频小于等于0.01mHz,电流最大量程:≥±5A

十、带有恒电位仪,N2和Air自动切换,测试CV、LSV。N2流量计量程越高越好,建议和Air共用流量计。 十一、安全:带有氢气报警器,设有氢气泄露报警和仪器错误报警,在报警情况下自动化关闭电子负载、启动氮气吹扫。带有过电压、电流等保护。 十二、电脑和软件: 1、电脑全自动控制 2、可编程进行程序控制测试, 3、语言:英语或中文 4、数据收集记录:至少可以电脑记录以下参数:运行时间、电池温度、阴阳极气体进出口的温度和湿度、阴阳极加湿温度、阴阳极进出口压力、阴阳极气体流量,电池电流、电压及其标准偏差,所有数据记录设定值和测量值。 十三、保修期 一年。

质子交换膜燃料电池控制策略研究

质子交换膜燃料电池控制策略研究 质子交换膜燃料电池与其他种类电池的差别就是,质子交换膜燃料电池的出现以使用清洁、对环境无污染、效率高为特点,是一种很有价值的发明,就我国目前的情况来看,质子交换膜燃料电池在我国的各个领域中已经被接纳。在进行研究质子交换膜燃料电池的最终目的就是为了让质子交换膜燃料电池的效率更高而且更加的稳定。这就需要对质子交换膜燃料电池的性质进行研究,让质子交换膜燃料电池的特性可以控制。在本文中进行了质子交换膜燃料电池自身特点以及质子交换膜燃料电池的分类的介绍,也简述了质子交换膜燃料电池电池控制策略。 标签:燃料电池;质子交换膜;策略与研究 随着世界经济的共同发展,在发展中已经产生了对环境的严重的破坏,这就让全世界开始共同对环境的保护、资源的高效率的利用进行了研究。而可持续发展与绿色环保节能减排也已经成为了当下的主流话题。这就让经济的发展在向可持续发展的方向进行着,在我国虽然已经逐渐开始了可再生能源与清洁能源的使用,但这种改变对于我国对石油、煤矿、天然气等不可再生能源的使用情况并没有做出多大的改善,虽然我国的资源丰富但由于人口众多,但由于人均的资源量很少,针对于现在的不可再生能源的使用速度,到本世纪末这些不可再生能源就会逐渐地面临枯竭的现象。而燃料电池的发电技术的出现,由于其优越的自身特性,让其可以成为我国改变现状的方式之一。 一、燃料电池特点 随着科技的逐渐发展,出现了与化学电池不同工作原理的燃料电池。燃料电池的出现后产生了很大的影响,原因就是燃料电池的燃料与电能的转化效率是极其优秀的,对于能量之间的相互转换损失很小。而且还能对自身产生的热量进行二次的利用,当开始电能的转化时,对于环境的污染几乎没有,也不会产生大量的垃圾,在整个生产的过程中水是唯一的产物。在燃料电池开始运行时,对于电能的输出很好,而且燃料电池在运行的过程中只有很小的声音,本身可以长久的使用,稳定性极佳。在燃料电池运行的过程中,内部没有机械构件,只有水与其他在转化。燃料电池的构造很简单,出现问题时维修方便,而且燃料电池的组装分很多的模块,在进行安装时方便。燃料电池的主要燃料就是氢气,氢气的价格便宜,而且氢气的来源广泛,可以在短时间内收集燃料。燃料电池对于环境可以迅速的适应,而且燃料电池的功率大、对于工作性能可以快速的适应,周围的环境就算有水存在也不会有很大的影响。 二、研究现状与存在问题 对于燃料电池的燃料氢气而言,氢气的本身可以当作能源使用。燃料电池在使用的途径上有便携式的能源、小型移动电源、车载电源等,可以在教学、汽车、科研、计算机等多种的领域进行应用,还可以充当紧急电源,而且在特殊的情况

氢燃料电池电堆系统控制方案

AIR OUT AIR IN H2IN DI-WEG IN DI-WEG OUT 图1 1号电堆模块系统图 H2PURGE1 24V H2PURGE2

WEXPT 图2 车用1号电堆系统系统图

表1 模块附件表:

