ANSYS软件用于铁氧体磁芯平面变压器设计案例

电力变压器试验报告

电力变压器试验报告 装设地点:幸福里小区运行编号:14#箱变试验日期:2013.07.25 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 型号电压比制造厂家出厂编号S11—M—630/10 10000/400 南阳市鑫特电气有限公司130274 容量相数接线组别出厂日期630KVA 3 DY0—11 2013.07 二、试验项目: 1、绝缘电阻及吸收比: 测量部位R15”(MΩ)R60”(MΩ)吸收比 高压/低压及地2500 低压/高压及地2500 2、直流电阻:

绕阻S位置 实测值(mΩ)最大不平衡 率% AB BC AC 高压1 1049 1050 1050 0.1 2 993.8 994.2 993.9 3 937.7 938.6 938.1 低压a~o b~o c~o 2.8 1.271 1.281 1.307 3、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格 四、试验仪器及编号:BCSB系列多用型实验变压器、JRR-10直流电阻测试仪、ZC-7绝缘摇表 五、试验负责人: 六、试验人员: 七、备注: 电力变压器试验报告

装设地点:幸福里小区运行编号:15#箱变试验日期:2013.07.25 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 型号电压比制造厂家出厂编号S11—M—650/10 10000/400 南阳市鑫特电气有限公司131105 容量相数接线组别出厂日期630KVA 3 DY0—11 2013.07 二、试验项目: 4、绝缘电阻及吸收比: 测量部位R15”(MΩ)R60”(MΩ)吸收比 高压/低压及地2500 低压/高压及地2500 5、直流电阻: 实测值(mΩ)最大不平衡绕阻S位置 率% AB BC AC 高压 1 1050 1048 1050 0.1

干式变压器培训范本

干式变压器培训 1、干式变压器发展历程简述 1885年,匈牙利三位工程师发明了变压器及感应电机,并研制出第一台工业实用性变压器距今已有一个多世纪了。当时和以后的一段时期内,所生产的变压器无例外的均为干式变压器。但限于当时的绝缘材料的水平,那时的干变难于实现高电压与大容量。到20世纪初发现了变压器油,它具有高绝缘强度,高导热能力,用于变压器是再好不过的绝缘和冷却介质。而干变因受限于绝缘使电压上不去,受限于散热使容量上不去,造成它的发展几乎停滞不前。 二战以后,世界经济呈现前所未有迅猛增长,城市面积、人口、高层建筑、地下建筑、地铁等重要中心场所不断增多。而由于油浸式变压器以下缺点:1、变压器油具有可燃性,当遇到火焰时可能会燃烧、爆炸;2、变压器油对人体有害;3、变压器油需定期检查;4、油浸式变压器抗短路能力差;5、油浸式变压器密封性能不良且宜老化,在运行场所渗漏油严重,影响设备安全运行,同时影响环境;6、油浸式变压器绝缘等级低,按A级绝缘设计、制造。油浸式变压器现场常见故障:1、由于绝缘受潮、绝缘老化和变压器油劣化等将导致变压器绝缘降低;2、由于表面潮湿加之尘埃、盐分等致使变压器套管脏污引起套管闪络,同时由于赃物吸水后导电性能提高使泄漏增加,引起表面放电后导致击穿;3、由于油标管、呼吸管或防爆管通气孔堵塞等导致变压器存在假油位现象;4、当变压器二次短路或变压器内

部放电等将造成变压器喷油事故;5、由于运行中存在渗漏油、缺油等现象,导致运行中必需采取补油措施。由于油浸式变压器上面种种的缺点,因而人们迫切需要一种既能深入负荷中心,又能防火、防爆并且环保性能好的变压器。自1964年德国AEG公司研制出第一台环氧浇注干式变压器起,干式变压器进入一个大发展的阶段,与此同时,美国也发明了Nomex绝缘纸,可作H级干式变压器,这样干变就就有了二种主要大类,一类为环氧树脂型干式变压器,另一类为H级敞开型干式变压器。 2、干式变压器的发展现状 目前干式变压器制造技术已成熟,国内外许多工厂能大批量生产。现在整个国际干式变压器市场,存在环氧树脂浇注干式变压器和浸漆型干式变压器两大类型。在欧洲及一些新兴工业国家(如日、韩等)前者应用广泛,而北美市场则以后者为主。我国绝大多数干式变压器的制造厂家引进的是环氧树脂浇注式结构,无论从产量还是技术水平方面,目前都达到世界先进水平。目前,干式变压器最高电压等级已达35kV。山东金曼克电气集团于1999年开发出一台110kV树脂浇注电力变压器,并通过中国变压器质量监督检测中心所做的例行、温升、冲击、声级及短路试验,同年11月通过国家机械工业局、国家电力公司鉴定,这在树脂浇注变压器国内外历史上是第一次,为电网提供一种新型防灾电力变压器奠定了物质基础。该电力变压器组于2000年9月装于山东兖州电力局运行至今情况良

