定积分的性质

定积分的性质
定积分的性质

§4 定积分的性质

一 定积分的其本性质

1. 线性性质:

性质1 若函数)(x f 在],[b a 上可积,k 为常数,则)(x kf 在],[b a 上也可积,且

?

?=b

a

b

a

dx x f k dx x kf )()(。

即常数因子可从积分号里提出。(注意与不定积分的不同)

k b a R f ],,[∈— Const , ? ],,[b a R kf ∈且

?

?=b

a

b

a

f k kf

性质2 若函数)(x f 、)(x g 都在],[b a 上可积,则)()(x g x f ±在],[b a 上也可积,且有

??

?±=±b a

b

a

b

a dx x g dx x f dx x g x f )()()]()([。

],[,b a R g f ∈, ? ],[b a R g f ∈±, 且

?

??±=±b

a

b

a

b

a

g f g f )( .

2. 乘积可积性:

性质3 若函数)(x f 、)(x g 都在],[b a 上可积,则)()(x g x f ?在],[b a 上也可积。

],[,b a R g f ∈,? ],[b a R g f ∈?

证明 f 和g 有界. 设 )(sup , |)(|sup ]

,[]

,[x g B x f A b a b a ==, 且可设0 , 0>>B A .

( 否则f 或g 恒为零 ). 插项估计

∑??i

i

x

g f )(ω, 有

≤''''-''=??∈'''|)()()()(|sup )(,x g x f x g x f g f i

x x x i ω

i

x x x ?∈'''≤,sup )( )(|])()(| |)(| |)()(| |)(| [g A f B x g x g x f x f x f x g i i ωω+≤''-'''+''-''

注意:一般地

?

??≠b

a

b a

b

a

dx x g dx x f dx x g x f )()()()(。

3. 关于区间可加性:

性质4(关于积分区间的可加性) 函数)(x f 在],[b a 上可积?),(b a c ∈?,)(x f 在],[c a 与],[b c 上都可积,此时有

?

??+=b

a

c a

b

c

dx x f dx x f dx x f )()()(。

规定1 当b a =时,?

=a

a dx x f 0)(。

规定2 当b a >时,

?

?-=b

a

a

b dx x f dx x f )()(。

注:有了这个规定后,性质4对c b a ,,的任何大小顺序都成立:

设函数f 在区间 ] , [B A 上可积 . 则对 ∈?b a , ] , [B A , 有?

?

?

+=b

c

c

a

b

a

.

4. 积分关于函数的单调性:

性质5 设函数)(x f 在],[b a 上可积,且0)(≥x f ,],[b a x ∈,则

?

≥b

a

dx x f 0)(。

例 设函数)(x f 在],[b a 上连续,0)(≥x f ,],[b a x ∈,且在)(x f 不恒等于0,则?

>b

a

dx x f 0)(。

例1 证明:函数)(x f 在],[b a 上连续,且0)(≥x f ,

?

=b

a

dx x f 0)(,则0)(≡x f 。

推论(积分不等式性质)若函数)(x f 和)(x g 均在],[b a 上可积,且)()(x g x f ≤,],[b a x ∈,则

?

?≤b

a

b

a

dx x g dx x f )()(。

积分的基本估计: 设m 和M 分别为函数f 在区间] , [b a 上的下确界与上确界,则有

)(a b m -≤?b

a

f ≤)(a b M -.

5. 绝对可积性:

性质6 若函数)(x f 在],[b a 上可积,则)(x f 也在],[b a 上可积,且dx x f dx x f b

a

b

a

??

≤)()(。

证 以)()(|)(||)(|x f x f x f x f ''-'≤''-' 证明∑≤?i

i

x f |)(|ω∑?i

i

x

f )(ω;

以 |)(| )( |)(|x f x f x f ≤≤-证明不等式. 注意:此命题的逆一般不成立,如函数?

??-=为无理数为有理数

x ,x x f ,11)(。

例2 设??

