单克隆抗体药物概述

单克隆抗体药物概述
单克隆抗体药物概述

单克隆抗体药物概述

高熹

(2015级交流学院生物技术 168615140001)

摘要:单克隆抗体药物作为一种具有独特优势的生物靶向药物,具有特异性高、靶向性强和毒副作用低的特点,在治疗方面效果显著。伴随着抗体技术的不断发展以及新型抗体的不断出现,单克隆抗体药物已成为制药业发展最快的领域之一,目前正在研究的生物技术药物中有四分之一都是单克隆抗体药物,期间又涌现出了各种单抗衍生物,包括抗体药物偶联物、小分子抗体、双特异性抗体等。本文就单克隆抗体药物的分类、制备、应用和发展等进行综述。

关键词:单克隆抗体药物;抗体技术;单抗衍生物

1975年分子生物学家G.J.F.克勒和C.米尔斯坦在自然杂交技术的基础上,创建立杂交瘤技术,他们把可在体外培养和大量增殖的小鼠骨髓瘤细胞与经抗原免疫后的纯系小鼠B细胞融合,成为杂交细胞系,既具有瘤细胞易于在体外无限增殖的特性,又具有抗体形成细胞的合成和分泌特异性抗体的特点。将这种杂交瘤作单个细胞培养,可形成单细胞系,即单克隆。杂交瘤技术为规模化生产特异性高、结构和性质均一稳定的单克隆抗体提空了有力的保障。

1 单克隆抗体药物的发展和现状

1986年,FDA批准了第一个鼠源单克隆抗体药物Muromonab-CD3上市,用于预防肾移植时急性器官排斥。单克隆抗体药物的发展因人抗鼠抗体反应在1988年到1993年间陷入低谷。之后随着重组DNA技术的发展,各种抗体人缘化技术迅速发展,单克隆抗体药物经历了人鼠嵌合单抗、人源化单抗阶段。随后出现的噬菌体展示文库技术和转基因小鼠技术,使全人源单抗的产生成为可能。过去的30年抗体工程的研究主要集中于减弱鼠源抗体的免疫原性和提高产生抗体的能力,如今全人源抗体已成为治疗性单抗的主流,2002年第一个全人源抗体阿达木单抗上市。且随着微生物和哺乳动物细胞等外源蛋白表达系统的技术进步和表达水平的提高,使治疗性单克隆抗体在临床和商业上都取得了巨大的成功。尽管如此,单克隆抗体药物的发展仍然存在许多挑战。迄今为止,大多数FDA 批准上市的单抗药物都是未经修饰的全长抗体,这是相对分子质量在150×103左右的大蛋白分子,这些抗体药物在临床应用取得巨大成功的同时,本身的局限性也得到越来越多的关注[1]。现如今,单抗药物经历了市场和时间的考验,已经成为生物医药的最重要组成部分,在疾病治疗上具有广阔的应用前景,成功用于治疗肿瘤、自身免疫性疾病、感染性疾病和移植排斥反应等多种疾病。治疗性单抗的安全性和有效性很大程度上由其作用的靶点决定,上市和在研的单抗药物有些靶向相同的靶点,有些有自己独特的作用靶点,新的作用靶点也在不断地出现。随着研究深入、技术进步,单抗药物呈现出旺盛的发展势头[2]。

随着已上市品种的销售额不断增长以及新适应症的批准和新品种的上市,单克隆抗体药物市场容量迅速攀升。1997-2007年是全球单抗产业增长的爆发期,十年间CAGR高达58.6%。2008年-2015年,全球单抗产业增速放缓明显,CAGR 降至14.8%,但仍要显著高于全球医药行业约5%的增速水平。1997年全球单抗药物销售额仅3.7亿美元,2015年全球单抗药物的销售额已超过980亿美元。1992-2015 年间,国外共批准上市了61个原研抗体药,其中后有6个退市。在

现有上市的55个产品(49个单抗产品,6个具有抗体功能的受体-Fc融合蛋白)中,51个是由美国或欧盟首先批准上市的,数量占比高达 92.7%,生产企业方面:罗氏、诺华等10家欧美企业共开发和生产了全球70%以上的抗体药物,欧美国家在全球抗体产业中居于绝对主导地位。2015年全球最畅销药物TOP 10中有5个单抗,分别是阿达木单抗、英夫利昔单抗、利妥昔单抗、贝伐珠单抗和曲妥珠单抗,它们占据了单抗药物的半壁江山,销售额约为426.6亿美元,约占2015年全球单克隆抗体药物总销售额的44%。根据预测,2016-2020 年,全球单抗产业仍将以9.84%的RAGR快速发展(同期全球药品市场CAGR约为 5%),2020年市场规模有望突破1300亿美元。

相比处于上升期的国外单抗产业,我国单抗产业仍处于初创期,单抗药物仍以仿制为主,单抗药物无论产品种类和销售规模都远低于欧美发达国家,并且进口单抗药物占据了主要市场。2015年中国单抗药物市场容量约为70多亿元人民币,约80%的市场被外资制药企业占据。在单抗药物领域,国内制药企业面临市场快速增长和进口替代的双重机遇。单克隆抗体研究已被列入863计划和国家重点攻关项目。十三五期间,生物产业将是国家重点支持的战略性新兴产业。单抗药物的研究、开发和市场应用必将吸引一大批制药企业的参与和布局。目前全国有100多家企业在做单抗,除了中信国健、百泰生物、海正药业等一些老牌企业之外,近几年还涌现出了很多新兴企业,包括丽珠单抗、信达生物等。在2016三生制药集团媒体开放日活动上,三生制药集团董事长娄竞博士表示三生制药集团的3万升生产线建成后将成为中国规模最大的单克隆抗体生产线,也是从细胞系、培养基、原液到制剂(多种剂型和规格)的全球最完整生产线之一。

2 单克隆抗体药物分类

根据来源的不同.单克隆抗体大体可分为4类,即鼠源化单克隆抗体、人鼠嵌合体单克隆抗体、人源化单克隆抗体、全人源化单克隆抗体[3],这也是单克隆抗体发展的四个重要的阶段。

2.1 鼠源化单克隆抗体

人用鼠源单抗的生产方法一般分为体内法和体外法2种。

2.1.1 体内法

体内法即腹水法。尽管腹水中抗体浓度比较高(2-10mg/ml),但由于所用的BALB/c小鼠必须达到SPF级,繁殖、饲养BALB/c小鼠及生产腹水、纯化抗体的厂房必须符合GMP要求,WHO及我国对体内法生产的人用鼠源单克隆抗体的质检项目繁多,要求严格,因此限制了体内法在人用鼠源单抗生产领域的应用。

2.1.2体外法

体外法(杂交瘤细胞体外培养法)的产品纯度高,可以避免鼠类病毒的污染,简化质检项目,操作具有可控制性,适用于大规模工业生产,因此是人用鼠源单抗生产方式的主要发展方向[4]。体外法的制备流程也基本相同,即从超免疫的供体中即抗原免疫的小鼠获取脾细胞,选育出非分泌免疫球蛋白缺陷型的骨髓瘤细胞,待细胞融合后,对单个细胞进行克隆,体外培养出能分泌单抗的克隆细胞。

但鼠源单抗在临床应用方面存在着很大的弊端,主要是鼠源单抗与NK等免疫细胞表面Fc段受体亲和力弱,产生的抗体依赖性细胞介导的细胞毒作用(ADCC)较弱,而且它与补体成分结合能力低,对肿瘤细胞的杀伤能力较弱,并且鼠源性抗体分子质量较大,在人血循环中的半衰期短,在体内穿透血管的能力较差;它发

挥ADCC作用的时间较短;其次鼠单克隆抗体还具有免疫原性,易引起宿主过敏反应[5],产生人抗鼠抗体(HAMAs),将其清除出体外,因此限制了它的应用。

2.2 人鼠嵌合单克隆抗体

抗体分子由两个相同的轻链和两个相同的重链组成,具有典型的功能区结构,其与抗原的结合完全取决于氨基端的可变区。恒定区与抗体抗原结合无关,并且恒定区是抗体分子免疫原性的主要部位,因此可通过用人的恒定区取代鼠单抗的恒定区进行人源化,消除其大部分异源性,并能保留亲本鼠单抗结合抗原的特异性和亲和力,这种方法得益于DNA重组技术的发展。1984年首次应用上述方法重组制备了抗半抗原磷酸胆碱的全分子人鼠嵌合抗体[6]。

嵌合抗体可将同一个可变区与不同类别的恒定区链接在一起,比较在相同特异性情况下不同类别的功能。其制备过程主要包括了可变区的克隆,表达载体的构建及嵌合抗体的表达。可变区基因的克隆在早期主要从杂交瘤细胞的基因组文库中克隆出来带有完整上游转录调控序列的轻重链可变基因DNA片段,组装到含有人恒定区的表达载体中。PCR方法的建立和发展为抗体可变区基因的克隆提供了简便有效的方法。接着将控制小鼠抗体重链和轻链中可变区的基因片段与人抗体重链及轻链的不变区的基因片段在体外链接形成重组基因,然后导入真核细胞的某种表达质粒中,再将这种含有重组基因的表达载体转化哺乳动物骨髓瘤细胞,筛选能分泌完整抗体的转化子。但嵌合抗体仍保留着30%左右的鼠源序列,并且其常达不到预期的效果。

嵌合抗体目前主要有3种应用形式:嵌合免疫球蛋白G、嵌合Fab和嵌合,F (ab’)2。嵌合免疫球蛋白G因含有人抗体的Fc段,能介导补体及细胞对靶抗原的杀伤和吞噬作用,但因鼠源性成分较多,免疫原性大且组织穿透力差[7];嵌合 Fab 和嵌合F(ab’)2抗体分子小、穿透力强,可充当小分子载体用于放射免疫显像及放射免疫治疗。

2.3 人源化单克隆抗体

由于鼠源抗体的可变区仍残留一定的免疫原性人缘化单克隆抗体又较嵌合抗体有所改进。由于鼠源性抗体可变区中的骨架区仍残留一定的免疫原性,为了最大限度地减少鼠源成分,用人骨架区替代鼠骨架区可形成更为完全的人源化抗体,即在此抗体中除了CDR是鼠源以外,其余全部是人源结构。这一类型的抗体被称为CDR移植抗体或改型抗体,包括完全CDR移植抗体、部分CDR移植抗体和特异决定区(SDR)移植抗体[8]。