平面变压器在电源中的设计应用

平面变压器在电源中的设计应用 文章通过对平面变压器所具有的特点进行系统的分析,并且结合在电源中的一些实例,从而进一步探讨平面变压器设计和实际应用等问题。 标签:平面变压器;开关电源;集肤效应 前言 现代的工作和生活对许多电子产品提出了小型化的要求。而作为电子产品工作的能源-开关电源是必不可少的。特别是功率较大的电子产品,电源部分占据了较大的体积和重量,。而在在开关电源中,磁性器件大概占到开关电源体积和重量的30%-40%。降低磁性器件的体积和重量就显得尤为重要。平面变压器具有体积小,功率密度高刚好能满足这些要求。因此,平面变压器取代传统变压器是开关电源发展的一个趋势。 1 平面的绕组特点 平面变压器绕线方式就是借鉴了印制电路板的形成方式,平面变压器具有很多优点。下面我们就对其特点进行分析,第一,平面变压器绕线方式就是借鉴了印制电路板的形成方式,使用这种方式对其进行生产,实际效率相对较高;第二,平面变压器的实际绕组参数是统一的,相对的离散性比较小;第三,平面变压器使用的是高性能的绝缘材料,使压层、线圈之间的保持良好的绝缘性;第四,其实际的引脚的位置可以根据实际需要进行自由分配,局限性相对较小,数量上也能够随之进行增减;第五,能够将集肤效应降到最低;第六,其相对的物理结构相当密实,线圈的固化结构也非常紧密、不需要使用支架进行绕线,自激振荡性小,相对能量的损耗也较小;第七,还能与控制应用模板进行统一的设计和装配。由于平面变压器是一种新型的技术,不管是在理论上、材料的性能上、电能的性能指标、实际体积等众多方面有一定的提升和创新。 2 实际应用 我们在平面变压器电源中的可行性实验里,使用文中提到的理论依据进行研究,从而进行了一系列工程化的工作,其平面变压器的电源有很多种不同的设计。 以320VDC/12VDC 25A变换器为例,对比常规变压器以及平面变压器。将双管反激电路作为主电路,将开关频率黄蓉胡阳 设置为100千赫,借助普通高频变压器的设计方案,联合应用两个EI33型磁芯,设计30匝原边,使用0.81毫米直径的漆包线作为绕组,2匝副边,0.3毫米铜皮的绕组,将2层使用并联的方式。 EI-33型磁芯參数具体为:有效截面积(Ae)为118mm2;有效磁路长度(Le)

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

变压器知识培训学习资料

变压器知识培训 变压器概述 变压器是利电磁感应原理传输电能和电信号的器件,它具有变压,变流,变阻抗的作用。变压器种类很多,应用也十分广泛,例如在电力系统中用电力变压器把发电机发出的电压升高后进行远离输电,到达目的地后再用变压器把电压降低以便用户使用,以此减少运输过程中电能的损耗。 变压器的工作原理 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的一侧叫一次侧,一次侧的绕组叫一次绕组,把变压器接负载的一侧叫二次侧,二次侧的绕组叫二次绕组。 变压器是变换交流电压、电流和阻抗的器件,一次线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使二次级线圈中感应出电压(或电流)。 变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器设备。 型号说明:

一、变压器的制作原理: 在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。 二、分类 按容量分类:中小型变压器(35KV及以下,容量在5-6300KVA)、大型变压器(110KV及以下容量为8000-63000KVA)、特大型变压器(220KV以上)。 按用途分类:电力变压器(升压变、降压变、配电变、联络变、厂用或电所用等)、仪用变压器(电流互感器、电压互感器等用于测量和保护用)、电炉变压器、试验变压器、整流变压器、调压变压器、矿用变压器、其它变压器。 按冷却价质分类:干式(自冷)变压器、油浸(自冷)变压器、气体(SF6)变压器。 按冷却方式分类:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫油循环水冷式、蒸发冷却式。