?≤≤<≤--=-1

0,0

1,12)(x e x x x f x ,求?-11

)(dx x f 。 【解题要领】 对于分段函数的积分,通常利用积分区间的可加性来计算。

补例 比较积分

?1

dx e

x

与?1

2

dx e x 的大小.

补例 设 ],,[b a C f ∈ 0)(≥x f 但0)(≡/x f . 证明

?

b

a

f >0.

补例 证明不等式

?

<

-<2

22

sin 2

1

12

π

π

π

x dx .

证明分析 所证不等式为?

??<-<

2

2

22

.2sin 2

1

π

π

dx x dx dx 只要证明在]2,0[π

上成立不等式 ≤12sin 2112

1

2≤??

? ??--

x , 且等号不恒成立, 则由性质4和上例得

所证不等式.

二 积分中值定理

定理9-7 (积分第一中值定理)若)(x f 在],[b a 上连续,则至少存在一点],[b a ∈ξ,使得

?

-=b

a

a b f dx x f ))(()(ξ。

积分第一中值定理的几何意义: 如右图,若)(x f 在],[b a 上非负连续,则)(x f y =在],[b a 上的曲边

梯形的面积等于以?-=

b

a dx x f a

b f )(1)(ξ为高,],[b a 为底的矩形的面积。 一般地,称?-b

a

dx x f a b )(1为)(x f 在],[b a 上的平均值。

例3 试求x x f sin )(=在],0[π上的平均值。

定理9-8 (推广的积分第一中值定理) 若)(x f 和)(x g 都在],[b a 上连续,且)(x g 在],[b a 上不变号,则至少存在一点],[b a ∈ξ,使得

?

?=b

a

b

a

dx x g f dx x g x f )()()()(ξ

说明:当1)(≡x g 时,即为积分第一中值定理。

注:事实上,积分第一中值定理和推广的积分第一中值定理中的点ξ必能),(b a ∈ξ。 关于积分中值定理中值点的渐近性质有与微分中值定理类似的结果, 其中最基本的可参阅: Bernard Jacobson , On the mean value theorem for integrals. The American Mathematical Monthly, 1982. No 5. P 300—301 . 在该文中得到如下结果:

Th If f is differentiable at a , 0)(≠'a f , and c is taken in the Theorem for integral ,then 2

1

lim =--→a x a c a x .

作业 P 219: 2、3(2)、(4)、6

定积分的概念和性质公式

1. 曲边梯形的面积 设在区间上,则由直线、、及曲线 所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间中任意插入若干个分点将分成 n 个小区间 ,小区间的长度 在每个小区间上任取一点作乘积, 求和取极限:则面积取极限

其中,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度是上的连续函数,且,求在这段时间内物体所经过的路程。 分割求近似:在内插入若干分点将其分成 n 个小区间,小区间长度,。任取, 做 求和取极限:则路程取极限 定义设函数在上有界,在中任意插入若干个分点 将分成 n 个小区间,其长度为,在每个小区间 上任取一点,作乘积,并求和, 记,如果不论对怎样分法,也不论小区间上的点

怎样取法,只要当时,和总趋于确定的极限,则称这个极限 为函数在区间上的定积分,记作,即 ,(*) 其中叫被积函数,叫被积表达式,叫积分变量,叫积分下限, 叫积分上限,叫积分区间。叫积分和式。 说明: 1.如果(*)式右边极限存在,称在区间可积,下面两类函数在区间 可积,(1)在区间上连续,则在可积。(2)在区间 上有界且只有有限个间断点,则在上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所以 3.规定 时 , 在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积;

在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积(此时,曲边梯形在轴的下方); 例1 利用定积分的几何意义写出下列积分值 (1)(三角形面积)(2)(半圆面积)

设可积 性质1 性质2 性质3 (定积分对区间的可加性)对任何三个不同的数,有 性质4 性质5 如果在区间上,,则 推论 性质6 (定积分的估值)设 M 及 m 分别是函数在区间上的最大值及最小值,则 性质7 (定积分中值定理) 如果函数在区间上连续,则在上至少有一点, 使成立