表2 车载系统附件表:

2.1 模块 ●冷却液与压缩空气热交换器 因冷却液的温度适应电堆要求,该热交换器的作用,一是压缩空气温度过高时降温(起中冷器作用),二是压缩空气温度较低时加热。考虑到要适应低温环境,最好采用。 ●氢气入口压力调整器 电堆的氢气入口压力调整,由PT-H3、EPV-H4、PT-H4组成,通过程序采集压力和控制比例阀来实现。为了控制准确和简单管路,将PT-H2、EV-H2、PT-H3、EPV-H4、PT-H4做到一个阀组(manifold)上。 ●阳极压力保护 为防止氢气入口压力调整器失效,而使阳极产生高压毁坏电堆。采用安全阀SRV-H5保护。 ●外增湿器 外增湿器采用膜增湿器,用电堆的出口湿空气来增湿电堆得入口干空气。具体是否采用,要看电堆的需求。 ●氢气循环 氢气循环,一是使阳极的氢气的湿度均匀,二是加热入口的氢气。 ●氢气吹扫(排放)阀 氢气吹扫阀,是用1个还是在电堆氢气出口的2端各用1个。 要看电堆的阳极结构,因氢气回流后,多少会有一些液态水,若

不能及时吹扫掉,会影响水平较低段的节电池性能,也不利于防冻处理。 ●电堆空气出口压力 电堆出口压力,采用电磁比例阀EPV-A6和电堆出口压力表PT-A5形成回路来控制。为防止憋压,比例阀为常开阀。 ●电堆高压输出正负极对结构接地(搭铁)绝缘电阻检测 电堆高压输出正负极对结构接地的绝缘电阻小时,会危害电堆的安全。在模块中需要加入检测单元。绝缘电阻的要求,单节电池为1200欧,150节为180千欧。 ●电机调速器的电源 因空压机的功率一般大于1kW,采用电堆的高压电源,在启动或停止的过程中需要外电源供电。启动和停止时由预充电电源PS-HV6供电。 氢气循环泵,因功率一般小于500W,且只在电堆工作时运行,采用外部24VDC单独供电。 ●节电池电压巡检单元 节电池电压巡检单元,与电堆的结构做到一起,自带MPU,与模块控制器采用通讯联系(CAN和RS485)。这样会使检测电缆最短,提高可靠性和美观。 ●模块控制器 控制器的MCU选用飞思卡尔的MC9S12CE,硬件和壳体,若能采购满足要求的现成控制器,则采购;实验调试完成后,沿用

【完整版】2020-2025年中国氢燃料电池汽车行业新市场开拓策略研究报告

(二零一二年十二月) 2020-2025年中国氢燃料电池汽车行业新市场开拓策略研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业新市场开拓策略概述 (6) 第一节研究报告简介 (6) 第二节研究原则与方法 (7) 一、研究原则 (7) 二、研究方法 (7) 第三节研究企业新市场开拓策略的重要性及意义 (9) 一、重要性 (9) 二、研究意义 (9) 第二章市场调研:2018-2019年中国氢燃料电池汽车行业市场深度调研 (11) 第一节氢燃料电池汽车行业概述与定义 (11) 一、行业概述 (11) 二、燃料电池汽车定义 (12) 第二节燃料电池汽车的发展现状和趋势 (13) 一、国际发展现状 (13) 二、国内发展现状 (15) 三、国内外政策比较 (16) (一)欧洲:促进“交通与氢能”融合,持续稳定支持产业发展 (17) (二)美国:大力投资发展 (17) (三)日本:领航燃料电池发展,政策多举并进 (17) (四)中国:政府大力支持产业发展,地方政府为氢能发展保驾护航 (18) 第三节2018-2019年我国氢燃料电池汽车行业国内外专利情况分析 (19) 一、国家层面 (19) (1)专利数量:日本遥遥领先,中国位居第三 (19) (2)技术优势:日本全面领先,专利强国各关键技术发展均衡 (20) (3)国际布局:日本重视国际市场,中国以本国市场为主 (21) (4)国内专利国家布局:国内机构数量领先,国外专利整体质量较高 (22) 二、竞争机构层面 (22) (1)国际专利申请人:汽车产业相关公司占比较大,产业技术趋于垄断 (22) (2)中国专利申请人:本土机构具备相当实力,中国专利申请人布局较分散 (23) 第四节燃料电池汽车产业链分析 (24) 一、燃料电池配套产业链结构 (25) 二、燃料电池核心技术产业链 (26) (一)燃料电池发动机 (27) (二)质子交换膜 (27) (三)反应催化剂 (28) (四)电解质 (28) (五)双极板 (28) 三、燃料电池配套产业链结构 (29) 四、制氢 (30) (1)常用的制氢技术路线 (30) (2)主流制氢源自于传统能源的化学重整 (31)