长寿命LED电源与平面变压器设计步骤

长寿命LED电源与平面变压器设计步骤 系统可靠性定义及指标 开关电源是各种系统的核心部分。开关电源的需求越来越大,同时对可靠性提出了越来越高的要求。涉及系统可靠性的因素很多。目前,人们认识上的主要误区是把可靠性完全(或基本上)归结于元器件的可靠性和制造装配的工艺,忽略了系统设计和环境温度对可靠性的决定性的作用。据美国海军电子实验室的统计,整机出现故障的原因和各自所占的百分比如表1所示。 在业界上,通用的可靠性定义为:在规定条件下和规定的时间内,完成规定功能的能力。此定义适用于一个系统,也适用于一台设备或一个单元。描述这种随机事件的概率可用来作为表征开关电源可靠性的特征量和特征函数。从而,引出可靠度[R(t)]的定义:系统在规定条件下和规定时间内,完成规定功能的概率。如系统在开始(t=0)时有n0个元件在工作,而在时间为t时仍有n个元件在正常工作,则可靠性R(t)=n/n0 0≤R(t) ≤1 失效率λ(t)= - dinR(t)/dt λ定义为该种产品在单位时间内的故障数,即λ=dn/dt。如失效率λ为常数,则 dn/dt=-λt n=n0e-λt R(t)=e-λt0 MTBF(平均无故障时间)=1/λ 平均无故障时间(MTBF)是开关电源的一个重要指标,用来衡量开关电源的可靠性。 从各研究机构研究成果可以看出,环境温度和负荷率对可靠性影响很大,这两个方面对开关电源的影响很大,下面将从这两方面分析,如何设计出高可靠的开关电源。其中:PD为使用功率;PR为额定功率主。UD为使用电压;UR为额定电压。环境温度对元器件的影响,环境温度对半导体的影响硅三极管以PD/PR=0.5使用负荷设计,则环温度对可靠性的影响,如表2所示。

平面变压器的技术分析

平面变压器的技术分析 中心议题:平面变压器的特性研究平面变压器的插入技术平面变压器的标准化设计 解决方案:使变压器中磁性能量储存的空间减少,导致漏感的减少使电流传输过程中在导体上理想分布,导致交流阻抗的减少绕组间更好的耦合作用,导致更低的漏感 磁性元件的设计是开关电源的重要部分,因为平面变压器在提高开关电源的特性方面有着很大的优势,因此近年来得到了广泛的应用。对于一个理想的变压器来说,初级线圈所产生的磁通都穿过次级线圈,即没有漏磁通。而对普通变压器来说,初级线圈所产生的磁通并非都穿过次级线圈,于是就产生了漏感,电磁耦合的紧密要求也无法满足。而平面变压器只有一匝网状次级绕组,这一匝绕组也不同于传统的漆包线,而是一片铜皮,贴绕在多个同样大小的冲压铁氧体磁芯表面上。所以,平面变压器的输出电压取决于磁芯的个数,而且平面变压器的输出电流可以通过并联进行扩充,以满足设计的要求。因此,平面变压器的特点就显而易见了:平面绕组的紧密耦合使得漏感大大地减小;平面变压器特殊的结构使得它的高度非常的低,这使变换器做在一个板上的设想得到实现。但是,平面结构存在很高的容性效应等问题,大大限制了它的大规模使用,不过,这些缺点在某些应用中,也有可能转换为一种优点。另外,平面的磁芯结构增大了散热面积,有利于变压器散热。1平面变压器的特性研究如前所述,平面变压器的优点主要集中在较低的漏感值和交流阻抗。绕组问的间隙越大意味着漏感越大,也就产生更高的能量损失。平面变压器利用铜箔与电路板间的紧密结合,使得在相邻的匝数层间的间隙非常的小,因此能量损耗也就很小了。在平面型变压器里,其“绕组”是做在印制电路板上的扁平传导导线或是直接用铜泊。扁平的几何形状降低了开关频率较高时趋肤效应的损耗,也就是涡流损耗。因此,能最有效地利用铜导体的表面导电性能,效率要比传统变压器高得多。图1给出了一个平面变压器的剖面图,并且利用两层绕组间距离的不同,而获得在不同间隙下的漏感和交流阻抗值。图2与图3给出了在不同的间隙下漏感和交流阻抗的变化,可以明显地看出间隙越大,漏感越大,交流阻抗越小。在间隙增加1mm的状况下漏感值增加了5倍之多。因此,在满足电气绝缘的情况下,应该选用最薄的绝缘体来获得最小的漏感值。然而,容性效应在平面变压器中是非常重要的,在印制电路板上紧密绕制的导线使得容性效应非常的明显。而且绝缘材料的选取对容性值也有着非常大的影响,绝缘材料的介电常数越高,变压器的容性值越高。而容性效应会引起EMI,因为从初级到次级的绕组中只有容性回路的绕组传播这种干扰。为了验证,笔者做了一个试验,在铜导线的间隙增加O.2mm的情况下,而电容值就减少了20%。因此,如果需要一个比较低的电容值,则必须在漏感和电容值之间做出一个折中的选择。2插入技术插入技术是指在布置变压器原、副边绕组时,使原边绕组与副边绕组交替放置,增加原、副边绕组的耦合以减小漏感,同时使得电流平均分布,减小变压器损耗。现在插入技术的研究被分为两个方面,即应用于变压器的插入(正激电路)和应用于连接电感器的插入(反激电路)。因此,插入技术现在已经被放在不同的拓扑中作为不同的磁性部件来研究。2.1应用于平面变压器的插入技术应用于变压器中的插入技术的主要优点如下:1)使变压器中磁性能量储存的空间减少,导致漏感的减少;2)使电流传输过程中在导体上理想分布,导致交流阻抗的减少;3)绕组间更好的耦合作用,导致更低的漏感。为了说明插入技术的特征,图4给出了应用3种不同插入技术的结构,P代表初级绕组,s代表次级绕组。试验显示SPSP结构是最好的,因为初级和次级的绕组都是间隔插人的。图5显示了在500kHz时,3种结构的交流阻抗和漏感值,通过比较可以很容易地发现应用了插入技术的变压器,交流阻抗和漏感值都有了很大的减少。2.2多绕组变压器中平面结构的优势平面变压器另一个重要的优点是高度很低,这使得在磁芯上可以设置比较多的匝数。一个高功率密度的变换器需要一个体积比较小的磁性元件,平面变压器很好地满足了这一要求。例如,在多绕组的变压器中需要非常多的匝数,如