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

定积分的概念及性质

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 定积分的概念及性质 图 1 图 2 A B 4.4 定积分的概念及性质课题: 定积分的概念及性质目的要求: 理解定积分的概念及其性质重点: 定积分的概念、定积分的几何意义难点: 定积分的概念教学方法: 讲授为主、讲练结合教学时数: 2 课时教学进程: 定积分是积分学的另一个重要的基本概念,和导数概念一样,它也是在解决各种实际问题中逐渐形成并发展起来的,现已成为解决许多实际问题的有力工具.本节将首先从实际问题出发引出定积分的概念,并介绍定积分的几何意义和性质.随后的两节再介绍定积分与微分的内在联系,定积分的计算及其简单应用.一、定积分的概念 1.两个引例例 1 求曲边梯形的面积.初等数学可以计算多边形、圆形和扇形等图形的面积,但对于较复杂的曲线所围成的图形(图 1)的面积计算则无能为力.如图所示,我们总可以用若干互相垂直的直线将图形分割成如阴影部分所示的基本图形,它是由两条平行线段,一条与之垂直的线段,以及一条曲线弧所围成,这样的图形称为曲边梯形.特别地,当平行线之一缩为一点时,称为曲边三角形.现在求由直线0,,===ybxax和连续曲线)(xfy = ) 0)((xf所围成的曲边梯形 AabB (图 2)的面积 S .如 1 / 7

果曲边梯形的高不变,即Cy =(常数),则根据矩形面积公式面积=底高便可求出它的面积.但如果)(xfy =是一般曲线,则底边上每一点 x 处的高)(xf随 x 变化而变化,上述计算公式就不适用.对于这样一个初等数学无能为力的问题,我们解决的思路是:将曲边梯形分成许多小长条(图 2),每一个长条都用相应的矩形去代替,把这些矩形的面积加起来,就近似得到曲边梯形的面积S .小长条分得越细,近似程度越好,取极限就是面积 S .具体地,分四步来解决. (1) 分割(化整为零) 在区间],[ba内任意添加1n个分点: 将区间],[ba分成 n 个子区间,这些子区间的长度记为 1 i=}?{iixxx ),, 2 , 1=(ni,并用符号i x?= max表示这些子区间的最大长度.过1n个分点作 x 轴的垂线,于是将曲边梯形分割成n 个小曲边梯形,它们的面积记作i S? ),, 2 , 1=(ni.显然=i?=niSS1. (2) 代替(以直代曲)在第 i 个子区间],[1iixx 上任取一点i ,作以)(if 为高,],[1iixx为底的第 i 个小矩形,小矩形的面积为 iixf?)( ),, 2 , 1=(ni第i 个小曲边梯形的面积 iiixfS??)( ),, 2 , 1=(ni. (3) 求和(求曲边梯形面积的近似值)将 n 个小矩形的面积加起来,便得到原曲边梯形面积的近似值 nxfS1(4) 取极限(积零为整)不难想到,当分割越来越细(即 n 越来越大,同时最长的子区间长度越来越小时), n 个矩形的面积和就越来越接近于原曲边梯形的面积.于是

定积分的概念和性质公式

1.曲边梯形的面积 设在区间*I上:;--L ,则由直线工’=■<、応匚、V 1及曲线■V °/W所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间-八「中任意插入若干个分点将宀…-分成n个小区间 兀5 5 <…,小区间的长度&广呜一為」(T三12… 在每个小区间- :-一I〕上任取一点-■■作乘积 求和取极限:则面积取极限