2.3.1 完全CDR移植抗体

完全CDR移植抗体由于鼠源性抗体VR中的骨架区仍残留一定的免疫原性,为最大限度的减少鼠源成分,用人FR替代鼠FR可形成更为完全的人源化抗体,即在此抗体中除了3个CDR是鼠源以外,其余全部是人源结构,这一类型的抗体称为CDR移植抗体或改型抗体。应用这一策略,将鼠源McAb的CDR区完全移植,得到了抗磷脂酰肌醇(蛋白)聚糖嵌合抗体。但随后多项研究发现,简单的CDR 移植往往明显降低抗原-抗体反应的亲和力,甚至丧失与抗原结合的能力。其原因在于FR不仅作为骨架对CDR起到支持作用,FR中的某些非CDR区补充调控残基还为CDR的回折构象提供必要的支持,其形状和侧链大小协同决定CDR的基本结构,影响CDR与抗原结合的特异性和亲和力[9-10]。

2.3.2 部分CDR移植抗体

在简单CDR移植的基础上又相继发展了部分CDR移植技术。研究发现轻链的CDR1、CDR2和重链的CDR3对保证抗体与抗原特异性结合至关重要,其余三个CDR

的作用则较低[11]。因此只将抗体结合抗原必须的CDR移植到人抗体的FR骨架上即能获得对人免疫原性更小的嵌合抗体,这类抗体称为部分CDR移植抗体。

2.3.3 特异决定区移植抗体

正如并非所有的CDR在抗原抗体反应中具有同样的重要作用,X射线晶体衍射实验提示具体到一个CDR中,不是所有的蛋白分子都参与抗原的特异性识别。执行抗原识别的CDR中的一些特定区域称为SDR。由此又产生了SDR移植抗体。该抗体是将McAb中与抗原结合密切相关的SDR等少数残基移植到人抗体的相关部位,从而进一步提高抗体的人源化水平。根据目前的研究,抗体轻链的SDR 多位于27d、34、50、55、89、96位残基,而重链的SDR多位于31、35b、50、58、95、101位残基[12]。基于上述两种策略,部分CDR移植、SDR移植的构建方法主要有:(1)模板替换,使用与鼠对应部分有较大同源性的人FR替换鼠FR;(2)表面重塑,对鼠 CDR和FR表面残基进行镶饰或重塑,使其具有类似于人抗体CDR的轮廓或人FR的形式;(3)补偿变换,对起关键作用的残基进行改变以补偿完全的CDR移植;(4)定位保留,人源化McAb以人FR保守序列为模板,但保留了鼠源McAb VR中参与抗原结合的氨基酸残基,包括CDR和FR中的一些关键残基。

2.4 全人源单克隆抗体

由于免疫原性的存在,人们一直在努力制备全人源化的单克隆抗体,目前主要有抗体库技术和人源性抗体转基因小鼠技术两种。

2.4.1 抗体库技术

抗体库技术的主导思想是将某种动物的所有抗体可变区基因克隆在质粒或噬菌体中表达,利用不同的抗原筛选出携带特异抗体基因的克隆,从而获得相应的特异性抗体。抗体库技术不仅可以模拟动物免疫系统产生抗体的过程,还具有许多独特的优点,令杂交瘤技术难以相比。抗体库技术无需免疫,从理论上讲,106-108的库容就可能包容所有的抗体。利用抗原即可直接从非免疫动物抗体库中筛选出特异性抗体,?并能筛选到针对该物种自身抗原的抗体。从人的抗体库中可以得到完全是人源的McAb,?克服了难以用杂交瘤技术获得人源McAb的障碍。此外,由于细菌细胞增殖快,培养成本低廉,利于大量制备高纯度抗体。抗体库技术主要包括了噬菌体抗体库和核糖体展示技术。

噬菌体抗体库技术:从免疫或未被免疫的B细胞中分离抗体可变区基因;PCR 扩增抗体全套基因片段(如VH、VL),将体外扩增的VH、VL基因片段随机克隆入相应载体,形成组合文库;将基因组合文库插入噬菌体编码膜蛋白的基因Ⅲ(g3) 或基因Ⅷ(g8) 的先导系列的紧靠下游,使外源基因表达的多肽以融合蛋白的形式展示在外壳蛋白gpⅢ或gpⅧ的N端。用固相化抗原经“亲和结合—洗脱—扩增”数个循环直接、方便、简捷、高效地筛选出表达特异性好、亲和力强的抗体噬菌体库。

核糖体展示技术:将基因型和表型联系在一起,编码蛋白的DNA在体外进行转录与翻译,由于对DNA进行了特殊的加工与修饰,如去掉3′末端终止密码子,核糖体翻译到mRNA末端时,由于缺乏终止密码子,停留在mRNA 的3′末端不脱离,从而形成蛋白质-核糖-2mRNA三聚体,将目标蛋白特异性的配基固相化,如:固定在ELISA 微孔或磁珠表面,含有目标蛋白的核糖体三聚体就可在ELISA 板孔中或磁珠上被筛选出,对筛选分离得到的复合物进行分解,释放出的mRNA 进行逆转录酶链聚合反应(RT-PCR),PCR产物进入下一轮循环,经过多次循环,最终可使目标蛋白和其编码的基因序列得到富集和分离。

2.4.2 人源性抗体转基因小鼠技术

适宜基因工程改造的小鼠成为亲和力成熟全人源抗体产生的强劲引擎,其体内免疫系统自然选择与成熟机制促使产生的抗体具备成为药物的天然优势,包括高效与特异性、低免疫原性与可工艺性等。产生的系列抗体包括针对全新靶点的全新作用机制的抗体药物,也包括针对经典靶点的升级抗体药物[13]。构建转基因小鼠,目的是用人的抗体基因转入小鼠相应基因,产生分泌人抗体的转基因小鼠。在转基因小鼠的基础上,产生分泌抗体的转基因小鼠。在目前FDA批准上市的全人源单抗中,技术来源除了噬菌体抗体库技术外,有三种转基因小鼠平台技术,即HuMAb-Mouse、XcnoMouse和VelocImmune TM。

HuMAb-Mouse:HUMab转基因小鼠整合入人抗体基因450kb(200kbIgH;230k b Igk,约占人类IgGκ的50%),免疫该小鼠可以产生0.1-5nmol/L的抗体。虽然该小鼠转入的人抗体基因组还是比较小,但仍获得巨大成功。

XcnoMouse:XenoMouse转基因小鼠也是目前最为成功、应用最广的转基因小鼠之一。该转基因小鼠整合入大部分人抗体VH和Vκ基因,大小分别为1020kb 和800kb。重链包含34个V区基因、所有的重链D区和J区,以及Cγ2、Cμ和Cδ基因,共66个功能基因;轻链包含18个V区基因、所有的5个J区和Cκ基因,共32个功能基因。该转基因小鼠XMG2-KL可以产生全人IgM和IgG2,亲和力可以达0.1~1nmol/L。

VelocImmune TM:不同于以往的转基因小鼠抗体筛选平台,VelocImmune TM产生人可变区与鼠恒定区组成的反向嵌合抗体。小鼠Ig H恒定区通过B细胞胞质区的信号转导区域(如Igα与Igβ)传递天然的免疫信号,并通过与其他类型免疫细胞上的Fc受体的结合促使小鼠产生强大的免疫反应,并提供半衰期长且亲和力高的抗体。该类转基因小鼠免疫后产生的抗体可变区编码序列通过基因克隆技术与人源恒定区编码序列进行构建,反向嵌合抗体即可转变为适宜药用的全人源抗体。

另外转基因小鼠技术还有TC Mouse TM、KM Mouse TM和Five-feature mouse,但它们都还未经过市场的检验。

3 单克隆抗体衍生物

为了更好地发挥抗体药物的治疗效果,人们构建各种形式的工程抗体来改善它们的特性和效能。例如,制备抗体和药物的偶联物,增加对靶细胞的杀伤;改变抗体分子大小,构建小分子抗体,使之有较好的肿瘤/血液比;制备双特异性抗体,同时结合两个不同的抗原表位;增加抗体的亲和力;改进抗体ADCC或CDC 效应;改变抗体的药代动力学,使半衰期延长。

3.1 抗体药物偶联物

抗体药物偶联物(ADC)是通过一个化学链接将具有生物活性的小分子药物连接到单抗上,单抗作为载体将小分子药物靶向运输到目标细胞中[14]。单抗和小分子本身都是药物,都可以单独用来治疗疾病,ADC的设计思路是利用两者的长处来弥补可能的不足或者缺陷。单抗具有很高的专一性,但是通常药效不强,往

往需要与小分子药物治疗并用;小分子药物活性强,缺点是专一性较差,从而可能存在毒性,受副作用和剂量的影响较大;有些小分子药物,特别是肽类药物在血液中的半衰期过短,通过和单抗结合,可以改善这方面的缺陷。ADC 将两者结合,在到达目标细胞时将小分子药物释放出来,这不仅能灵敏地区分出健康和疾病组织,限制与非目标细胞的作用,降低毒性,还能够明显改善药代动力学和向

目标组织的传递[15]。

构建抗体偶联物主要有三个步骤:选择合适的抗体、选择合适的药物和选择合适的链接方式。这样构建的抗体偶联物需要具有以下的特性:(1)稳定性,链接需要在血液循环中保持稳定,避免过早发生裂解,造成对健康组织器官损伤;(2)分特异性免疫反应,即药物结合到单抗不能破坏单抗本身的特异结合能力;(3)内化和药物的释放,一般ADC都是通过单抗与目标细胞结合后再内化,将小分子药物在细胞内释放,因此需要控制药物的数量,以发挥最大的效果;(4)药物作用,释放出的药物需要在很低的浓度(皮摩尔级)发挥效果,因此需考虑药物的活性。

3.2 小分子抗体

小分子抗体具有分子量小、穿透性强、抗原性低、可在原核系统表达及易于基因工程操作等优点。常见的单价小分子抗体有Fab段、ScFv段、FV段、二硫键稳定的Fv段、单域抗体和超变区等;多价小分子有双链抗体、三链抗体和微型抗体等;特殊类型的小分子抗体有双特异抗体和催化抗体等[16]。当前,常用于生产小分子抗体片段的表达系统通常有大肠杆菌(E.coli)表达系统、酵母表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统四种[17]。小分子抗体的优势在于不需要糖基化修饰,可以在原核细胞中表达,操作方便。因此这四种表达系统的成本是依次增加的,但翻译后的加工精确性和准确度却是依次递减的。

3.2.1 Fab抗体

Fab抗体由一条完整的轻链和重链Fd段通过一个链间二硫键连接组成一个异二聚体,大小为完整抗体的三分之一,但其仍保持了亲本抗体的fv段结构和与抗原结合的特异性与活性的能力。并且分子结构比较稳定具有穿透力强、免疫原性低,可与多种药物及放射性同位素偶联,可与多种毒素和酶结合,用作药物的导向治疗载体和显影等特点。