课程设计-电力变压器台数和容量的最佳方案设计

编号:1151401127 课程设计 (2011级本科) 题目:电力变压器台数和容量的最佳方案设计 系(部)院:物理与机电工程学院 专业:电气工程及其自动化 作者姓名:谭小峰 指导教师:刘永科职称:副教授 完成日期:2014 年7 月 1 日 二○一四年七月

目录 1 前言 1.1 设计任务书 (1) 1.2基础资料 (3) 2 主接线方案的选择 (4) 3变压器的选择 (5) 3.1 变压器容量的选择 (5) 3.2 变压器台数的选择 (5) 4方案中变压器容量的经济比较 (5) 4.1 变压器经济比较 (5) 4.2 综合费用比较 (7) 4.3 动态比较 (7) 附电气主接线图 (9) 全文总结 (10)

前言 变电站内变压器容量和台数是影响电网结构、供电安全可靠性和经济性的重要因素,而容量大小和台数多少的选择往往取决于区域负荷的现状和增长速度,取决于一次性建设投资的大小,取决于周围上一级电网或电厂提供负载的能力,取决于与之相联结的配电装置技术和性能指标,取决于负荷本身的性质和对供电可靠性要求的高低,取决于变压器单位容量造价、系统短路容量和运输安装条件等等,近几年随着变压器制造技术的不断提高,变压器自身质量和安全运行水平大幅度提高;变压器空载损耗下降的幅度大,变压器经济运行的负载率得到不断降低;又国家节能减排政策,鼓励企业开展经济运行工作;建设、扩建和变压器增容的台数和容量的选择,国内尚无明确具体的规定,也是随技术水平提高不断完善的一个系统工程,一般根据常规经验和规划者的观点来进行;结合相关规程制度,作者认为一般都应考虑如下因素: (1)变压器额定容量应能满足供电区域内用电负荷的需要,即满足全部用电设备总计算负荷的需要,避免变压器长期处于过负荷状态运行。新建变电站变压器容量应满足5-10年规划负荷的需要,防止不必要的扩建和增容,也减少因为扩建增容造成的大面积和长时间停电;对较高可靠性供电要求的变电站一次最好投入两台变压器,变压器正常的负载率不大于50%为最好。 (2)对于供电区域内有重要用户的变电站,应考虑一台变压器在故障或停电检修状态下,其它变压器在计及过负荷能力后的允许时间内,保证用户的一级和二级负荷,对一般负荷的变电站,任何一台变压器停运,应能保证全部负荷的70%-80%的电力供应不受影响,城区变电站变压器台数和容量应满足N-1的要求。

变压器骨架磁芯(带AP值)