燃料电池测试系统的基本理论

燃料电池测试系统的基本理论 随着全球对能源需求的增长及人类对环境要求的提高。各个国家对燃料电池的研究和开发H益增多。燃料电池测试系统不仅存燃料电池系统的研发阶段十分重要,即使是在其投入使用之后对于维持电池的正常工作也是不可或缺的。强大的测试能力能够提供对燃料电池可靠的监控。提供灵活的结构,具备了这种能力,科学界能够很方便地设计他们的系统,以跟踪燃料电池技术进步。以下是对燃料电池测试系统的相关介绍。 1、测试目的 虽然研究、开发、制造和应用部分的总目标各有不同。它们对于燃料电池的检测和躲视项目要求却是相似的。对丁研发部门,测试要求足确定输出能量、使用寿命和电池组的耐用性。在设计验收阶段,主要任务是优化设计以备大规模生产.以及在不降低效率的情况下降低电堆总成本。对丁生产应用.要求燃料电池符合规范要求。而在实际使用中,监测电池的寿命和工作状态是非常重要的。好在这些不同的任务对电池测试系统的要求都差不多。 2、测试系统的主要特点 ①隔离。燃料电池测试系统先要进行各种需要信号调理的测鼍。然后原始信号才能有数据采集系统数字化。大容最电堆具有数百个单电池。从而电压测量要求数白.伏的共模抑制。因此.测试不仅必须具有多个每个通道都能读取l—10V的通道.而

且必须保持电堆的每一个和最后一个电池之间高达数百伏的隔离。 ②数据采集系统必须能够扩展。由于燃料电池测试系统的通道数目可以从100个到1000多个.所以数据采集系统必须能够扩展。并且这些系统也要求可以进行信号的衰减和放大。 ③模块化。对于今天的测试系统,模块化也是必需的。因为测试系统必须能够随着生产及验证技术的变革而变革。 ④标定。任何测试系统都应该进行标定以确保测量有效和准确。 3、测试的主要性能参数 燃料电池测试系统需要精确的监测和控制成百上千次测量.范同从燃料和氧化剂的流量、温度、压力和湿度到燃料电池组的输出电压和电流。测试燃料电池的性能是很重要的,而监测影响性能的变量更为重要,但最重要的足控制这些变量参数,安全运行也是至关重要的。所以监测控制的主要参数有: (1)电压。在有负载的情况下,单电池的输出电压会从开路电压的1V左右降到O.6V左右.知道了每个单电池的电压就可以更近的了解电堆的健康情况。如果哪个单电池显示出不同电压,就表明此电池有问题,或者温度不正常,或者电极被淹。测试单电池或电堆的电压就可以正确操作、测试和设计燃料电池。

氢燃料电池控制策略

目录 30KW车用氢燃料电池控制策略............................. 错误!未定义书签。目录. (1) 1控制策略的依据 (3) 230KW车用氢燃料电池控制策略 (4) 2.1P&ID (5) 2.2模块技术规范 (6) 2.3用户接口 ..................................................... 错误!未定义书签。 2.4系统量定义 (8) 2.5电堆电芯(CELL)电压轮询检测策略 (10) 2.5.1Cell巡检通道断线诊断处理................... 错误!未定义书签。 2.5.2Cell巡检通道断线诊断结果处理........... 错误!未定义书签。 2.6Cell电压测算.............................................. 错误!未定义书签。 2.7电堆健康度SOH评估 ............................... 错误!未定义书签。 2.7.1特性曲线电阻段对健康度的评估方法 .. 错误!未定义书签。