3.2.2 单链抗体

在DNA水平上用一段适当的寡聚核苷酸作为连接肽(linker)将VH和VL 连在一起,使之表达成为一条单一肽链,即为单链抗体(ScFv)。单链抗体大小仅为全抗体的六分之一,抗原性低,是具有完整抗原结合部位的最小片段,但有时构建的ScFv其亲和力明显低于亲本抗体,并常有聚集的倾向。

3.2.3 单域抗体

由抗体轻、重链可变区基因(VH、VL)间通过一段连接肽基因拼接后表达形成的重组蛋白,大小为全抗体的六分之一,抗原性低,是具有完整抗原结合部位的最小片段。其分子量更小,具有一定的可溶性和稳定性特点,相较于其它的抗体分子,单域抗体更容易进入细胞。

3.2.4 双特异性抗体

双特异性抗体是含有2种特异性抗原结合位点的人工抗体,一个位点可与靶细胞表面抗原结合,另一个位点则可与载荷物如毒素、酶、细胞因子、放射毒素等耦合,能在靶细胞和功能分子(细胞)之间架起桥梁,激发具有导向性的免疫反应,其靶向性的特点可以减少载荷物的毒副作用。

4 单克隆抗体的应用

随着单克隆抗体的完善与推广,单克隆抗体在农业、食品、治疗疾病等方面的应用越来越广泛,并取得了良好的效果。

4.1 农业和食品

由于单克隆抗体的高特异性和高灵敏性,单克隆抗体农业和食品的应用主要集中在了检测方面。在食品中对动物性食品中β兴奋剂、抗生素和激素等的检测,植物性食品中农药残留物的检测,还可以检测储存食品中的微生物含量。在农业中,单克隆抗体可以对牲畜的细菌、病毒和寄生虫的患病情况进行筛选。在植物中,除了对病虫害的诊断应用以外,单克隆抗体还在药用植物活性成分定性定量分析、成分分离、培植育种中得到了广泛的应用。

4.2 医学

单克隆抗体主要应用在医学方面,不仅为基础医学提供了有价值的载体,更在临床医学得到了广泛的应用,如治疗肿瘤、移植排斥、自身免疫病、心血管疾病、病毒感染等。

4.2.1 治疗肿瘤

近20年来,抗肿瘤抗体药物已成为治疗癌症的重要方法,是治疗癌症最成功的的策略之一。据PharmaprojectsV5数据库统计,目前上市与临床在研的约500种抗体药物中,约有50%用于肿瘤治疗,临床在研的抗肿瘤抗体药物共约20多种,针对70多个靶点[18]。目前,销量排名前五的抗体类药物,其中有三个都是用于治疗肿瘤,其中贝伐珠单抗用于治疗转移性癌症,曲妥珠单抗通过附着在Her2上来阻止人体表皮生长因子在Her2上的附着,从而阻断癌细胞的生长,利妥昔适用于复发或耐药的滤泡性中央型淋巴瘤的治疗。截止2015年底,FDA共批准了21个抗肿瘤类药物,2016年新批准了用于膀胱癌靶向治疗的Tecentriq 和治疗软组织肉瘤的Lartruvo。近年来,利用单克隆抗体靶向治疗肿瘤已经成为全球靶向治疗药物的主流,免疫检验点靶向抗体药物的研发更是极大地推动肿瘤免疫治疗,是目前肿瘤治疗的最热点所在[19]。同时抗体治疗联合其他治疗策略也成为了必然的发展趋势,联用型治疗适用性更广,临床效果更持久,不良反应更少,病灶去除更彻底,有效防止肿瘤的复发,显著提高了存活率。

4.2.2 器官移植

移植排斥是器官移植失败的重要因素之一,而单克隆抗体可以有效地改善移植排斥反应,其应用也在不断增长,目前的研究和应用主要集中于清除不同种类的白细胞分化抗原(CD),例如采用抗CD154单克隆抗体阻断免疫细胞活化信号传导途径,主要应用于胰腺、心脏、皮肤等多个器官的移植,证明抗CD154单抗能有效地抑制移植排斥反应,延长移植物的存活时间[20]。

4.2.3 自身免疫病

自身免疫性疾病的治疗通常采用的糖皮质激素、免疫抑制剂等,虽然有一定疗效,但长期使用都会产生严重的不良反应,而且都只能减缓病情的发展,并不能根治疾病[21]。而单克隆抗体可以有效地改善和治疗自身免疫病,主要有以下的三种作用机制。(1)封闭细胞因子和生长因子的单克隆抗体药物,其中最成功的便是TNF抑制剂,包括伊纳西普、英孚利昔、阿达木、赛妥珠和戈利木,适用于类风湿关节炎、青少年关节炎、牛皮癣、结肠炎、脊柱炎和银屑病等;(2)受体阻滞和受体调节的单克隆抗体药物,即单抗结合受体,阻断配体和受体相互作用,下调细胞表面目标受体的表达,这些抗体包括治疗类风湿关节炎的IL-6受体抗体tocilizumab,重组非糖基化的人IL-1受体拮抗剂阿那白滞素(anakin-ra)等;(3)耗竭异常免疫细胞及介导细胞信号的单克隆抗体药物,通过结合细胞表面抗原,如CD20,CD22、CD80和CD52,通过FcγR介导的ADCC作用和CDC作用杀伤异常的淋巴细胞,有治疗1型糖尿病的otelixizumab、治疗多发性硬化症的阿伦和治疗慢性淋巴细胞白血病ofatumumab等一系列单抗药物。

4.2.4 抗感染

细菌和病毒等病原体感染机体的机制复杂,由于单克隆抗体只能识别单一抗原表位,限制了抗体药物的抗感染效果。抗感染领域的抗体药物发展缓慢,目前仅有抗呼吸道合胞病毒的帕利珠单抗以及抗炭疽杆菌的瑞西巴库单抗两个品种上市[22]。目前抗感染的单克隆抗体的研究热点集中于埃博拉病毒抗体、抗呼吸道合胞病毒抗体、抗炭疽杆菌抗体等,2014年西非大规模埃博拉病毒疫情爆发后,实验性抗体药物ZMapp第一个被用于临床治疗,中国研制的抗体药物MIL77也成功用于治疗,抗体药物再次显示了在抗感染领域的应用前景。

5 单克隆抗体药物可能存在的问题

单克隆抗体导致的不良发应主要有皮肤及附件损害、全身反应、心血管损害等,具体表现为皮疹、瘙痒、寒战、发热、心慌、心跳加快等,严重可导致急性呼吸衰竭、多器官功能衰竭、严重出血、脑梗死、过敏性休克等。单克隆抗体可能的不良反应也许与以下3个机理之一有关:所用mAb的异源性,特别是当给予mAb而无相关的免疫抑制剂时;生理功能的抑制以及mAb的特异性;mAb与靶点结合后炎症细胞或介导物的活性[23]。从发生人群来看,患者的年龄集中在儿童和老人,这可能是由于儿童的器官/系统发育不完善,使得个体对药物的吸收、分布、代谢相对缓慢,药物在体内滞留的时间较长;而老人往往患有心血管疾病、高血压、糖尿病等,这些可能都会引起不良反应的发生。因此,临床中使用单克隆抗体药物是应注意:(1)重视患者人群,注意防范儿童或老年患者不良反应的发生。(2)注意首次用药,初次静脉滴注单克隆抗体时,应控制滴速。(3)询问患者药物过敏史和既往病史。(4)使用前建议预防使用抗过敏药物。(5)对具有肝炎病史的患者,注意对肝功能和病毒的检测,避免肝病复发。(6)按照说明书使用单克隆抗体药物,避免超说明书用药。(7)单克隆抗体制剂应保存在2-8℃的环境中,避免冻结。(8)输注药液的过程中,加强巡视,严密观察药物引起的不良反应,及时给予相应的处理,保证患者的用药安全[24]。

6 展望

单克隆抗体药物这些特征使它成为了生物医药领域一颗耀眼的明珠。过去的30年中,随着研究的不断突破,单克隆抗体从鼠源发展到人缘,提高了单克隆抗体的药效和安全性。虽然单抗药物还存在一些尚未解决的问题,最突出的问题是如何降低单抗的免疫原性,单抗的异源性所引起的抗体反应,不但降低了单抗的效价,而且会给患者带来严重的后果。但是我们可以相信随着研究的不断深入;生产工艺的不断成熟;检测技术不断的完善,现有的问题会逐一地解决,并且必将出现更高靶向性和药效更强的单克隆抗体药物,单克隆抗体药物将在治愈疾病中显示出它独特的效果,为患者带来更大的希望。

未来伴随着生物技术制药的发展,单克隆抗体将在其中占有更重要的地位,并逐渐成为生物医药领域发展的主要方向。目前单克隆抗体药物快速扩大的市场已经成为制药业争夺的焦点,为制药公司提供了发展的契机。我国企业虽然进入该领域较晚,但在仿制单克隆抗体药物的规模化、产业化的基础上,积极探索、开发和创新,相信很快会在国际市场上占有一席之地。

参考文献

[1]王志明, 杨立霞, 贾寅星,等. 基于新兴技术的单克隆抗体药物的研究进展[J]. 中国新药杂志, 2012(18):2149-2155.

[2]王志明,高健,李耿.治疗性单克隆抗体药物的现状及发展趋势[J].中国生物工程杂志,2013,33(6):117-124.

[3]姜倩倩, 刘京贞, 苏瑞强. 单克隆抗体药物进展[J]. 药物生物技术, 2005, 12(4):270-274.

[4]王祥斌, 孔健.体外培养杂交瘤细胞生产人用鼠源单克隆抗体[J].中国生物制品学杂志, 2002,15(5):315-316.

[5]Galun E;Terrauit N A;Eren R Clinical evaluation of a human monoclonal antibo dy against hepatitis C virus:safety andantiviral activity 2007.

[6]BoulianneGL,HozumiN, Shulman MJ. Production of functionalchimaeric mouse/hum an antibody[J]. Nature, 1984, 312(5995):643-646.

[7]Siddiqui MZ. Monoclonal antibodies as diagnostics:an appraisal[J].Indian J P harm Sci,2010,72(1):12-17.

[8]涂少华,陶嵘,沈江帆.单克隆抗体人源化技术研究进展[J].国际放射医学核医学杂志, 2 014,38(5):328-331.

[9] Herren W U, William D A, Melissa D. HUMANIZATION OF ANTIBODIES[J]. Frontier s in Bioscience, 2008, 13(5):1619-33.

[10]沈倍奋, 陈志南, 刘民培. 重组抗体[J]. 2005(14):1544-1544.

[11]Harding F A, Stickler M M, Razo J, et al. The immunogenicity of humanized a nd fully human antibodies: Residual immunogenicity resides in the CDR regions [J].Mabs, 2010, 2(3):256-265.

[12]Sehlin D, Hedlund M, Lord A, et al. Heavy-Chain Complementarity-Determining Regions Determine ConformationSelectivity of Anti-AβAntibodies[J]. Neurodegen erative Diseases, 2010, 8(3):117-23.