CORE參數對照表 TYPE MATERIAL Dimensions (mm)Ap Ae Aw A L Le Ve Wt P CL 100kHz 200mT Pt (100kHz) 可配合BOBBIN A * B * C( cm4 ) ( mm2 )( mm2 )( nH/N2 ) ( mm ) ( mm3 ) ( g ) @ 100℃ (W)( Watts )幅寬PIN形狀 TYPE EC CORE EC353C8535.3*17.3*9.5 1.374184.30163.002100.0077.406530.0038.0021.58H EC413C8541.6*19.5*11.6 2.5894121.00214.002700.0089.3010800.0060.0024.58H EC523C8552.2*24.2*13.4 5.5980180.00311.003600.00105.0018800.00112.0028.312H EC703C8571.7*34.5*16.417.8281279.00639.003900.00144.0040100.00254.0041.412/34H TYPE EE CORE EE05PC40 5.25*2.65*1.950.0013 2.63 5.00285.0012.6033.100.160.02 1.1 2.76-8H EE6.3PC40 6.1*2.85*7.950.0015 3.31 4.46405.0012.2040.400.240.02 2.76H EE8PC408.3*4.0*3.60.00917.0013.05590.0019.47139.000.700.06 1.9 4.786H EE10/11PC4010.2*5.5*4.750.028712.1023.70850.0026.60302.00 1.500.16 6.68V EE13PC4013.0*6.0*6.150.057017.1033.351130.0030.20517.00 2.700.2357.410V EE16PC4016*7.2*4.80.076519.2039.851140.0035.00672.00 3.300.318.56-10V H EE19PC4019.1*7.95*5.00.124323.0054.041250.0039.40900.00 4.800.4296-8V H EE19/16PC4019.29*8.1*4.750.119122.4053.151350.0039.10882.00 4.800.4196-8V H EE20/20/5PC4020.15*10*5.10.157231.0050.701460.0043.001340.007.500.51 EE22PC4022*9.35*5.750.159041.0038.792180.0039.401610.008.800.618.458V EE2329S PC4023*14.7*60.436835.80122.001250.0064.902320.0012.00 1.16 EE25/19PC4025.4*9.46*6.290.312840.0078.202000.0048.701940.009.100.9 EE25.4PC4025.4*9.66*6.350.317340.3078.732000.0048.701963.0010.000.9 EE2825PC4028*12.75*10.60.852586.9098.103300.0057.705010.0026.00 2.519.610V EE30PC4030*13.15*10.70.7995109.0073.354690.0057.706310.0032.00 2.913.710-12V EE30/30/7PC4030.1*15*7.050.745559.70124.872100.0066.904000.0022.00 1.51 EE3528PC4034.6*14.3*9.3 1.339884.80158.002600.0069.705910.0029.00 2.9615.712V EE40PC4040*17*10.7 2.2000127.00173.234150.0077.009810.0050.00 4.217.312V EE4133PC4041.5*17*12.7 2.8260157.00180.004200.0079.0012470.0064.00 6.25 EE42/21/15PC4042*21.2*15 4.9484178.00278.003800.0097.9019510.0088.008.8 EE42/21/20PC4042*21.2*20 6.4625235.00275.005000.0097.8023000.00116.0011.6 EE47/39PC4047.12*19.63*15.62 4.7529242.00196.406660.0090.6021930.00108.009.7 EE50PC4050*21.3*14.6 5.7343226.00253.736110.0095.8021600.00116.009.421.312V EE55/55/21PC4055.15*27.5*20.713.6764354.00386.347100.00123.0043700.00234.0011.0(150MT) EE57/47PC4056.57*23.6*18.89.7132344.00282.368530.00102.0035100.00190.008.5 EE60PC4060*22.3*15.69.8558247.00399.025670.00110.0027100.00135.0012.523.812V EE50.3PC4050.3*25.6*6.1 1.8447120.85152.642900.00104.9012676.0068.00 5.8328.2512H EE62.3/62/6PC4062.3*31*6.1 3.0330153.01198.223100.00125.7419240.00102.008.8533.8512H EE65/32/27PC4065.15*32.5*2730.7625535.00575.008000.00147.0078700.00399.00 5.9(100MT) TYPE EF CORE EF12.6PC4012.7*6.4*3.60.031113.0023.90810.0029.60385.00 2.000.17 3.510V EF16PC4016.1*8.05*4.50.080020.1039.821100.0037.60754.00 3.900.32 EF20PC4020*9.9*5.650.101333.5030.241570.0044.901500.007.400.69