2.8ALARM和FAULT判定规则 (10) 2.9工作模式(CRM和CDR)策略 (11) 2.10电堆冷却液出口温度设定值策略 (11) 2.11空气流量需求量计算 (12) 2.12阳极氢气循环回路控制策略 ..................... 错误!未定义书签。 2.13阴极空气传输回路控制策略 (14) 2.14冷却液传输回路控制策略 ......................... 错误!未定义书签。 2.15阳极吹扫(Purge)过程 (17) 2.16防冻(Freeze)处理过程 (17) 2.17泄漏检查(LeakCheck)机理 (18) 2.17.1在CtrStat17下的LeakCheck (18) 2.17.2CtrState2下的泄漏检查 (19) 2.18注水入泵(Prime)过程 (19) 2.19状态及迁移 (19) 2.19.1状态定义 (19) 2.19.2状态迁移图 (20) 2.19.3状态功能 (21) 2.19.4迁移条件 .................................................. 错误!未定义书签。 2.20CAN通讯协议。........................................ 错误!未定义书签。3未确定事项 ....................................................... 错误!未定义书签。

我国氢燃料电池汽车的发展现状及产业化探究

10.16638/https://www.360docs.net/doc/f87351196.html,ki.1671-7988.2019.16.012 我国氢燃料电池汽车的发展现状及产业化探究 杨自斌 (信阳职业技术学院汽车与机电工程学院,河南信阳464000) 摘要:随着我国经济的高速发展,汽车的生产量和销售量也在快速增加,随之而来的则是石油资源的日益紧缺和环境问题的日益突出,使得汽车新技术将开发新的能源作为主要的发现方向。在这一背景下,氢燃料电池汽车也应运而生,并且得到了广泛地关注。然而由于受到多种因素的制约,导致氢燃料电池汽车的发展依然存在着诸多问题亟待解决。基于此,文章从新能源背景下出发,对我国氢燃料电池汽车的发展前景以及产业化趋势进行了深入的探究,为其进一步的发展提出了具备实效性的建议。 关键词:氢燃料电池汽车;发展现状;产业化 中图分类号:U461.8 文献标识码:B 文章编号:1671-7988(2019)16-31-03 Development status and industrialization of hydrogen fuel cell automobile in china Yang Zibin ( Xinyang V ocational and Technical College, Automotive and Mechanical and Electrical Engineering College, Hennan Xinyang 464000 ) Abstract:With the rapid development of China's economy, the production and sales of automobiles are also increasing rapidly, which is followed by the increasing shortage of petroleum resources and the increasingly prominent environmental problems, which makes the development of new automotive technologies take the development of new energy as the main direction of discovery. In this context, hydrogen fuel cell vehicles have also emerged and received wide attention. However, due to the constraints of various factors, the development of hydrogen fuel cell vehicles still has many problems to be solved. Based on this, this paper makes an in-depth study on the development prospect and industrialization trend of hydro -gen fuel cell vehicles in China from the background of new energy, and puts forward some effective suggestions for their further development. Keywords: hydrogen fuel cell vehicle; status of development; industrialization CLC NO.: U461.8 Document Code: B Article ID: 1671-7988(2019)16-31-03 引言 随着我国综合国力的提升,人民生活水平的提高,我国汽车的生产量和保有量快速增加,这对于能源的巨大需求和大气污染的治理是一项艰巨的挑战,氢燃料电池汽车以其环保、无污染等特征再次出现在人们的视野,并得到了广泛地关注。现如今很多国家已经开始进入到产业化的发展阶段,加强对氢燃料电池汽车的发展前景和产业化研究具备很强的现实意义及价值。 1 氢燃料电池汽车的基础设施及技术标准 1.1 氢燃料能源的基础设施 作为氢燃料电池汽车运行的重要保障,加氢站等基础设 作者简介:杨自斌,助教,硕士研究生,就职于信阳职业技术学院 汽车与机电工程学院,研究方向:汽车检测与维修技术。 31