J=1 其中;'1 ; J L厂V '…,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度| I「是上*的连续函数,且1■求在这段时间内物体所经过的路程。 分割求近似:在「〔[内插入若干分点■- _ "将其分成 n 个小区间「—,小区间长度■- _■'.-1, ■1丄。任取? _ _ 做 求和取极限:则路程一取极限 将分成n个小区间-,其长度为2 - —,在每个小区间 上任取一点「:,作乘积■- ' ■',并求和 r , 记1■r 1,如果不论对怎样分法,也不论小区间[:■ 上的 点「怎样取法,只要当「「I;时,和总趋于确定的极限,则称这个极限 为函数-—I在区间上的定积分,记作J ',即 定义设函数」?、在L?二上有界,在-亠二中任意插入若干个分点

其中叫被积函数,一’,八叫被积表达式,'‘叫积分变量,二叫积分下限, 「叫积分上限,-’」叫积分区间。■叫积分和式。 说明: 1.如果(*)式右边极限存在,称-’’」在区间-仁丄可积,下面两类函数在区间 上…-可积,(1)」在区间-LL■- - 上连续,则■' J'-在可积。(2)-’八在区间-‘丄-上有界且只有有限个间断点,则在--"-■ 上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所 3.

定积分的性质和基本定理

第二节 定积分的性质 和基本定理 用求积分和式的极限的方法来计算定积分不是很方便,在很情况下难以求出定积分的值。因此,我们在定积分定义的基础上,讨论它的各种性质,揭 示定积分与微分的内在联系,寻找定积分的有效 §2.1 一、定积分的基本性质 性质 1 b a 1dx=∫b a dx=b-a 证 0 lim →λ∑=n 1 i f(ξi )Δx i = lim →λ∑=n 1 i 1·Δx i =0 lim →λ (b-a)=b-a b a 1dx=∫b a dx=b-a 性质2(线性运算法则),设f(x),g(x)在[a,b ]上可积,对任何常数α、β,则αf(x)+βg(x)在[a,b ]

b a [αf(x)+βg(x)]dx=α∫b a f(x)dx+β ∫b a g(x)dx 证:设F(x)=αf(x)+β g(x), lim →λ∑=n 1 i F(ξi )Δx i =0 lim →λ[αf(ξi )+βg(ξi )] Δx i =0 lim →λ[α∑ =n 1 i f(ξi )Δx i +β ∑ =n 1 i g(ξi )Δ x i ] =αb a f(x)dx+β∫b a g(x)dx αf(x)+βg(x)在[a,b b a [αf(x)+βg(x)]dx=α∫ b a f(x)dx+β ∫b a g(x)dx 特别当α=1,β=± 1 b a [f(x)±g(x)]dx=∫ b a f(x)dx ±∫ b a g(x)dx 当β =0 b a αf(x)dx=α∫ b a f(x)dx 性质 2 性质3 对于任意三个实数a,b,c ,若f(x)在任意 两点构成的区间上可

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

小结定积分的性质

小结定积分的性质 定积分内容是研究曲边梯形、变速行程等问题的有力工具,在对定义加深理解的基础上,我们还应了解一些定积分的基本性质.(由于这些性质的证明联系到大学《数学分析》的一些内容,所以对证明过程不作要求.) 一、定积分基本性质 假设下面所涉及的定积分都是存在的,则有 性质1 函数代数和(差)的定积分等于它们的定积分的代数和(差).即 [()()]()b b b a a a f x g x d x f x d x g x d x ±=±???. 这个性质可推广到有限多个函数代数和的情形. 性质2 被积函数的常数因子可以提到积分号前,即()()b b a a kf x dx k f x dx =? ?(k 为常 数). 性质3 不论a b c ,,三点的相互位置如何,恒有()()()b c b a a c f x dx f x dx f x dx =+? ??. 这性质表明定积分对于积分区间具有可加性. 性质4 若在区间[]a b ,上,()0f x ≥,则 ()0b a f x dx ? ≥. 推论1 若在区间[]a b ,上,()()f x g x ≤,则()()b b a a f x dx g x dx ? ?≤. 推论2 ()()b b a a f x dx f x dx ? ?≤. 性质5 (估值定理)设函数()f x 在区间[]a b ,上的最小值与最大值分别为m 与M ,则 ()b b b a a a mdx f x dx Mdx ? ??≤≤. 证明:因为()m f x M ≤≤,由推论1得()b b b a a a mdx f x dx Mdx ? ??≤≤. 即()b b b a a a m dx f x dx M dx ? ??≤≤. 故()()()b a m b a f x dx M b a --? ≤ ≤. 利用这个性质,由被积函数在积分区间上的最小值及最大值,可以估计出积分值的大致范围. 二、定积分性质的应用 例1 比较定积分 2 e x dx -? 和2 xdx -?的大小. 解:令()e x f x x =-,[20]x ∈-, , 则()0f x >, 故 2 ()0f x dx ->? ,即0 2 (e )0x x dx -->?.