变压器仿真例题

【例20】将一个阻抗为8Ω的扬声器接在非线性磁芯变压器的副边,已知N1=300,N2=100,信号源为电动势E=6V,频率f=50Hz,内阻R0=100Ω的正弦电压源,求(1)信号源输出的功率 (2)扬声器获得的功率 (3)给出电压变换和电流变换的仿真波形。 1.绘制电路原理图 (1)单击Draw\Get New Part菜单命令,在弹出的对话框中分别调出磁芯变压器K3019PL-3C8图符、正弦电压源VSIN图符、接地EGND图符和电阻R图符。并将它们连接成图5-108所示的电路。 图5-108 含有磁芯变压器的电路 (2)双击磁芯变压器图符打开其属性编辑对话框如图5-109所示,其中有3个属性参数需要设置:“Coupling=”意为耦合度,这里设为1;“L1_Turns=”意为电感线圈L1的圈数,这里设为300;同理,L2的线圈设为100。正弦电压源的参数也可按【例10】中的方法一样设定,双击图符后使VOFF=0;VAMPL=8.484;FREQ=50。 图5-109 K3019PL-3C8的属性编辑对话框 2.设置分析类型 仍为瞬态分析,参数设置为:打印步长0.02s;终止时间0.06s,其它均为默认值。 3.运行模拟分析 (1)点击Analysis\Simulate菜单命令,在打开的Probe窗口中再点击Trace\Add Trace 子命令。 (2)在弹出Add Trace对话框中选择信号源输出的电功率P1和扬声器负载R1获得的电功率P2,它们表达式分别可写为: P1=MAX(V(2))*MAX(I(R0))/2 P2=MAX(V(3))*MAX(I(R1))/2

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

平面变压器的工作原理

平面变压器的结构原理与应用 摘要:大多数DC/DC变换器都需要隔离变压器 而平面变压器技术在隔离变压器的许多方面实现了重要的突破。介绍了平面变压器的结构、性能和使用方法。 关键词:隔离变压器平面变压器开关电源 在DC/DC变换中,基本的Buck、Boost、Cuk变换器是不需要开关隔离变压器的。但如果要求输出与输入隔离,或要求得到多组输出电压,就要在开关元件与整流元件之间使用开关隔离变压器,所以绝大多数变换器都有隔离变压器。目前开关电源的发展趋势是效率更高、体积更小、重量更轻,而传统的隔离变压器在效率、体积、重量等方面严重制约了开关电源的进一步发展。同时由于变压器涉及到的主要参数有电压、电流、频率、变比、温度、磁芯u值、漏抗、损耗、外形尺寸等,所以一直无法象其它电子元器件那样有现成的变压器可供选用,常常要经过繁琐的计算来选用磁芯和绕组导线,而且绕组绕制对变压器的性能也有较大影响,加之变压器的许多重要参数不易测量,给使用带来一定的盲目性,很难在频率响应、漏抗、体积和散热等方面达到满意效果。平面变压器(FlatTransformer 技术则在隔离变压器的许多方面实现了重要的突破。 目前,国外的许多电源产品中都开始采用平面变压器技术,如蓄电池充电电源、通信设备分布式电源、UPS等。而国内的隔离开关变压器在材料、工艺等方面与国外先进国家有一定差距,阻碍了开关电源开关高频的提升和效率提高,使开关电源产品停留在一个较低的水平。平面变压器技术将会为高频开关电源的设计和产品化提供有益的帮助。 传统变压器的绕组常常是绕在一个磁芯上,而且匝数较多。而平面变压器(单元)只有一匝网状次级绕组,这一匝绕组也不同于传统的漆包线,而是一片铜皮,贴绕在多个同样大小的冲压铁氧体磁芯表面上。所以平面变压器的输出电压取决于磁芯的个数,而且平面变压器的输出电流可以通过并联进行扩充,以满足设计的要求。并且平面变压器原边绕组的匝数通常也只有数匝,不仅有效降低了铜损和分布电容、电抗,而且为绕制带来了很多便利。由于磁芯是用简单的冲压件组合而成的,性能的一致性大大提高,也为大批量生产降低了成本。 1 平面变压器的结构和性能 1.1 结构 平面变压器通常有2个或2个以上大小一样的柱状磁芯(图1a)。现以2个磁芯的平面变压器为例介绍其结构。每个磁芯柱在对角线上的两角都用铜皮连接,铜皮在通过磁芯柱时紧贴磁芯内壁(图1b)。两个磁芯并排放置,相邻的两角用铜皮焊接起来,在一个磁芯的一个外侧面上的两个角上的铜皮用一片铜皮焊接在一起,这里就是平面变压器次级线圈的中心,如果在这里引出抽头,就是次级线圈的中心抽头;在另一个磁芯