《氢燃料电池安全指南》(2019版)燃料电池堆及系统安全

3燃料电池堆及系统安全 3.1燃料电池堆安全 3.1.1燃料电池堆设计 3.1.1.1燃料电池堆分类 目前车用的燃料电池主要是质子交换膜燃料电池堆(PEMFC),质子交换膜燃料电池堆根据极板使用的材料不同,分为金属极板燃料电池堆和石墨极板燃料电池堆等。 3.1.1.2燃料电池堆功率 燃料电池堆体积比功率决定了后期电堆和系统的组合方式以及电堆的热管理设计。较小体积比功率电池堆有利于热的扩散,对整体电堆和系统热管理设计有益。较大体积比功率电池堆有利于系统设计和制造过程简单化和电池堆体积的减小。 不断 升燃料电池堆体积比功率是长期、系统的工作,建议要在确保安全性、可靠性和关键电性能指标的前 下, 升燃料电池堆的比功率和功率。 3.1.1.3燃料电池堆关键材料 燃料电池堆使用的材料对工作环境应有耐受性,燃料电池堆的工作环境包括振动、冲击、多变的温湿度、电势以及腐蚀环境;在易发生腐蚀、摩擦的部位应采取必要的防护措施。 (1)质子交换膜 质子交换膜是质子交换膜燃料电池的核心部件,其主要作用是分隔阳极和阴极,阻止燃料和空气直接混合发生化学反应,并传导质子、阻止电子在膜内传导;质子交换膜的质子传导率越高,膜的内阻越小,燃料电池的效率越高。质子交换膜材料要具有足够的化学、电化学、热稳定性和一定的机械稳定性,保证燃料电池在工作过程中能够耐受气流冲击、电流冲击和自由基攻击而不发生降解,保证燃料电池内部不会发生气体窗口窜漏、短路等危险。 对于全氟磺酸膜类质子交换膜,要有较好的热稳定性、化学稳定性和良好的机械稳定性,避免其在高温时发生化学降解,防止燃料电池在高温和高电位时出现化学降解导致气体窜漏引发氢氧混合。气体串漏对燃料电池的安全性有较大影响,要优先选用机械强度高的质子交换膜。质子交换膜厚度和燃料电池安全性密切相关,燃料电池质子交换膜厚度的选择建议充分考虑由于降低隔膜厚度带来的安全风险。 (2)气体扩散层 21/53

燃料电池测试系统

燃料电池测试系统 燃料电池测试催化剂测试实验室自动化材料测试 brand innovative solutions by TesSol, Inc. 为客户提供最好的仪器和服务是我门的宗旨 高品质,高精度,仪器服务期长 模块化结构,以太网通信,安装操作简单 模块化结构以及以太网通信,使仪器将来升级/扩展简单,一次投资,长期回报 低阻电子负载,无需放电增强器 FCPower软件用户友好界面,操作简单 软件允许用户用VBScript等编程语言编写脚本,满足自己特殊测试需要 免费软件升级,免费终生客户支持 软件还兼容控制很多第三方设备 Fideris已经为顾客提供了15年优质服务,而且还将一直继续下去 模块化设计 完整的测试系统 模块完美结合成为系统 电子负载模块 温度控制模块 气体液体控制模块 其它模块,如加湿器,背压控制等等 完全客户化设计,为您提供满足您的特殊需要的测试仪器。而且购买后也可以简单做到仪器扩展/升级,避免了仪器资源浪费 TesSol制造并为用户提供Fideris品牌系列的测试仪器。在燃料电池、催化剂、感应片、材料以及很多其它紧密相关的领域,Fideris系列仪器代表了在研究、质量控制、以及产品测试方面最为创新的实验解决方案。Fideris系列仪器包括:一体化测试系统、气体供给系统、液体供给系统、气体液体混合供给系统、液体供给液压系统、压力控制监测系统、温度控制监测系统、压力控制监测系统、电子负载系统、加湿器系统、气体加热线、辅助输入输出系统、架构模块式系统以及第三方设备等。 Fideris系列仪器采用FCpower软件为用户提供方便直观的电脑控制以及数据处理平台。FCpower软件为燃料电池研究者提供了最为灵活、最为强大的燃料电池测试平台。软件包含了对所有接入仪器的设定、控制、安全报警以及数据收集和处理等方面。 Fideris的燃料电池测试系统是专门为燃料电池测试而设计。我们的燃料电池试验站已经在世界范围内应用于燃料电池以及子系统(从小于1瓦到高于10万瓦)测试,包含所有化学材料类型(PEMFC质子交换膜燃料电池、SOFC固态氧化物燃料电池等等)、所有类型(微型、小型、大型)以及多种燃料类型(氢、天然气、柴油、汽油、重整油等等)。