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

高等数学第五章定积分总结

第五章 定积分 内容:定积分的概念和性质、微积分基本公式、换元积分法、分部积分法、广义积分。 要求:理解定积分的概念和性质。掌握牛顿-莱布尼兹公式、定积分的换元法和分部积分法,理解变上限的定积分作为其上限的函数及其求导定理,理解广义积分的概念和计算方法。 重点:定积分的概念和性质;微积分基本公式;换元积分法、分部积分法。 难点:定积分的概念;变上限积分函数及其导数;换元积分法、分部积分法。 §1.定积分的概念 一、实例分析 1.曲边梯形的面积 设函数)(x f y =∈C[a , b ], 且)(x f y =>0. 由曲线0,,),(====y b x a x x f y 围成的图形称为曲边梯形. 如何定义曲边梯形的面积?(1) 矩形面积=底高. (2) 预备一张细长条的纸, 其面积底高. (3) 预备一张呈曲边梯形状的纸, 将其撕成许多细长条. (4) 启示: 将曲边梯形分割为许多细长条, 分割得越细, 误差越小. y =f (x ) x =a x =b y =f (x ) a=x 0 x 1 x i-1 x i x n =b

第i 个细长条面积)],,[()(11---=?∈??≈?i i i i i i i i i x x x x x x f S ξξ 曲边梯形面积: ∑=?≈ n i i i x f S 1 )(ξ 定积分概念示意图.ppt 定义: ),,2,1,max {()(lim 1 n i x x f S i n i i i Λ=?=?=∑=→λξλ 抛开上述过程的几何意义,将其数学过程定义为定积分. 二、定积分的定义 1. 定义 设)(x f y =在[a , b ]有定义, 且有界. (1) 分割: 用分点b x x x a n =<<<=Λ10把[a , b ]分割成n 个小区间: } ,,2,1,max{,,,2,1],,[11n i x x x x n i x x i i i i i i ΛΛ=?=-=?=--λ记 (2) 取点: 在每个小区间],[1i i x x -上任取一点i , 做乘积: i i x f ?)(ξ. (3) 求和: ∑=?n i i i x f 1 )(ξ (4) 取极限: ∑=→?n i i i x f 1 )(lim ξλ 若极限存在, 则其为)(x f 在[a , b ]上的定积分, 记作: ? b a dx x f )(. 即: ∑? =→?=n i i i b a x f dx x f 1 )(lim )(ξλ [a , b ]: 积分区间;a :积分下限;b :积分上限; ∑=?n i i i x f 1 )(ξ积分和式. 问题: 定积分是极限值, 在求极限的过程中, 谁是常量, 谁是变量?