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

如何选择变压器的磁芯

1、根据变压器的用途确定磁芯的类别:功率磁芯或高导磁芯. 功率磁芯主要做变压器-传输功率. 不同形状磁芯适用变压器类型: EE功率磁芯、EEL功率磁芯、EF功率磁芯: 功率传输变压器 开关电源变压器 宽频及脉冲变压器 电源转换变压器 主要材质:TP3,TP4 EI功率磁芯: 通讯设备用变压器 电源转换变压器 各种扼流圈 主要材质:TP3,TP4 EC功率磁芯、ETD功率磁芯: 开关电源变压器 电子镇流器 脉冲变压器 主要材质:TP3,TP4 EFD功率磁芯、EPC功率磁芯: 小体积、大功率开关电源变压器 高周波开关电源变压器 通讯设备用滤波电感器 高触发变压器 背光源 主要材质:TP3,TP4 PQ功率磁芯: 功率传输变压器 开关电源变压器 滤波电感器 宽频及脉冲变压器 转换电源变压器 主要材质:TP3,TP4 RM功率磁芯: 宽带变压器 电源转换变压器 开关电源变压器 电感器

载波频率滤波器 高稳定性滤波器 主要材质:TP3,TP4 GU功率磁芯: 通讯中可调LC滤波器 电源转换变压器 载波频率滤波器 高稳定性滤波器 电子钟表升压线圈 主要材质:TP3,TP4 高导磁芯主要用于滤波器-波形整理,消除杂波 使视频清晰或音频保真 主要磁芯类型: EE型高导磁芯 EEL型高导磁芯 EI型高导磁芯 EF型高导磁芯 EP型高导磁芯 UU型高导磁芯 ET型高导磁芯 FT型高导磁芯 GU型高导磁芯 RM型高导磁芯 T型高导磁芯 2、根据工作频率,功率大小,电感量大小及安装空间确定磁芯尺寸: TP3材质适用工作频率范围: 功耗温度系数为负值,即温度升高,功耗呈下降趋势,中心工作频率25KHz-200KHz TP4材质适用工作频率范围: 中心工作频率100KHz-300KHz TH7、TH10、TH12材质适用工作频率范围: 中心工作频率小于150KHz 功率大小: 小于5w可使用的磁芯: ER9.5, ER11.5, EE8.3, EE10, EE13, RM4, GU11, EP7,EP10,UI9.8,URS7 5-10W可使用的磁芯: ER20, EE19, RM5, GU14, EFD15, EI22, EPC13, EF16,EP13,UI11.5 10-20W可使用的磁芯: ER25, EE20,EE25,RM6,GU18,EPC17,EF20

干式变压器培训资料(doc 13页)

干式变压器培训资料(doc 13页)

干式变压器培训 1、干式变压器发展历程简述 1885年,匈牙利三位工程师发明了变压器及感应电机,并研制出第一台工业实用性变压器距今已有一个多世纪了。当时和以后的一段时期内,所生产的变压器无例外的均为干式变压器。但限于当时的绝缘材料的水平,那时的干变难于实现高电压与大容量。到20世纪初发现了变压器油,它具有高绝缘强度,高导热能力,用于变压器是再好不过的绝缘和冷却介质。而干变因受限于绝缘使电压上不去,受限于散热使容量上不去,造成它的发展几乎停滞不前。 二战以后,世界经济呈现前所未有迅猛增长,城市面积、人口、高层建筑、地下建筑、地铁等重要中心场所不断增多。而由于油浸式变压器以下缺点:1、变压器油具有可燃性,当遇到火焰时可能会燃烧、爆炸;2、变压器油对人体有害;3、变压器油需定期检查;4、油浸式变压器抗短路能力差;5、油浸式变压器密封性能不良且宜老化,在运行场所渗漏油严重,影响设备安全运行,同时影响环境;6、油浸式变压器绝缘等级低,按A级绝缘设计、制造。油浸式变压器现场常见故障:1、由于绝缘受潮、绝缘老化和变压器油劣化等将导致变压器绝缘降低;2、由于表面潮湿加之尘埃、盐分等致使变压器套管脏污引起套管闪络,同时由于赃物吸水后导电性能提高使泄漏增加,引起表面放电后导致击穿;3、由于油标管、呼吸管或防爆管通气孔堵塞等导致变

压器存在假油位现象;4、当变压器二次短路或变压器内部放电等将造成变压器喷油事故;5、由于运行中存在渗漏油、缺油等现象,导致运行中必需采取补油措施。由于油浸式变压器上面种种的缺点,因而人们迫切需要一种既能深入负荷中心,又能防火、防爆并且环保性能好的变压器。自1964年德国AEG公司研制出第一台环氧浇注干式变压器起,干式变压器进入一个大发展的阶段,与此同时,美国也发明了Nomex绝缘纸,可作H级干式变压器,这样干变就就有了二种主要大类,一类为环氧树脂型干式变压器,另一类为H级敞开型干式变压器。 2、干式变压器的发展现状 目前干式变压器制造技术已成熟,国内外许多工厂能大批量生产。现在整个国际干式变压器市场,存在环氧树脂浇注干式变压器和浸漆型干式变压器两大类型。在欧洲及一些新兴工业国家(如日、韩等)前者应用广泛,而北美市场则以后者为主。我国绝大多数干式变压器的制造厂家引进的是环氧树脂浇注式结构,无论从产量还是技术水平方面,目前都达到世界先进水平。目前,干式变压器最高电压等级已达35kV。山东金曼克电气集团于1999年开发出一台110kV树脂浇注电力变压器,并通过中国变压器质量监督检测中心所做的例行、温升、冲击、声级及短路试验,同年11月通过国家机械工业局、国家电力公司鉴定,这在树脂浇注变压器国内外历史上是第一次,为电网提供一种新型防灾电力变压器奠定了物质基础。该电力变压器组于2000年9月装于山东兖州电力局运行至今情况