南京氢燃料电池汽车项目实施方案

南京氢燃料电池汽车项目 实施方案 规划设计/投资分析/产业运营

摘要 目前中国的乘用车与国外相比还比较差一定距离,在大功率的燃料电池技术上,也有一定距离,可以说短期内,中国不具备推广应用氢燃料电池乘用车的能力,示范期还比较长。 氢燃料电池汽车(FCV,Fuel Cell Vehicles)具有清洁零排放、续驶里程长、加注时间短的特点,发展氢燃料电池汽车是顺应全球新能源技术变革、占领产业制高点的重要突破口,是应对国家能源安全、环境保护等战略的重要立足点,是推进我省制造业高质量发展走在前列的重要支撑点。。 氢燃料电池汽车(FCV,Fuel Cell Vehicles)具有清洁零排放、续驶里程长、加注时间短的特点,发展氢燃料电池汽车是顺应全球新能源技术变革、占领产业制高点的重要突破口,是应对国家能源安全、环境保护等战略的重要立足点,是推进我省制造业高质量发展走在前列的重要支撑点。。 该氢燃料电池汽车项目计划总投资20956.28万元,其中:固定资产投资15097.81万元,占项目总投资的72.04%;流动资金5858.47万元,占项目总投资的27.96%。 达产年营业收入46676.00万元,总成本费用36561.19万元,税金及附加386.86万元,利润总额10114.81万元,利税总额11896.82

万元,税后净利润7586.11万元,达产年纳税总额4310.71万元;达 产年投资利润率48.27%,投资利税率56.77%,投资回报率36.20%,全部投资回收期4.26年,提供就业职位832个。 消防、卫生及安全设施的设置必须贯彻国家关于环境保护、劳动 安全的法规和要求,符合相关行业的相关标准。项目承办单位所选择 的产品方案和技术方案应是优化的方案,以最大程度减少建设投资, 提高项目经济效益和抗风险能力。项目承办单位和项目审查管理部门,要科学论证项目的技术可靠性、项目的经济性,实事求是地做出科学 合理的研究结论。

氢燃料电池电堆系统控制方案

氢燃料电池电堆系统控制方案 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

燃料电池发动机系统控制策略

车载燃料电池发动机系统及控制策略开发 一:目的 制定本控制策略的目的是通过合理的控制,稳定燃料电池发动机的性能并有效的提升燃料电池发动机的寿命。燃料电池发动机是为了备用电源使用,同时兼顾车用状态,所以在系统开发及控制策略主要以备用电源应用环境为主体,同时兼顾汽车级应用状态,由于车载燃料电池系统应用环境相对备用电源系统要复杂多变,所以结合燃料电池在车上实际应用制定最佳系统配置条件。但是同时也兼顾备用电源的应用场合。 二:系统初步框图