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

定积分的概念与性质练习

第一节 定积分的概念与性质 一、选择题 1. A ; 2. C . 二、填空题 1. (1)1; (2)0; (3)4 π. 2. (1)1 2 x dx ? > 1 30 x dx ? , (2)2 1ln xdx ? > () 2 2 1ln x dx ?, (3) 20 xdx π ? < 20 sin xdx π ? , (4)4 3 ln xdx ? < () 4 2 3ln x dx ?. 三、 解 由于()3f x x =在[]0,1上连续,故积分2 21 x dx -? 是存在的,且它与分法无关,同 时也与点的取法无关. 将区间[]0,1n 等分,得1 i x n = ,取() 1,2,, i i i n n ξ== 作和 ()2 3 2 1 1 13 344 0001114 n n n n i i i i i n n i S x i n n n n ξ---===+??==== ???∑∑∑ 于是 1 lim 4n n S →∞= 即 13 014 x dx =?. 四、 细棒的质量()0 l x dx ρ?. 五、 1 13 x e dx -+? 311 x e dx +-=-?. 设()()1 1,0x x f x e f x e ++'==>,所以()f x 在[]1,3-内单调增加, 从而 ()()()13f f x f -≤≤,即1 41x e e +≤≤. 于是 3 141 44x e dx e +-≤≤? 从而 1 4 13 44x e e dx -+-≤ ≤-? . 六、 设()()2 21,41f x x x f x x '=-+=-,令()0,f x '=得驻点1 4 x = . ()17101,,1482f f f ???? === ? ????? .所以 min ()f x =1, max ()f x =78. 1≤≤ 由定积分性质,得 1 2012≤≤ ?.

定积分概念与性质(Concept

第五章 定积分 Chapter 5 Definite Integrals 5.1 定积分的概念和性质(Concept of Definite Integral and its Properties ) 一、定积分问题举例(Examples of Definite Integral ) 设在()y f x =区间[],a b 上非负、连续,由x a =,x b =,0y =以及曲线() y f x =所围成的图形称为曲边梯形,其中曲线弧称为曲边。 Let ()f x be continuous and nonnegative on the closed interval [],a b . Then the region bounded by the graph of ()f x , the x -axis, the vertical lines x a =, and x b = is called the trapezoid with curved edge. 黎曼和的定义(Definition of Riemann Sum ) 设()f x 是定义在闭区间[],a b 上的函数,?是[],a b 的任意一个分割, 011n n a x x x x b -=<<<<=, 其中i x ?是第i 个小区间的长度,i c 是第i 个小区间的任意一点,那么和 ()1 n i i i f c x =?∑,1 i i i x c x -≤≤ 称为黎曼和。 Let ()f x be defined on the closed interval [],a b , and let ? be an arbitrary partition of [],a b ,011n n a x x x x b -=<< <<=, where i x ? is the width of the i th subinterval. If i c is any point in the i th subinterval, then the sum ()1 n i i i f c x =?∑,1 i i i x c x -≤≤, Is called a Riemann sum for the partition ?. 二、定积分的定义(Definition of Definite Integral ) 定义 定积分(Definite Integral ) 设函数()f x 在区间[],a b 上有界,在[],a b 中任意插入若干个分点 011n n a x x x x b -=<< <<=,把区间[],a b 分成n 个小区间: [][][]01121,,,,,,,n n x x x x x x - 各个小区间的长度依次为110x x x ?=-,221x x x ?=-,…,1n n n x x x -?=-。在每个小区

浅析反常积分与定积分的定义与性质

浅析反常积分与定积分的定义与性质 浅析反常积分与定积分的定义与性质 浅析反常积分与定积分的定义与性质 刘汉兵1,刘树兵2 (1.中国地质大学(武汉)数理学院,湖北武汉430074;2.湖北省鄂州市第二中学,湖北鄂州436001) 摘要:积分学是微积分理论中的一个重要部分。一元函数的积分学主要包括定积分和反常积分两大类。这两类积分各自具备一些性质,而这些性质常常被拿来相互比较。本文将从定义出发,结合一些反例,深入剖析定积分和反常积分的性质差异及其原因。 关键词:反常积分与定积分;性质差异;定义 作者简介:刘汉兵(1985-),男(汉族),湖北鄂州人,博士,讲师,研究方向:微分方程的最优控制理论;刘树兵(1982-),男(汉族),湖北鄂州人,本科,高中教师,研究方向:数学教学教育。 积分学是微积分理论中的一个重要组成部分。一元函数的积分学主要包括定积分和反常积分两大类,反常积分又包含了无穷积分与瑕积分,它们可以看作是定积分的推广,是定积分的某种意义下的极限形式。粗略来看,反常积分是更为一般的积分,定积分作为更为特殊的积分,应该具备反常积分所具备的性质。但