平面变压器的设计原理及其应用

平面变压器的应用 1 概述 目前,电力电子技术的应用十分广泛。如:航空航天电源,舰载电源,雷达电源,通讯电源,电动机车-汽车电源,计算机-集成芯片电源,高频加热-照明电源,变频器,逆变器和各种AC/DC,DC/DC变换器等。而且应用的水平和对电源性能提出的要求不断提高。比如:高频开关电源的功率密度要求越来越高,成为当前主要研究课题。 功率磁性元件是所有电力电子装置中必不可少的关键器件,其体积和重量一般占到整个电路的20%到30%,磁性元件的损耗占到总损耗的30%左右,且磁性元件的各项参数对电路的性能影响很大。从目前看来,磁性元件无论在研究上,还是在应用上都已成为电力电子际踅 徊椒⒄沟钠烤保 谀持殖潭壬现苯佑跋炝说缌Φ缱蛹际醯姆⒄埂R虼耍 愿咂担 吖β拭芏群吞厥馔庑谓峁沟拇判栽 难芯浚 ⑹鞘 种匾 摹1热纾捍判栽 钠矫* 旌霞 苫 取? 目前来看,以铁氧体为磁芯的平面变压器体积小,功率密度大,将在较大功率的模块电源中发挥主要作用,成为主流产品,可在电力电子技术的领域大力推广和广泛应用,在某种程度上可以推动电力电子技术的发展。 2 平面变压器的优势 平面变压器与常规变压器相比,磁芯尺寸大幅度缩小,特别是高度缩小最大。这一特色对电源设备中在空间受到严格限制的场合下具有相当大的吸引力,从而可成为许多电源设备中首选的磁性元件。平面变压器结构上的优势,也为它的电气特性带来了许多优点:功率密度高,效率高,漏感低,散热性好,成本低等。详见下表:

3 制造方式 1、线绕式平面变压器:这种绕组方式与常规变压器的绕制方式一样,适合于高频,高压变压器的制造。 2、铜箔式平面变压器:这种方式是用铜箔作绕组,折叠成多层线圈。适合于制造低压,大电流的变压器。 3、多层印制板式平面变压器:这种方式是用印制板的制造工艺,在多层板上形成螺旋式的线圈。适合于制造中,小功率的变压器。 以上三种形式的平面变压器,在现有的机械设备、生产规模和工艺水平下,能很方便地制造出来。所以,大力推广平面变压器的开发和应用,具有特别的实际意义。 4、多元化的开发与应用 1、并联组合形式:因平面变压器铁芯扁平,所以很容易用两个,四个或八个铁芯合成来实

电力变压器试验报告

电力变压器试验报告装设地点:幸福里小区运行编号:14#箱变试验日期: 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 二、试验项目: 3、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格 四、试验仪器及编号:BCSB系列多用型实验变压器、JRR-10直流电阻测试仪、ZC-7绝缘摇表 五、试验负责人: 六、试验人员: 七、备注: 电力变压器试验报告 装设地点:幸福里小区运行编号:15#箱变试验日期: 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号:

二、试验项目: 6、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格 四、试验仪器及编号:BCSB系列多用型实验变压器、JRR-10直流电阻测试仪、ZC-7绝缘摇表 五、试验负责人: 六、试验人员: 七、备注: 电力变压器试验报告 装设地点:幸福里小区运行编号:4#箱变试验日期: 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 二、试验项目:

9、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格 四、试验仪器及编号:BCSB系列多用型实验变压器、JRR-10直流电阻测试仪、ZC-7绝缘摇表 五、试验负责人: 六、试验人员: 七、备注: 电力变压器试验报告 装设地点:幸福里小区运行编号:4#箱变试验日期: 试验性质:交接天气:晴温度:36 ℃ 相对温度: 一、设备型号: 二、试验项目: 12、交流耐压试验: 交流耐压:38 KV 时间:60 S 结论:合格 三、试验结论:合格

相关文档
最新文档