三:总体控制方案: 燃料电池发动机的开机,关机及运行,可以看做是一个循环过程,需要实现自检、吹扫、湿度控制、加减载控制、散热控制,故障检测和保护等一系列功能。在满足此条件的基础上进行燃料电池系统级的开发。 1:待机自检: 待机自检查看燃料电池系统发动机自身的状态是否准备就绪,包括电源供给、电磁阀状态、传感器状态,设备通讯等,因为传感器自身会有波动,所以划定其合理的波动范围来确定其是否正常工作 2.开机策略:(略) 3.运行控制策略: 运行中需要控制加载、空压机转速、散热、氢气循环泵、尾排阀。主要从以下几个方面进行考虑: 1:电堆模块的操作条件 2:发动机系统中加入了氢气循环泵,氢气循环泵的控制 3:为提升寿命,对加载速率的要求:加载≯?A/s,减载≯?A/s。(根据电堆条件确定) 4:尾排及分水阀的动作时间,氢气利用率控制。 5:加减载控制策略: 实现加载≯?A/s,减载≯?A/s 的目标,同时也要具备车载情况下的加减载控制能力。 其中空入压力受湿度、环境温度、自身的精度等的影响比较大,经常会出现加载不上而形成死循环的状况。车载发动机是恒功率加载,而燃料电池发动机希望是恒电流加载,并能控制加载速率,因此,为实现恒