[13] 王志明. 转基因小鼠技术在全人源抗体药物研发中的应用[J]. 中国新药杂志, 2016(22):2596-2602.

[14] Ornes S. Antibody-drug conjugates.[J]. Mabs, 2014, 110(4):15-17.

[15] Goldmacher V S, Kovtun Y V. Antibody-drug conjugates: using monoclonal ant ibodies for delivery of cytotoxic payloads to cancer cells.[J]. Therapeutic Del ivery, 2011, 2(3):397-416.

[16]邓宁, 向军俭, 黄峙. 小分子抗体技术研究进展[J]. 生物学通报, 2004, 39(8):1-3.

[17]陈丽娟, 张丽华, 李杰,等. 小分子抗体制备技术及临床应用进展[J]. 实用医药杂志, 2014(3):263-265.

[18]陈雪静, 常亮, 高健. 抗肿瘤抗体药物的研究进展[J]. 中国生物制品学杂志, 2015, 28(1):84-90.

[19]张敏, 李佳, 俞德超. 单克隆抗体药物在肿瘤治疗中的研究进展[J]. 实用肿瘤杂志, 2015, 30(6):495-500.

[20]Margolles-Clark E, Jacques-Silva M C, Ganesan L, et al. Suramin inhibits th

e CD40–CD154 costimulatory interaction: A possible mechanism for immunosuppres sive effects[J]. Biochemical Pharmacology, 2009, 77(7):1236-45.

[21]陈镜宇, 魏伟. 单克隆抗体治疗自身免疫性疾病的研究进展[J]. 中国新药杂志, 2011 (8):697-703.

[22]李新颖, 吕明. 抗体药物在抗感染领域的应用[J]. 药学学报, 2015(12):1527-1533.

[23]安富荣, 施安国, 王平全. 单克隆抗体的临床用途及不良反应[J]. 中国药房, 2001, 12(3):181-183.

[24]杨澍, 史海雯, 高秀清,等. 单克隆抗体药物致不良反应132例文献分析[J]. 中国药房, 2015(23):3223-3225.

单克隆抗体药物关键技术分析教学总结

单克隆抗体药物关键技术分析 1.高通量的动物细胞表达技术 一方面,从表达体系来看,近年来,人们不断发展和完善了许多抗体分子的表达体系,如:细菌、酵母、昆虫细胞、哺乳动物细胞、植物细胞表达系统和体外翻译系统等。哺乳动物细胞表达系统具有活性高、稳定性好等重要优点,已成为抗体等生物技术产品最重要的系统。2007年销售额排名前列的6类生物技术药物中,有5类是由动物细胞表达生产(肿瘤治疗抗体类、抗TNF-α抗体类、EPO 类、β干扰素类、凝血因子类),仅胰岛素类药物是由大肠杆菌和酵母表达的。欧美国家哺乳动物细胞表达产品种类占60%-70%,市场份额占65%以上。 另一方面,从抗体制备规模、速度和功能来看,高通量抗体制备技术的发展十分重要。哺乳动物细胞表达生物技术产品大规模高效培养技术是生物医药产品主要的生产方式和关键“瓶颈”技术。目前,国际上该项技术发展较快,已趋成熟,以默克公司为代表的流加培养生产规模达10,000L以上,以贝尔公司为代表的灌流培养生产规模达200L以上,蛋白表达浓度为0.5-2g/L;我国在该技术领域

起步较晚,基础较差,但近年来经过努力,已经实现了该项技术的突破。 2.人源化抗体的构建及优化技术 随着免疫学和分子生物学技术的发展以及抗体基因结构的阐明,DNA重组技术开始用于抗体的改造。抗体药物已经进入基因工程抗体时代。基因工程抗体具有以下优点:①降低人体对异种抗体的排斥反应;②减小抗体的分子量,利于其穿透血管壁,进入病灶的核心部位;③根据需要,制备新型抗体;④采用多种表达方式,大量表达抗体分子,降低生产成本。 (1)表面重塑抗体 对鼠抗体表面氨基酸残基进行人源化改造。该方法的原则是仅替换与人抗体SAR差别明显的区域,在维持抗体活性并兼顾减少异源性基础上选用与人抗体表面残基相似的氨基酸替换;另外,所替换的区段不应过多,对于影响侧链大小、电荷、疏水性,或可能形成氢键从而影响到抗体互补决定区(CDR)构象的残基尽量不替换。我国也已经开始这方面工作的尝试。 (2)重构抗体

1单克隆抗体药物----科普知识

1 单克隆抗体药物----科普知识 单克隆抗体药物 2009-10-19 15:47 1986年,美国FDA批准了第一个单克隆抗体药物上市,距今已经整整20年了。截止到现在,全世界共有21个治疗用抗体药物被批准上市,实现300亿美元的销售额,在国际,也在国内形成了抗体药物开发热潮。巨大的市场前景和现存的技术问题及壁垒并存的现实不可避免地引发抗体药物新一轮技术革命。而其结果又将毫无疑问地改变抗体药物的市场格局。抗体药物的研究开发能否真能成为中国生物技术药物开启国际市场大门的新钥匙?什么是我们首选的切入点,又如何形成我们自己的特色和竞争优势?回顾国际抗体药物20年风雨飘摇的发展经历,总结其中的经验教训无疑会给我们一些有益的启示。 1986年,美国FDA批准上市了第一个抗体药物Orthoclone,用于治疗移植物抗宿主病(GVHD),翻开了生物医药历史崭新的一页。时隔8年,美国才批准了第二个抗体药物上市。进入21世纪,抗体药物研发上市的速度明显加快。20年后的今天,全球共批准上市21个抗体药物。进入临床验证的数量也直线上升,从上个世纪80年代的70个,到90年代新增140个,以及2000年至2005年6月又增加的130个,预计2010年将再增 240个【1】,显示抗体药物研究异常活跃。目前共有150余个抗体药物正在临床评估中,其中16个已进入III期临床【2】。 抗体药物研发进展迅速及竞争激烈的主要原因是1)抗体药物具有高度特异性,是靶向治疗的基础,在这一方面远优于小分子药物;2)虽然在世界范围内20年仅仅批准上市了21个抗体药物,事实上其淘汰率仍明显低于小分子药物,临床转化率以及批准成功率都较高,以治疗癌症的抗体药物为例,其批准成功率为29%;3)抗体药物即使在专利保护到期后,由于其生产条件的复杂性,也很难受到通用名药价格的威胁;4)更为重要的是已上市的抗体药物具有很高的市场回报率,大大刺激了投资热情。目前,上市抗体药物中已盈利的有8个,其中4个已经成为年销售额10亿美元以上的“重磅弹”,5个销售总额超过30亿美元【3】。预计2005-2010年抗体药物销售的平均增长率为20%,年销售额将超过300亿美元,市场潜力巨大。 但具有讽刺意味的是,从药物经济学的角度看,抗体药物并非很好的药物候选者。首先,单克隆抗体是大分子糖蛋白,结构复杂、不利储存、不能口服、进入体内5-7天才能到达靶位置。其次,抗体药物研发费用较高,达10-18亿美元,高于小分子药物平均研发费的9亿美元。第三,目前抗体药物的单剂用量大,药物的质量标准高,生产成本高昂,导致价格昂贵,以致被喻为“经济负作用”。以治疗肿瘤的抗体药物Avastin为例,单个病人年度费用高达5万美元【4】。然而,正在形成的巨大市场是抗体药物研发的不竭驱动力。 我国在单克隆抗体技术起步非常早,80年代曾出现过研究热潮,但产业化成就还微不足道。目前,受国际抗体研发进展的影响,又出现了新一轮的“抗体热”,北京、上海、广州等纷纷成立了由研究机构、企业和投资商的联合抗体研发中心和公司。面对国际抗体药物竞争的新态势,我国抗体药物产业是否遇到了真正的机遇?我们选择的切入点是什么,又如何形成自己的特色和竞争优势?抗体药物的研究开发能否成为中国生物技术药物开启国际市场大门的新钥匙?回顾国际抗体药物20年风雨飘摇的发展经历,总结其中的经验教训无疑会给我们一些有益的启示,这是本文的主要目的。 一、上市抗体药物的发展现状 从第一个抗体药物上市至今20年内,全球共批准了21个抗体药物,其中美国18个(包括9个被欧盟

单克隆抗体靶向制剂的研究进展

3现联系地址:解放军总医院药材处临床药理药学研究室,北京1000853。 《生物工程进展》1997,V o l .17,N o .5 单克隆抗体靶向制剂的研究进展 徐风华3 蒋雪涛 (第二军医大学药学院 上海 200433) 摘要 本文综述了制备单克隆抗体免疫偶合物的三种方法,即抗体与药物直接交联的方 法,药物通过小分子与抗体连接的戊二醛法、顺乌头酸酐法、活性酯法、N 2琥珀酰胺基232(22吡啶基二硫)丙酸法(SPD P 法)、腙衍生物法和肽键连接等方法,以及用大分子做载体的交联方法,并介绍了葡聚糖、聚谷氨酸、聚赖氨酸和聚合多肽作载体的性质和应用情况。关键词 单克隆抗体 免疫偶合物 单克隆抗体(M onoclonal an tibody ,M A b )是药物理想的导向性载体。自M athe 于1958年首次将抗鼠白血病免疫球蛋白与氨甲喋呤(M TX )交联用于导向治疗以来,相继出现了各种化疗药物与各种抗体的免疫偶合物,同时相应发展了许多交联方法。蒽环类抗癌药物柔红霉素(daunom ycin ,DM )和阿霉素(A dri m ycin ,ADM )抗肿瘤活性强,分子中有多种活性基因(侧链羰基、氨基糖中的氨基、氨基糖氧化产生 的醛基、侧链上活泼的Α2H ),是免疫导向化疗中研究得最多的药物之一。本文以蒽环类药物为例,综述免疫偶合物的研究进展。 免疫偶合物发展至今,其制备方法可分为三类,即药物与抗体直接交联、药物通过小分子交联剂与抗体连接及药物通过大分子载体与抗体相连。 一、药物与单抗直接交联 用EDC I 在药物氨基和蛋白质羧基之间形成酰氨键[1] 。由于酰氨键极为稳定,结合的药物不能释放出来,结果药物活性几乎全部丧失。 用N a I O 4氧化药物,在其氨基糖上产生羰基,与蛋白质氨基形成希夫碱,再用N aBH 4还原稳定[1—3]。所得偶合物保留了一定的药物活性,体外对靶细胞显示出选择性毒性,但体内对 延长荷瘤鼠的存活时间没有明显效果。当偶合物的药 抗比较小时,较好地保留了抗体活性,但随着药物取代程度增加,抗体活性迅速下降。 142溴柔红霉素与单抗反应得到的偶合物(DM 2CH 2N H )2M A b 较好地保留了抗体的活 性,体外对肿瘤细胞的杀伤作用较游离药物低,但明显显示了对肿瘤细胞的选择性毒性[4]。 二、药物通过小分子与单抗连接 大部分药物2单抗偶合物都采用这种方法制备。常用的小分子交联剂有戊二醛,顺乌头酸 酐和N 2琥珀酰胺基232(22吡啶基二硫)丙酸[SPD P ]。此外还有琥珀酸酐,马来酸酐,戊二 酐,肼,寡肽等。戊二醛和各种酸酐将药物分子中的氨基和蛋白质分子中的氨基连接起来,是同型双功能试剂;SPD P 连接的则是药物和单 抗上的不同基团,称为异型双功能试剂。 11戊二醛法 利用戊二醛在药物氨基和蛋白质氨基之间形成希夫碱,再用N aBH 4还原稳定。所得偶合物较直接以希夫碱键相连接的偶合物药理活性强,但有不同程度的蛋白质分子间聚合,使抗体活性完全丧失[1]。改进的戊二醛法[5]制备偶合物,很大程度地克服了上述缺点。 21顺乌头酸酐法 6 2