是在这部分内容的学习过程中,可以看到反常积分与定积分的一些性质有所区别,甚至从表面上看,反常积分的一些性质,定积分并不具备。本文将从定义出发,剖析这些性质的差异及其原因,以更加准确深刻的理解定积分和反常积分的异同。 一、无穷积分与定积分的定义与性质 我们知道对于无穷积分,有如下的一个重要性质。 这显然是不合情理的,因为无穷积分是定积分的推广,定积分是更为特殊的积分。仔细分析会发现,上述两个命题中第二个命题即为定理2的结论,是真命题,而命题一看似定理1的结论,但是它与定理1的描述相比,去掉了一个非常重要的条件:“f在任何有限区间[a,u]上可积”,所以命题一是错误的。实际上,我们上述定义的函数E(x)可以更直接的说明命题一是不对从定理的证明我们也可以进一步认识到A、B两部分内容的差异对定理结论的影响。定理1的两个证明都是围绕积分上限趋于正无穷时,变上限积分极限的存在性展开的,而定理2的证明则是依赖于有限区间上的可积性定理,即证明当划分足够细时,Daboux大和与Daboux小和收敛到同一个极限,这是完全不同的两个对象。另一方面,我们从证明里面看到,定理1确实是依赖于条件A的。在定理1的证明里,我们用到了f(x)在任一有限区间上的定积分,如果没有条件A,这些定积分是不存在的,这也说明了为什么不能运用定理1的证明方法得到定积分的类似性质。

最新定积分的概念与性质

定积分的概念与性质

第五章定积分 第一节定积分的概念与性质 教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容: 一、定积分的定义 1.曲边梯形的面积 设?Skip Record If...?在?Skip Record If...?上非负,连续,由直线?Skip Record If...?,?Skip Record If...?,?Skip Record If...?及曲线?Skip Record If...? 所围成的图形,称为曲边梯形. 求面积: 在区间?Skip Record If...?中任意插入若干个分点 ?Skip Record If...?, 把?Skip Record If...?分成?Skip Record If...?个小区间[?Skip Record If...?],[?Skip Record If...?], … [?Skip Record If...?],它们的长度依次为: ?Skip Record If...? 经过每一个分点作平行于?Skip Record If...?轴的直线段,把曲边梯形分成?Skip Record If...?个窄曲边梯形,在每个小区间[?Skip Record If...?]上任取一点?Skip Record If...?,以[?Skip Record If...?]为底,?Skip Record If...?为高的窄边矩形近似替代第?Skip Record If...?个窄边梯形?Skip Record If...?,把这样得到的

定积分的基本性质

定积分的基本性质 一、定积分的基本性质 性质1: ∫b a1dx=∫b a dx=b-a 证: f(ξi)Δx i= 1·Δx i= (b-a)=b-a 所以 ∫b a1dx=∫b a dx=b-a 性质2:(线性运算法则):设f(x),g(x)在[a,b]上可积,对任何常数α、β,则αf(x)+βg(x)在[a,b]上可积,且 ∫b a[αf(x)+βg(x)]dx=α∫b a f(x)dx+β∫b a g(x)dx 证:设F(x)=αf(x)+βg(x),由 F(ξi)Δx i=[αf(ξi)+βg(ξi)]Δx i =[αf(ξi)Δx i+βg(ξi)Δx i]