数字电液控制系统在核电厂中的应用

数字电液控制系统在核电厂中的应用 发表时间:2019-05-20T16:37:54.500Z 来源:《电力设备》2018年第32期作者:张夏莲 [导读] 摘要:海南核电1,2号机数字电液控制系统(Digital Electric Hydraulic Control System)采用西屋公司的OV ATION 系统,由冗余的分布式处理单元和一套安装在标准机柜内的输入输出模件组成。为在操作员站CRT 发生故障时能安全停机,还提供了一块手操盘,能够根据用户的要求组成不同的配置。 (中国核电工程有限公司华东分公司浙江嘉兴 314000) 摘要:海南核电1,2号机数字电液控制系统(Digital Electric Hydraulic Control System)采用西屋公司的OVATION 系统,由冗余的分布式处理单元和一套安装在标准机柜内的输入输出模件组成。为在操作员站CRT 发生故障时能安全停机,还提供了一块手操盘,能够根据用户的要求组成不同的配置。 关键词:数字电液控制;原理;功能;控制。 DEH控制系统能按操纵员或自动启动装置给出的指令来控制主汽阀、主汽调节阀、再热主汽阀和再热调节阀,使机组按一定要求升、降转速、负荷、停机等。DEH装置接受转速、功率及第一级前汽压的实际信号,对机组的转速、功率、蒸汽流量实行闭环调节。此外,DEH还能监测显示参数、超速保护、自启停控制等。 1.工作原理 DEH采取一对一的方式来实现对机组的控制,即DEH发出的阀位控制指令通过4块伺服卡分别送到4个调节汽门(GV)的电液伺服阀(MOOG阀)上;MOOG阀将电气信号转换成液压信号,由安装在油动机上的高压抗燃油执行机构直接带动调节汽门的蒸汽阀头开启和关闭。2个主汽阀(MSV)、6个再热主汽阀(RSV)、6个中压调节阀为开/关型,DEH通过控制与其对应的电磁阀使其开启/关闭。 2. 功能 DEH控制系统主要有两种功能:一个是当发电机断路器“打开”时控制汽机转速;另一个是当发电机断路器“关闭”时控制汽机负荷,而这些都是通过4个高压调节阀(GV)开度实现的,高压调节阀受控于专门设计的带自诊断和自动校验的伺服卡。同时,机组还配有开/关型的主汽阀(MSV)2个、再热主汽阀(RSV)6个、中压调节阀6个。一个独立的高压油源系统为机组上所有阀门提供原动力。DEH根据不同的运行工况,如启动,停机,变负荷和Runback而自动产生转速/负荷设定值。 3.控制方式 3.1 手动这是一种开环运动方式,控制各个阀门的开度,操作员在操作盘上通过按键直接改变阀门的开度,各按钮之间由逻辑互锁,该方式作为自动方式的备用,在手动方式下具备OPC功能。DEH硬操盘上主要有阀位增减按钮和阀位指示等,它通过硬件的方式直接操作阀门控制卡(VCC卡),其阀位指示也由硬件卡给出,因而,只要VCC卡及直流电源正常,在DPU等计算机故障或停电,无法实现自动控制时,仍能通过硬操盘对汽轮机进行手动控制。 3.2操作员自动(OA)在该方式下,可实现汽轮机的转速和负荷的闭环控制,具有各种保护功能。目标转速、目标负荷、升速速率和升负荷速率等均可由操作人员设置。因本系统采用的是双机系统,因而,该方式下可分为A机控制和B机控制两种情况,两者之间的切换可以手动也可做到自动,如两机都发生故障,则自动转至手动方式运行。 3.3自动汽机控制(ATC)启动过程中,ATC模式自动将目标值从0 rpm增加到3000 rpm,同时监视所有振动和金属温度信号。当满足保持条件时,自动保持当前转速。转速升至约2/3额定转速时自动进入暖机状态。当转速进入同期范围时,自动将控制切换到自动同期装置。断路器初始闭合时控制自动切回OA模式,ATC仅监视。 当阀门控制卡故障,需在线更换时;一只LVDT故障,在线更换故障的LVDT时;DPU(主控站)故障时;操作员站故障时,机组可暂时切至手动控制;在线更换BC站控制板时,DEH系统必须由自动控制切至手动控制。 4.DEH控制环节 4.1 整定值生成整定值用来和过程值比较,产生的偏差信号经过调节器作用后去调节阀门动作。在OA模式下,整定值= 当前值+ 升降速率* 时间。操纵员输入目标值以及升降速率,按下启动后,程序就会按照操纵员设定好的速率使整定值增加或减少,直到整定值达到目标值,DEH将整定值自动保持,在这个过程中操纵员可以根据情况使用“hold”按钮手动使整定值保持在当前值。 4.2 转速控制 DEH处于转速控制或功率控制取决于发电机是否并网,通过断路器状态来自动判断。在转速控制模式下,整定值与转速测量值比较,产生的偏差信号经过PID调节器作用后产生输出动作阀门。 4.3 频率校正操纵员可根据电网要求将频率校正回路投入或者切除,这种投切在操纵员终端手动实现。频率校正的作用是在电网频率偏离额定频率时,调整发电机功率,使发电机功率符合电网频率要求。当电网频率过高时降低功率整定值,反之则增加功率整定值。校正量的大小由频率偏差量来决定,符合一定的比例关系并设置有死区。 4.4 MW(电功率)反馈并网以后,操纵员在操纵员终端上手动投入MW反馈回路。MW反馈回路的作用是使控制回路成为闭环回路,从而实现对功率的准确控制,MW反馈回路上设置有PID调节器。MW反馈的测量信号来自于发电机出口断路器前,同样使用3个信号,经过中选器处理,进行信号判断并将故障信号排除。汽机发生RUNBACK时,MW反馈回路被自动切除,避免闭环控制方式下汽机功率的过度超调。 4.5 IMP(冲动级压力)反馈冲动级压力与汽轮机发电机组功率之间有固定的对应关系,当蒸汽压力发生变化,引起冲动级压力变化,IMP反馈回路快速响应调整阀门开度而使发电机功率快速返回到初始水平。IMP反馈回路上的PID参数设置使得该反馈回路对冲动级压力变化能够快速响应。由于在10%功率以后冲动级压力IMP与功率之间才会有较好的线性对应关系,所以一般在10%功率以后才可以投运IMP反馈回路。 4.6 阀门流量修正曲线控制信号、阀门开度以及蒸汽流量之间如果具有很好的线性关系,即使在开环控制模式下(所有反馈回路切除),汽机调阀也能准确地将功率控制在功率整定值上。但是实际的调阀开度与蒸汽流量之间并不是纯粹的线性关系。因此要使阀门控制信号与蒸汽流量成线性对应关系,就必须对阀门控制信号进行修正,修正方法就是设定阀门流量修正曲线。 4.7 超速保护控制(OPC) OPC的主要功能是当汽轮机甩负荷时(电网故障),发出OPC信号使EH油回路中的OPC电磁阀带电开启,卸去OPC母管中的油压,使调节阀和再热调节阀快速关闭,OPC信号消失后,调节阀和再热调节阀重新开启,从而防止汽轮机超速跳

相关文档
最新文档