单抗类抗肿瘤药物概述

单抗类抗肿瘤药物概述 单抗类抗肿瘤药物单抗类抗肿瘤药物作用机制为当机 体受抗原刺激时,抗原分子上的许多决定簇分别激活各个具有不同基因的B 淋巴细胞。 被激活的B 细胞分裂增殖形成效应B 细胞(浆细胞)和记忆B 细胞,大量的浆细胞克隆合成和分泌大量的抗体分子分布到血液、体液中。如果能选出一个制造一种专一抗体的浆细胞进行培养,就可得到由单细胞经分裂增殖而形成细胞群,即单克隆。 单克隆细胞将合成针对一种抗原决定簇的抗体,称为单克隆抗体。单克隆抗体以其高特异性、有效性和低毒性,可以准确地攻击靶分子, 且毒副作用较低,已成为一类重要的抗肿 瘤药物。单克隆抗体抗肿瘤机制包括:免疫介导的效应功能,包括抗体依赖性细胞介导的细胞毒性反应(ADCC)和补体依 赖性细胞毒性反应(CDC)。单抗与肿瘤细胞靶抗原特异性结合后,其Fc段可以与NK细胞、巨噬细胞和中性粒细胞等 效应免疫细胞表面的Fc受体(FcR)结合,激活细胞内信号,发挥效应功能。NK细胞通过释放细胞毒性颗粒(穿孔素和颗粒酶)导致靶细胞的凋亡;释放细胞因子和趋化因子抑制细胞增殖及血管生成。 巨噬细胞可以吞噬肿瘤细胞,有释放蛋白酶、活性氧和细胞

因子等加强ADCC作用。此外,一些偶联抗体通过连接细胞毒化合物或放射性物质来杀伤肿瘤细胞,如TDM1(trastuzumab emtansine)、Zevalin等。1997-2013年FDA 和CFDA批准的抗肿瘤单抗类药物列表如图15。图15:1997-2013年FDA和CFDA批准的抗肿瘤单抗类药物(点开大图观看更清晰?)截至目前,全球上市的单克隆抗体共51个,其中鼠源单克隆4个、嵌合抗体7个、人源化单克隆抗体23个、全人单克隆抗体17个。单抗药物中,抗肿瘤药物占了一半左右。截至目前,中国上市的抗肿瘤单抗类药物共有7个,其中进口4个,国产3个,国内自主研发的第一个单克隆抗体类抗肿瘤药物为百泰药业治疗鼻咽癌的药物尼妥珠单抗(泰欣生)2008年4月被正式批准联合放疗治疗EGFR表达阳性的Ⅲ/Ⅳ期鼻咽癌(比埃克替尼早了3年),这是全球第一个以EGFR为靶点的人源化单抗药物。2015年,中国国内单抗药物销售额约为72亿元人民币,其中肿瘤药占了80%,约为57亿元,同比约占全球抗药市场的1.13%。对比小分子靶向药物,2014年国内22重点城市样本医院靶向小分子抗肿瘤药物市场为13.21亿元,根据2015年样本医院全年靶向小分子药物购入金额为14.92亿元,占全球市场的1.34%。 从全球市场上看,2015年靶向抗肿瘤药物TOP10中有6个是单抗,前3名全是单抗,且销售额差距明显,前3名2015

单克隆抗体技术在生物制药发展及应用

单克隆抗体技术在生物制药发展及应用Monoclonal antibody technology in biological pharmaceutical development and application 姓名:杨寨(学号091414134) 摘要:本综述包括以下内容:简要叙述了单克隆抗体的概念及原理;系统地阐述单克隆抗体技术的优点和单克隆抗体的提纯;详细介绍单克隆抗体技术在疾病治疗和食品卫生检验中的应用。 关键词:生物制药技术单克隆抗体技术疾病治疗食品安全应用 前言: 生物制药技术是21世纪极具潜力的高科技技术以及新兴产业。它的飞速发展为制药行业以及人们的健康保障带来了巨大的改变和影响。生物制药技术的发展可以帮助人类解决很多目前无法医治的疾病的治疗问题,它可消除营养不良,延长人类寿命,提高生命质量。 生物制药技术运用了多种先进的技术,包括基因工程制药,动物细胞工程制药,植物细胞工程制药,发酵工程制药,酶工程制药等。在此,就动物细胞工程制药当中的单克隆抗体技术,谈谈其发展以及应用。 1.单克隆抗体技术的概念 单克隆抗体技术,一种免疫学技术,将产生抗体的单个B淋巴细胞同肿瘤细胞杂交,获得既能产生抗体,又能无限增殖的杂种细胞,并以此生产抗体。抗体主要由B淋巴细胞合成。每个B淋巴细胞有合成一种抗体的遗传基因。动物脾脏有上百万种不同的B淋巴细胞系,含遗传基因不同的B淋巴细胞合成不同的抗体。当机体受抗原刺激时,抗原分子上的许多决定簇分别激活各个具有不同基因的B细胞。被激活的B细胞分裂增殖形成该细胞的子孙,即克隆由许多个被激活B细胞的分裂增殖形成多克隆,并合成多种抗体。如果能选出一个制造一种专一抗体的细胞进行培养,就可得到由单细胞经分裂增殖而形成细胞群,即单克隆。单克隆细胞将合成一种决定簇的抗体,称为单克隆抗体。 2.单克隆抗体技术的基本原理 要制备单克隆抗体需先获得能合成专一性抗体的单克隆B淋巴细胞,但这种B淋巴细胞不能在体外生长。而实验发现骨髓瘤细胞可在体外生长繁殖,应

单克隆抗体在治疗肿瘤方面的运用综述

单克隆抗体在治疗肿瘤方面的运用综述 四季 摘要:单克隆抗体作为肿瘤治疗的一种有效手段,近年来得到了一定的发展。然而,有关综述较少或不够完善,本文从单克隆抗体首次制备及作用机理、单克隆抗体的临床试验及运用、展望等方面对国内外单克隆抗体治疗肿瘤的研究进行综述。 关键词:单克隆抗体;肿瘤;临床试验 The summary of monoclonal antibody in the treatment of cancer Siji Abstract: Monoclonal antibody as an effective means of cancer treatment, in recent years, it has a lot of development. However, the summary about it is less or inadequate. This thesis is attempt to telling us about its discovery, clinical research results, application, prospect and so on. Key Words: Monoclonal antibody; Cancer; Clinical research 癌症是人类死亡的第二号杀手,占死亡率的17%,我国每年有近180万人死于癌症。在1975年Kohler及Milstein将细胞融合技术运用于免疫球蛋白的生产,单克隆抗体得到了快速的发展。由于单克隆抗体既抗体免疫功能本性,又具备识别单一抗原的专一性,人们开始将其用于肿瘤的诊断和治疗。

单克隆抗体药物研究新进展

单克隆抗体药物研究新进展 单克隆抗体药物,俗称“生物导弹”,是一种具备疾病治疗靶向性治疗的药物,该种药物针对一些对应疾病的治疗具备极强的治疗针对性,往往可以取得较为有效的治疗效果,其整体所占市场份额也比较大。该领域的药品已经慢慢成为一种治疗疾病的主流药物,随着相关研究人员的不断研究推进,其整体呈现一种不断拓宽化的发展。本文从单克隆抗体药物整体的市场情况、靶点及技术三个方面进行全面的研究探索。 标签:治疗性抗体;上市抗体药物;靶点;技术综述 抗体药物的第一次应用是于十九世纪,采用血清疗法针对患者进行相关治疗,在这个阶段人们对抗体药物的认知停留在使用有效的阶段;随着医疗实力的不断发展,直到1975年杂交瘤技术之后,才逐步实现了抗体的更为全面的认知及大规模量产的过程。现阶段随着社会的不断发展,疾病种类也越来越多,治疗起来也越来越麻烦,在这样一种大的背景下,单克隆抗体药物的全面研究和使用,有效的帮助患者进行疾病的靶向治疗和恢复。 一、抗体药物的市场情况 抗体药无是一种具备靶向性,能实现与靶抗原特异性结合来实现对疾病针对性治疗的药物,该种药物在进行使用的过程中,对患者的病症能做到针对性的治疗,具备治疗过程中的安全性治疗及快速准确性治疗。该种药物常常作用与一些恶性肿瘤及免疫性疾病的治疗。因为这些疾病都具备一定的治疗难度,故此药物的出现,可以有效的实现对症治疗,帮助患者进行相关疾病的缓解,因为这样的一种原因,导致在进行相关应用的过程中,该种药物得到了巨大的发展[1]。现阶段,单克隆抗体药物已经成为一种在市场上占据巨大份额的药物,其具备巨大的经济效益,同时帮助患者进行各种疾病的治疗和恢复,其整体已经成为针对疾病进行治疗的有效思路及理论。针对该种药物的扩展,主要是针对一些靶向性进行全面的研究,研究出新的靶点,制造出更多针对更多病症的单克隆抗体药物。 二、靶点研究进展 单克隆抗体药物具备一对一的治疗针对性,其靶点的把控是针对疾病治疗的重要点。世界范围之内,针对新靶点的研究如火如荼。针对热点靶点的研究,主要通过分析世界范围内患者的病症及发病几率进行全面的分类研究,研究出一些有效且具备普遍性的靶点,全面促进单克隆抗体药物的研究和发展。其现阶段世界主要研究靶点分以下几类。 (一)PD-1、PD-L1 PD-1是一种存在于T细胞表面的免疫抑制跨膜蛋白,主要针对癌症进行相关治疗,其主要作用有两点:1.针对慢性感染炎症进行相关限制;2.针对癌症中