=α ∫b a f(x)dx+β∫b a g(x)dx, 因此 αf(x)+βg(x)在[a,b]上可积,且 ∫b a[αf(x)+βg(x)]dx=α∫b a f(x)dx+β∫b a g(x)dx 特别当α=1,β=±1时,有 ∫b a[f(x)±g(x)]dx=∫b a f(x)dx±∫b a g(x)dx 当β=0时 ∫b aαf(x)dx=α∫b a f(x)dx 性质2主要用于定积分的计算 性质3:对于任意三个实数a,b,c,若f(x)在任意两点构成的区间上可积,则 ∫b a f(x)dx=∫c a f(x)dx+∫b c f(x)dx 证:a,b,c的位置,由排列知有六种顺序 (i)当a

f(ξi)Δx i =[f(ξi)Δx i+f(ξi)Δx i] =f(ξi)Δx i+f(ξi)Δx i = ∫c a f(x)dx+∫b c f(x)dx (ii)当c0,有f(ξi)Δx i>0有

定积分计算公式和性质~定积分计算公式大全

第二节定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x为上的任一点,于是,在区间上的定积分为 这里x既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x在区间上任意变动,则对于每一个取定的x值,定积分有一个确定值与之对应,所以定积分在上定义了一个以x为自变量的函数,我们把称为函数在区间上变上限函数记为 图 5-10 从几何上看,也很显然。因为X是上一个动点,从而以线段为底的曲边梯形的面积,必然随着底数端点的变化而变化,所以阴影部分的面积是端点x的函数(见图5-10)定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s为 图5-11

另一方面,如果物体经过的路程s是时间t的函数,那么物体从t=a到t=b所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即是一个原函数,因此,为了求出定积分,应先求出被积函数的原函数,再求在区间上的增量即可。 如果抛开上面物理意义,便可得出计算定积分的一般方法: 设函数在闭区间上连续,是的一个原函数,即,则 这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例2 求曲线和直线x=0、x= 及y=0所围成图形面积A(5-12)

定积分的性质

§4 定积分的性质 一 定积分的其本性质 1. 线性性质: 性质1 若函数)(x f 在],[b a 上可积,k 为常数,则)(x kf 在],[b a 上也可积,且 ? ?=b a b a dx x f k dx x kf )()(。 即常数因子可从积分号里提出。(注意与不定积分的不同) k b a R f ],,[∈— Const , ? ],,[b a R kf ∈且 ? ?=b a b a f k kf 性质2 若函数)(x f 、)(x g 都在],[b a 上可积,则)()(x g x f ±在],[b a 上也可积,且有 ?? ?±=±b a b a b a dx x g dx x f dx x g x f )()()]()([。 ],[,b a R g f ∈, ? ],[b a R g f ∈±, 且 ? ??±=±b a b a b a g f g f )( . 2. 乘积可积性: 性质3 若函数)(x f 、)(x g 都在],[b a 上可积,则)()(x g x f ?在],[b a 上也可积。 ],[,b a R g f ∈,? ],[b a R g f ∈? 证明 f 和g 有界. 设 )(sup , |)(|sup ] ,[] ,[x g B x f A b a b a ==, 且可设0 , 0>>B A . ( 否则f 或g 恒为零 ). 插项估计 ∑??i i x g f )(ω, 有 ≤''''-''=??∈'''|)()()()(|sup )(,x g x f x g x f g f i x x x i ω i x x x ?∈'''≤,sup )( )(|])()(| |)(| |)()(| |)(| [g A f B x g x g x f x f x f x g i i ωω+≤''-'''+''-'' 注意:一般地 ? ??≠b a b a b a dx x g dx x f dx x g x f )()()()(。 3. 关于区间可加性: 性质4(关于积分区间的可加性) 函数)(x f 在],[b a 上可积?),(b a c ∈?,)(x f 在],[c a 与],[b c 上都可积,此时有 ? ??+=b a c a b c dx x f dx x f dx x f )()()(。 规定1 当b a =时,? =a a dx x f 0)(。 规定2 当b a >时, ? ?-=b a a b dx x f dx x f )()(。 注:有了这个规定后,性质4对c b a ,,的任何大小顺序都成立:

相关文档
最新文档