单克隆抗体和重组治疗性蛋白质的聚体分析

单克隆抗体和重组治疗性蛋白质的聚体分析 生物制品中的聚体的来源,类型和大小不同,并且是由多种因素引起的。监管机构特别关注的是具有增强免疫应答从而引起不良临床反应的蛋白质聚体,或可能损害抗体或蛋白药物产品安全性和功效的聚体。在动物和临床研究中已经报道了蛋白质聚体可以增强免疫反应。尽管可以预期对人外源蛋白物质的免疫反应,但免疫系统可能会通过耐受性分解机制对具有内源性的聚集蛋白制品产生强烈反应。在耐受性破坏机制中,蛋白质聚体可在蛋白质复合物的形成中充当促进剂,这些蛋白质复合物可触发B细胞针对该蛋白质抗体的产生,而与T辅助细胞无关。这类反应的基础来自免疫原概念,其中抗原具有多于半抗原的聚合结构形式存在,在病毒样颗粒组织中间隔5-10nm,大小超过100kDa,可以克服免疫力。这种情况可能解释了内源性蛋白质的意外中和,并且产生了深远的临床效果。这种类型的机制最受关注的是高分子量(HMW)聚集体,这些聚体保留了其单体对应物的大多数天然构型,并且可以以这种方式使抗原成核。另外,显示非天然蛋白质构象的聚体可能被免疫系统视为新抗原,这可能会触发抗抗体形成。在这里我们提供了有关蛋白质药物中的聚体的表征,检测方法以及药物制造商已实施的各种控制措施的监管观点。 抗体或蛋白聚体的分类 聚体的分类是一项复杂的任务,目前还没有全面的分类方法。分类的困难在于可以对聚合进行多个类别的分组。下表1列出了生物制

药中最常见的聚体类别。为了有助于理解所讨论的聚体类型,常见的聚体类型有:二聚体,可逆聚体,共价聚体和颗粒,这些都是蛋白聚集中常见的形式。聚体的其他分类可以基于聚体的大小,因为这可能与潜在的不良临床反应直接相关。聚体的大小范围从可溶性二聚体和其他多聚体(表观球状直径约5-10nm),包括高分子量(HMW)聚集体到可溶或不溶的有核聚集体,到较大的不溶性物质(被识别为亚可见和可见)颗粒(表观球状直径约20–50μm)。在可溶性聚集体组中,较大的聚集体(例如HMW物)可能更能引发产生不良临床后果的免疫原性应答。就其分子量而言,大小大于10的二次方kDa的聚体潜在的不良免疫原性反应潜力,值得更仔细的评估。 聚体除大小外,聚体随时间的大小变化率是一个有用的参数,可以提供聚体的功能特征,其中时间对应蛋白质产品的有效期。聚体最初可以小二聚体或碎片的形式存在,并朝着更大的聚集结构变化,例如亚可见或可见颗粒(如果这种转变在热力学上温度变得快速)。在任何给定的时刻,蛋白质可能在有利于蛋白质单体或天然构型的热力学状态与有利于展开的天然蛋白质构型状态之间转变。在某些的条件下,未折叠的蛋白质可能与其他天然和非天然形式形成复合物,在获得足够的自由能以转变为可能成为新蛋白质实体而形成稳定状态的聚体。科学家Lumry和Eyring在1960年代研究了这些转变的基础,他们提出了溶液中蛋白质聚体的动力学转变,并在干扰素-γ聚集的情况下进一步转变为一级转变反应动力学。评估药品聚体总增长率的

单克隆抗体药物

浅谈单克隆抗体药物 摘要:单克隆抗体药物是生物医药领域中最耀眼的明珠。该类药物具有靶向性强、特异性高和毒副作用低等特点,代表了药品治疗领域的最新发展方向,在肿瘤、自身免疫性疾病的治疗手段不断升级过程中,单抗药物扮演着不可替代的角色,已经成为全球靶向治疗药物的主流。在刚刚兴起的细胞免疫治疗中,单抗药物同样是位列第一的品类,单抗产业是目前乃至未来医药行业中极具投资价值的细分行业。本文从单克隆抗体简介,常见的单克隆抗体药物、国内外单克隆抗体药物的研发现状,及对单抗药物的展望几个方面做一简介。 关键词:单克隆抗体单抗药物研发现状 1单克隆抗体 抗体是由B淋巴细胞转化而来的浆细胞分泌的,每个B淋巴细胞株只能产生一种它专有的、针对一种特异性抗原决定簇的抗体。这种从一株单一细胞系产生的抗体就叫单克隆抗体,简称单抗。这些抗体具有相同的结构和特性。抗体与特异性表达的肿瘤细胞表面蛋白质结合,从而阻碍蛋白质的表达,起到抗肿瘤作用。抗体还可使B淋巴细胞产生免疫反应,诱导癌细胞凋亡。早期单抗为鼠源性单抗,易被人体免疫系统识别,应用受到限制。后来采用基因工程的方法生产人源或人鼠嵌合型单抗,广泛应用于临床。 2常见的单克隆抗体药物 2.1利妥昔单抗(Rituximab)-美罗华-CD20单抗 第一个被美国食品药物管理局(FDA)批准用于临床治疗的单抗,是一种针对CD20抗原的人鼠嵌合型单克隆抗体,能特异性地与CD20结合,导致B淋巴细胞溶解的免疫反应,抑制其增殖,诱导成熟B淋巴细胞凋亡和提高肿瘤细胞对化疗的敏感性。90%以上的B淋巴细胞淋巴瘤细胞均有CD20表达,不表达于非定向干细胞或浆细胞。本药可使耐药淋巴瘤细胞对VP-16、顺铂重新敏感,用于CD20表达的复发或化疗耐药的惰性B淋巴细胞淋巴瘤,有效率46%。利妥昔单抗+CHOP 方案为治疗弥漫大B淋巴细胞淋巴瘤标准方案,可使全完缓冲(CR)率、生存时间明显延长[2-3]。 2.2曲妥珠单抗-赫赛汀-HER-2单抗 为重组DNA人源化的抗p185蛋白(癌基因)单克隆抗体-IgG抗体。进入人体后能选择性地与由细胞核内表皮生长因子2基因调控的p185糖蛋白结合。本

单克隆抗体药物综述

单克隆抗体药物综述 摘要: 通过淋巴细胞杂交瘤技术或基因工程技术制备单克隆抗体药物,已经成为生物制药领域的一个重要方面,由于单克隆抗体药物专一性强、疗效显著,因此成为近年来研究的热点药物之一。此文就单抗药物的分类、应用进行了综述,并对其应用前景及存在的不足作了概述。 关键词:单克隆抗体抗体药物靶向联用 自1975 年Koeh ler 和M ilstein 首先报道利用小鼠杂交瘤细胞制备单克隆抗体以来, 经过近30 年的发展, 单抗技术在生命科学研究及医学实践方面作出了杰出的贡献, 已经成为了现代生物技术产业的支柱之一。 然而, 尽管单抗推动了生物诊断技术的革命, 但是在将单抗应用于人体疾病的治疗方面, 却在长时间内迟迟没有进展。早期的临床试验结果都不尽人意, 这是因为鼠源单抗应用于人体有许多限制]. 现今上市的单抗药物, 治疗的领域主要集中在肿瘤、自身免疫疾病、器官移植排斥及病毒感染等领域。由于单抗具有明确的作用位点, 与靶位点亲和力高, 而且通过改造的抗体其免疫原性大大减弱, 这些因素使得单抗在临床治疗中具有特异性强、见效快、副作用较低等优点, 因而单抗治疗有着广阔的前景。目前, FDA 批准上市的17 个单抗药物中即有8 个是用于治疗淋巴细胞肿瘤、乳腺癌及结直肠癌等, 而在开发阶段的单抗也有一半以上是与治疗各种癌症相关。可以预见, 在未来几年来将有更多的治疗性单抗药物上市, 其市场份额将进一步扩大。 目前, 单抗类药物的市场销售逐年提升的年均增长幅度在20%以上, 表现强劲。用于治疗非霍奇金淋巴瘤的单抗药物R ituxan 已成为世界第一的抗肿瘤药物, 2003 年销售为14 . 89亿美元, 2002 年为11 . 63 亿美元, 在2002 年全球最畅销前50位商标名处方药中排名43 位。用于治疗关节炎的单抗药物Rem icade, 2002 年销售额为12 . 97 亿美元, 当年全球药物销售排名第37 位。2000 年世界单抗药物的销售额为22 . 05 亿美元, 据 F ro st&Sullivan 预测, 到2003 年销售额将达到47 亿美元。 下面就单克隆抗体药物的研究进展作一综述。 1单克隆抗体药物的分类 单抗药物一般分为:治疗疾病(尤其是肿瘤)的单抗药剂、抗肿瘤单抗偶联物、治疗其他疾病的单抗。单抗药剂针对的靶点通常为细胞表面的疾病相关抗原或特定的受体。如:最早被美国FDA批准用于治疗肿瘤的单抗药物利妥昔单抗;抗肿瘤单抗偶联物,或称免疫偶联物( Immunoconjugate) , 由单抗与有治疗作用的物质(如:放射性核素、毒素和药物等)两部分构成,其中包括放射免疫偶联物、免疫毒素、化学免疫偶联物,此外还有酶结合单抗偶联物、光敏剂结合单抗偶联物等。 2作为肿瘤治疗药剂的单克隆抗体药物 表1概括了近年来美国FDA 批准上市的5 个治疗肿瘤的单克隆抗体药物的基本情况,下面具体加以介绍。 2. 1利妥昔单抗

国内竞争企业单克隆抗体药物行业分析报告文案

单克隆抗体药物行业分析报告(寡人独见,免责声明) (2010-05-02 13:30:22) 医药行业 鲁延迅 单抗 目录 1 克隆抗体药物简介 1.1 单克隆抗体 1.2 单抗技术 1.3 单抗药物 2 两大单抗生产技术壁垒 2.1 上游技术——哺乳动物细胞大规模培养 2.1.1 国际上游工业化技术 2.1.2 国上游工业化技术 2.2 下游技术——单抗药物分离纯化 2.2.1 小规模制备或实验室中纯化单抗的方法 2.2.2 国际工业化纯化技术 2.2.3 国工业化纯化技术 3 单抗市场迅速发展 3.1 国际单抗药物市场处于高速增长期

3.2国单抗药物市场处于起步期 4单抗药物的市场特点 4.1单抗药物市场求大于供,国与国际需求对比 4.2单抗药物研发周期长 4.3单抗药物行业在风险中成长,需历经多次在技术和资本层面的合作4.4帕累托原理在单抗市场表现明显 4.5单抗药物是利润最高的药物之一 5.1全人源化为单抗药物发展趋势 5.2单抗领域研发依然活跃,已上市单抗药物适应症不断扩大 5.3罗氏(含基因泰克)领跑全球单抗药市场 6国单抗药市场竞争格局 6.1国建600826——领跑中国单抗 6.2百泰生物(未上市)单抗领域次席 6.3华神集团000790——苦尽甘来 6.4海正药业600267——拭目以待 6.5万乐药业(未上市)――即将跻身单抗领域 6.6宏远逸士生物技术药业000573——预期平平 1单克隆抗体药物简介

1.1 单克隆抗体抗体是由B 淋巴细胞分化形成的浆细胞合成和分泌的。每一个B 淋巴细胞在成熟的过程过随机重排只产生识别一个抗原受体基因。动物脾脏有上百万种不同的B 淋巴细胞系,重排后具有不同基因不同的B 淋巴细胞合成不同的抗体。当机体受抗原刺激时,抗原分子上的许多决定簇分别激活各个具有不同基因的B 细胞。被激活的B 细胞分裂增殖形成效应B 细胞(浆细胞)和记忆B 细胞,大量的浆细胞克隆合成和分泌大量的抗体分子分布到血液、体液中。如果能选出一个制造一种专一抗体的浆细胞进行培养,就可得到由单细胞经分裂增殖而形成细胞群,即单克隆。而单克隆细胞将合成针对一种抗原决定簇的抗体,称为单克隆抗体。 1.2 单抗技术 要制备单克隆抗体需先获得能合成专一性抗体的单克隆B 淋巴细胞,但这种B 淋巴细胞不能在体外生长。而实验发现骨髓瘤细胞可在体外生长繁殖,应用细胞杂交技术使骨髓瘤细胞与免疫的淋巴细胞二者合二为一,得到杂种的骨髓瘤细胞。这种杂种细胞继承两种亲代细胞的特性,它既具有B 淋巴细胞合成专一抗体的特性,也有骨髓瘤细胞能在体外培养增殖永存的特性,用这种来源于单个融合细胞培养增殖的细胞群,可制备抗一种抗原决定簇的特异单克隆抗体。 资料来源:百度百科 1.3 单抗药物 单抗药物一般分为:治疗型抗肿瘤单抗药物、抗肿瘤单抗偶联物、治疗其他疾病的单抗三类。单抗药剂针对的靶点通常为细胞表面的疾病相关抗原或特定的受体。单抗药物治疗主要是利用其靶向性,来干预肿瘤发生发展过程中的各个通路,或是激活宿主对肿瘤的免疫等。随着生物医学的不断发展,一定会出现具有更高靶向性的单抗和药效更强的“弹头”。 2 两大单抗生产技术壁垒 2.1 上游技术哺乳动物细胞大规模培养 2.1.1 国际上游工业化技术国际上,动物细胞培养表达生产生物药物产品的工艺已经开始采用万升级的工业大规模间歇式生物反应器,甚至悬浮连续式;培养介质也发展到先进的无动物蛋白培养液。对生物反应器的控制已达到目前的现代计算机二级控制,正朝着人工智能以及细胞生化代分子水平的工业化控制迅速发展。 美国Genetech 公司在搅拌式生物反应器方面占有领先地位。Genzyme,Bayer 公司等则都采用连续管流工艺。国外用于生产的动物细胞反应器产品已趋于大型化、多参数与高度自动化的计算机控制系统,以及适应动物细胞对大型环境因子高敏感性的反应器。 在发达国家,抗体表达往往达到g/L 水平,使用2000-10000L ,甚至是15000L 的发酵罐生产。 2.1.2 国上游工业化技术

综述-单克隆抗体的研究报告进展

单克隆抗体的研究进展 摘要:单克隆抗体近年来发展迅速,并广泛应用于医学,生物学,免疫学等多种学科。单抗药物可用于治疗肿瘤、病毒性感染、心血管病以及其它疾病,尤其是用于治疗肿瘤,已显示出良好的前景。本文参阅近10年国外相关文献,并进行整理,综述单克隆抗体的研究进展,着重阐述用于治疗肿瘤的单克隆抗体应用中存在的问题、解决方法以及研究的展望。 关键词:单克隆抗体;抗肿瘤药物;治疗 单抗药物治疗疾病具有明确的靶向性,作用机制明确,因而具有起效快、疗效好、副作用小等优点。尤其是对肿瘤的治疗,能克服化疗药物不能有效区分正常细胞和肿瘤细胞、副作用大等缺点。同时,单克隆抗体体积小,能更有效地透入肿瘤;分子小、消除快、累积毒性小;所携带的弹头脱离后,可较快被清除;循环中免疫靶向结合物对靶细胞的竞争作用小;半衰期短;穿透性好;能穿过血脑屏障,因而还可以作为新一代靶向载体。与化学药物、毒素、放射性核素、生物因子、基因、分化诱导剂、光敏剂、酶等物质构成单克隆抗体靶向药物,把杀伤肿瘤细胞的活性物质特异的输送到肿瘤部位,利用单抗对肿瘤表面相关抗原或特定的受体特异性识别,从而把药物直接导向肿瘤细胞,提高药物疗效,降低药物对循环系统及其他部位的毒性[1]。 1作用机制 目前,单抗的作用机制并不十分明确,通过研究,目前认为有阻断作用、信号传导作用以及靶向作用等三种作用机制[1]。 1.1阻断作用 现用于临床的大部分未偶联单抗主要用于自身免疫和免疫抑制,是通过阻断和调节作用完成的。几乎在所有的单抗应用中,通常是通过阻断免疫系统的一种重要的胞桨或受体-配体相互作用而实现的。另一种相类似的阻断活性可能存在于单抗的抗病毒感染中,通过阻断和抵消病原体的进入和扩散表现出对机体的防御功能,短期给予单抗后可取得长期疗效。肿瘤细胞生长、扩增和分化,需要各种生长因子的持续性刺激,而这些生长因子也参与肿瘤的侵润、转移和血管生成,单克隆抗体与其受体结合,可抑制配体-受体的相互作用,从而使得这些肿瘤细胞得不到生长因子的刺激而自行死亡。贝伐单抗通过结合VEGF受体,阻断VEGR与受体的结合,抑制皮细胞增殖或者血管生成,抑制病灶转移[2]。 1.2信号传导作用 许多抗癌单抗是通过恢复效应因子,直接启动信号机制而获得细胞毒效应的。对Trastuzumab而言,单抗结合可诱导一系列在肿瘤生长控制中起作用的信号传递,该抗原是生长因子受体家族的一个成员,能

单克隆抗体药物在抗肿瘤治疗中的应用

第24卷第4期菏泽医学专科学校学报VOL.24NO.4 2012年JOURNAL OF HEZE MEDICAL COLLEGE2012 通过淋巴细胞杂交技术或基因工程技术制备单克隆抗体药物已经成为生物制药领域的一个重要方面,由于单克隆抗体药物专一性强、疗效显著,为抗肿瘤治疗开辟了一条新的途径,因此成为近年来研究的热点药物之一。本文就目前应用于临床且疗效确切的单抗药物作一综述。 1单克隆抗体 抗体是由B淋巴细胞转化而来的浆细胞分泌的,每个B 淋巴细胞株只能产生一种它专有的、针对一种特异性抗原决定簇的抗体。这种从一株单一细胞系产生的抗体就叫单克隆抗体,简称单抗[1]。这些抗体具有相同的结构和特性。抗体与特异性表达的肿瘤细胞表面蛋白质结合,从而阻碍蛋白质的表达,起到抗肿瘤作用。抗体还可使B淋巴细胞产生免疫反应,诱导癌细胞凋亡。早期单抗为鼠源性单抗,易被人体免疫系统识别,应用受到限制。后来采用基因工程的方法生产人源或人鼠嵌合型单抗,广泛应用于临床。 2常见的单克隆抗体药物 2.1利妥昔单抗(Rituximab)-美罗华-CD20单抗第一个被美国食品药物管理局(FDA)批准用于临床治疗的单抗,是一种针对CD20抗原的人鼠嵌合型单克隆抗体,能特异性地与CD20结合,导致B淋巴细胞溶解的免疫反应,抑制其增殖,诱导成熟B淋巴细胞凋亡和提高肿瘤细胞对化疗的敏感性。90%以上的B淋巴细胞淋巴瘤细胞均有CD20表达,不表达于非定向干细胞或浆细胞。本药可使耐药淋巴瘤细胞对VP-16、顺铂重新敏感,用于CD20表达的复发或化疗耐药的惰性B淋巴细胞淋巴瘤,有效率46%。利妥昔单抗+CHOP方案为治疗弥漫大B淋巴细胞淋巴瘤标准方案,可使全完缓冲(CR)率、生存时间明显延长[2-3]。 2.2曲妥珠单抗-赫赛汀-HER-2单抗为重组DNA人源化的抗p185蛋白(癌基因)单克隆抗体-IgG抗体。进入人体后能选择性地与由细胞核内表皮生长因子2基因调控的p185糖蛋白结合。本身具有抗肿瘤作用,还可提高肿瘤细胞对化疗的敏感性从而提高化疗的疗效。主要用于HER-2高表达的晚期乳腺癌,单一有效率15%~20%,可联合TXT一线治疗MBC,有效率61%[4]。2009年ASCO年会上公布ToGA研究结果,3807例晚期胃癌患者中,Her-2阳性表达率为22.1%,曲妥珠单抗联合化疗比单纯化疗提高MST近3个月,PFS延长1.2个月,有效率提高约13%,而且无明显细胞毒性差异[5]。 2.3西妥昔单抗-爱必妥(ERBITUX、C225)-EGFR单抗重 组人鼠嵌合单克隆抗体,可与人的正常细胞及肿瘤细胞的表皮生长因子受体(EGFR)的胞外激酶特异性结合,竞争性抑制EGFR和其他配体结合,可抑制EGFR过度表达的肿瘤细胞生长,可逆转化疗药物耐药。C225联合伊立替康用于EGFR表达阳性、伊立替康治疗失败或耐药的复发或转移性结直肠癌,或单药治疗不能耐受化疗者,生存质量明显提高[6]。与伊立替康和氟尿嘧啶有协同作用,可以使耐药患者敏感。C225联合FOLFOX4一线治疗EGFR阳性的转移性大肠癌II期总有效率为FOLFOX的两倍,约21%患者治疗后转移灶得以切除[7]。C225联合卡培他滨与奥沙利铂治疗晚期结直肠癌疗效显著[8]。C225还可单药二线治疗铂类化疗失败的复发或转移性头颈部鳞癌。 2.4贝伐单抗(bevacizuma)-阿瓦斯汀AVASTIN-VEGF单抗针对VEGF-A亚型的重组的人源化IgG1单克隆抗体,与血管内皮生长因子VEGF结合,阻断VEGF与内皮细胞上的受体结合。主要用于治疗大肠癌、NSCLC、乳腺癌。联合FOLFOX或IFL一线治疗初治转移性大肠癌或复治的晚期大肠癌[9]。联合紫杉醇治疗转移性乳腺癌可以显著提高有效率(RR),延长PFS[10]。2007年欧盟批准贝与紫杉醇联合治疗转移性乳腺癌,另对胰腺癌有治疗作用[11]。 3讨论 单抗药物治疗主要是利用其靶向性来干预肿瘤发生发展过程中的各个通路,或是激活宿主对肿瘤的免疫等。随着生物医学的不断发展,一定会出现具有更高靶向性的单抗药物。但是,单抗药物还存在一些尚未解决的问题,最突出的问题是如何降低单抗的免疫原性,单抗的异源性所引起的抗体反应,不但降低了单抗的效价,而且会给患者带来严重的后果。因此,对异源性单抗进行改造以及人源性单抗的研制成为单抗研究的重要方向[12]。 参考文献: [1]徐静.单克隆抗体药物的研究进展及临床应用(综述)[J].中国城乡 企业卫生,2009,(6):50-52. [2]詹美琼.利妥昔单抗联合化疗治疗CD的B细胞型非霍奇金淋巴瘤 的护理体会[J].中国误诊学杂志,2008,8(17):4171. [3]李年秀,曾俊权,刘长英.利妥昔单抗治疗老年非霍奇金淋巴瘤的 护理体会[J].井冈山学院学报(自然科学),2008,29(2):117-118. [4]张一桥.赫赛汀联合紫杉醇治疗Her-2过度表达的转移性乳腺癌 22例疗效观察[J].山东医药,2007,47(34):106-107. [5]张迪.肿瘤分子靶向治疗进展[J].武汉大学学报(医学报),2011,5 doi:10.3969/j.issn.1008-4118.2012.04.51 单克隆抗体药物在抗肿瘤治疗中的应用 刘聪,纪晓 (莒南县人民医院,山东莒南276600) 关键词:肿瘤/治疗;单克隆抗体药物;靶向治疗 中图分类号:R730.54文献标识码:A文章编号:1008-4118(2012)04-0084-02 84

单克隆抗体制药

生物制药现状与发展前景 班级:09生科学号:0906080018 姓名:李俊摘要:生物药物原料以天然的生物材料为主,包括微生物、人体、动物、植物、海洋生物等。随着生物技术的发展,有目的人工制得的生物原料成为当前生物制药原料的主要来源。如用免疫法制得的动物原料、改变基因结构制得的微生物或其它细胞原料等。生物药物的特点是药理活性高、毒副作用小,营养价值高。生物药物主要有蛋白质、核酸、糖类、脂类等。这些物质的组成单元为氨基酸、核苷酸、单糖、脂肪酸等,对人体不仅无害而且还是重要的营养物质。 关键字:生物技术制药、发展、蛋白质工程、药物 生物技术制药(biopharming):利用生物活体来生产药物的方法。有时特指利用转基因动植物活体作为生物反应器生产药物。就是利用基因工程技术、细胞工程技术、微生物工程技术、酶工程技术、蛋白质工程技术、分子生物学技术等来研究和开发药物,用来诊断、治疗和预防疾病的发生。 生物药物的阵营很庞大,发展也很快。目前全世界的医药品已有一半是生物合成的,特别是合成分子结构复杂的药物时,它不仅比化学合成法简便,而且有更高的经济效益。半个世纪以来微生物转化在药物研制中一系列突破性的应用给医药工业创造了巨大的医疗价值和经济效益。微生物制药工业生产的特点是利用某种微生物以“纯种状态”,也就是不仅“种子”要优而且只能是一种,如其它菌种进来即为杂菌。对固定产品来说,一定按工艺有它最合适的“饭”—培养基,来供它生长。培养基的成分不能随意更改,一个菌种在同样的发酵培养基中,因为只少了或多了某个成分,发酵的成品就完全不同。如金色链霉菌在含氯的培养基中可形成金霉素,而在没有氯化物或在培养基中加入抑制生成氯化的物质,就产生四环素。药物生产菌投入发酵罐生产,必须经过种子的扩大制备。从保存的菌种斜面移接到摇瓶培养,长好的摇瓶种子接入培养量大的种子罐中,生长好后可接入发酵罐中培养。不同的发酵规模亦有不同的发酵罐,如10吨、30吨、50吨、100吨,甚至更大的罐。这如同我们作饭时用的大小不同的锅。 生物制药发展现状: 现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。 在中国生物制药技术还比较落后。总的来说研发跟不上,生产上就是做发酵。大学毕业生就业比较难。建议读完本科后出国深造,回国后作为学术带头人,加速国内相关领域的发展。 合成生物学对生物技术制药的发展,2003年美国大学J.Keasling成立了世界上第一家合成生物学系基于系统生物学的基因工程,采用酵母细胞表达天然植物药箐篙素分子,实现工程微生物代谢工程制药。采用计算机辅助设计、人工合成基因、基因网络乃至基因组等技术,将细胞作为细胞工厂来进行重新设计,从而进入了合成生物技术制药时代,并将带来细胞制药厂的产业化,2007年英国皇家工程院士R.I.Kitney称“系统生物学与合成生物学偶合,将产生第3次工业革命”。 生物技术制药分为四大类: (1)应用重组DNA技术(包括基因工程技术、蛋白质工程技术)制造的基因重组多肽,蛋白质类治疗剂。 (2)基因药物,如基因治疗剂,基因疫苗,反义药物和核酶等

单抗药物

单抗药物市场的现在时和将来时 自1975年单抗-杂交瘤技术诞生以来,经过30多年的深入研究,从最初的鼠源单抗过渡至人源化单抗直到现在的全人单抗,单克隆抗体的发展使抗体制备技术进入了一个全新的时代, 其相关的药物已广泛应用到生物医学中的许多领域, 如肿瘤、自身免疫性疾病、器官移植、戒毒、血液性疾病、感染性疾病、中毒性疾病、变态反应性疾病等方面的诊断和治疗。 单抗作为治疗疾病的药物主要基于其固有的生物学功能包括: 补体介导的细胞毒性作用(CDC)、抗体依赖的细胞介导的细胞毒作用(ADCC)、凋亡诱导、调理吞噬等。 二十一世纪是生物技术药物和生物仿制药的世纪,特别是单克隆抗体药物发展迅猛,生物仿 制药的研发机遇已经来临。2011年全球抗体药物的市场规模已达到671亿美元。随着发达市场许多“重磅炸弹”级生物药品专利陆续到期,预计到2020年,生物技术药物占全部药品销售收入的比重将超过1/3。 据全球医药市场预测机构EvaluatePharma对2012年销售前15位药品的估计,今年生物技术产品全面崛起,其中销售前十强中,单克隆抗体药物占据五席。 表1 预计2012年全球销量排名前十的单抗类药物基本情况 1986年由Ortho开发的用于治肾移植后的排斥反应的世界上首个单抗药物—抗CD3单抗OKT3获得了FDA批准,在美国上市,由此拉开了单抗药物治疗疾病的序幕。由于它属于鼠源性单克隆抗体,易产生过敏反应和抗-抗体反应(AAR),即人对外源免疫球蛋白的免疫反应, 有时会产生严重的临床后果, 如休克、器官衰竭甚至危及生命。于是研究人员通过不断改造抗体,减少免疫球蛋白中鼠源氨基酸序列, 获得了各种小分子抗体, 或全长的嵌合抗体, 人源 化抗体, 以及全人抗体来达到降低其免疫原性的目的。目前国外市场上人源化单克隆抗体占到了90%。但想得到高纯度、稳定、安全和有效的单抗类药物,需要经过复杂的生产工艺和

单克隆抗体与疾病诊断 综述报告

单克隆抗体与疾病诊断综述报告 姓名:陈碧虹 学号:01 专业:生物 班级:高二(7) 指导教师:孙孺江 时间:2008.1.1 单克隆抗体含义 我们人体中存在有一种十分有用的“健康卫士”,它称为B淋巴细胞。当外来细菌、病毒、或是异性物质侵入我们人体时,它们便立即产生一种对抗这些细菌、病毒或异性物质的“抗体”。抗体可把它们溶解或杀灭。正是由于抗体有这种功能,科学家们便想出了一种“细胞杂交”的方法,使这种抗体可以源源不断地产生。什么是“细胞杂交”、它又为什么可不断产生抗体呢?顾名思义,“细胞杂交”就是用两种不同的细胞将它们融合成一种细胞。为了制造特异性的抗体,科学家们将B淋巴细胞与一种瘤细胞融合在一起,于是所产生的“杂交细胞”一方面具有瘤细胞不断生长繁殖的性质(科学家们称之为“永生不死性”),一方面又有B细胞产生专一抗体的性质。科学家们再将这种杂交细胞所产生的抗体提纯出来,这便是单克隆抗体了。 单抗药物种类 单克隆抗体药物的技术开发经历了鼠源单克隆抗体、人-鼠嵌合抗体、人源化抗体、全人源抗体。鼠源性单克隆抗体由于有副反应,代谢快,除了部分放射性元素一般与此类单抗结合以达到治疗目的外,其余逐渐退出市场。人源化及全人源单克隆抗体由于副反应小,在体内停留时间长,有利于治疗,近年来开发的单克隆抗体主要是人源化的单克隆抗体。这三种治疗性的单克隆抗体都已经在美国上市。 单克隆抗体制备基本方法 骨髓瘤细胞及饲养细胞的制备 选择瘤细胞株的最重要的一点是与待融合的B细胞同源。如待融合的是脾细胞,各种骨髓瘤细胞株均可应用,但应用最多的是Sp2/0细胞株。该细胞株生长及融合效率均佳,此外,该细胞株本身不分泌任何免疫球蛋白重链或轻链。细胞的最高生长刻度为9×105/ml,倍增时间通常为10~15h。融合细胞应选择处于对数生长期、细胞形态和活性佳的细胞(活性应大于95%)。骨髓瘤细胞株在融合前应先用含8-氮鸟嘌呤的培养基作适应培养,在细胞融合的前一天用新鲜培养基调细胞浓度为2105/ml,次日一般即为对数生长期细胞。 在体外培养条件下,细胞的生长依赖适当的细胞密度,因而,在培养融合细胞或细胞克隆化培养时,还需加入其他饲养细胞(feedercell)。常用的饲养细胞为小鼠的腹腔细胞,制备方法为用冷冻果糖液注入小鼠腹腔,轻揉腹部数次,吸出后的液体中即含小鼠腹腔细胞,其中在巨噬细胞和其他细胞。亦有用小鼠的脾细胞、大鼠或豚鼠的腹腔细胞作为饲养细胞的。

相关文档
最新文档