三角恒等变换常考题(含答案)

三角恒等变换常考题(含答案)
三角恒等变换常考题(含答案)

三角恒等变换基础题型

一.选择题(共20小题,每小题5分)时间60分钟

4.已知sin2α=,则cos2()=()A.﹣B.C.﹣D.

5.若,则cos(π﹣2α)=()A.B.C. D.

6.已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()

A.﹣B.﹣C.D.

7.若,则=()A.B.C. D.

8.已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.9.若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.

10.若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.

12.已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣

13.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.7

15.已知,则sin2α的值为()A.B. C.D.

16.cos15°?cos105°﹣cos75°?sin105°的值为()A.﹣B.C. D.﹣17.若tanα=,则sin2α+cos2α的值是()A.﹣B.C.5 D.﹣5

19.cos43°cos77°+sin43°cos167°的值是()A. B.C. D.

21.已知sinα+cosα=,则sin2α=()A.﹣ B.﹣C.D.

23.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.

24.已知向量,且,则sin2θ+cos2θ的值为()A.1 B.2 C.D.3

25.已知tan(α﹣)=,则的值为()A.B.2 C.2D.﹣2

26.已知,则tanα=()A.﹣1 B.0 C.D.1

三角恒等变换基础题型组卷

参考答案与试题解析

一.选择题(共30小题)

4.(2017?泉州模拟)已知sin2α=,则cos2()=()

A.﹣B.C.﹣D.

【解答】解:==,

由于:,

所以:=,

故选:D.

5.(2017?焦作二模)若,则cos(π﹣2α)=()

A.B.C. D.

【解答】解:由,可得:sinα=.

∵cos(π﹣2α)=﹣cos2α=﹣(1﹣2sin2α)=2sin2α﹣1=.

故选D

6.(2017?衡水一模)已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣B.﹣C.D.

【解答】解:∵sin(α+)+sinα=﹣,

∴,

∴,

∴cos(α﹣)=,

∴cos(α+)=cos[π+(α﹣)]=﹣cos(α﹣)=.

故选C.

7.(2017?商丘三模)若,则=()

A.B.C. D.

【解答】解:∵=cos(α+),

∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.

故选:D.

8.(2017?德州二模)已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.

【解答】解:由0<α<β<,得到0<β﹣α<,又cosα=,cos(α﹣β)=cos(β﹣α)=,

所以sinα==,sin(β﹣α)=﹣sin(α﹣β)=﹣=﹣,

则cosβ=cos[(β﹣α)+α]

=cos(β﹣α)cosα﹣sin(β﹣α)sinα

=×﹣(﹣)×=,

所以β=.

故选:C.

9.(2017?青海模拟)若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.

【解答】解:∵α∈(,π),∴sinα>0,cosα<0,

∵3cos2α=sin(﹣α),

∴3(cos2α﹣sin2α)=(cosα﹣sinα),

∴co sα+sinα=,

∴两边平方,可得:1+2sinαcosα=,

∴sin2α=2sinαcosα=﹣.

故选:D.

10.(2017?大武口区校级四模)若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()

A.B.C.D.

【解答】解:α,β为锐角,且满足cosα=,∴sinα==,sin(α+β)==,

则sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=﹣×=,

故选:C.

12.(2017?腾冲县校级二模)已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣

【解答】解:∵sin(﹣α)﹣cosα=cosα﹣sinα﹣cosα=﹣sin(α+)=,∴sin(α+)=﹣,

则cos(2α+)=1﹣2sin2(α+)=,

故选:C.

13.(2017?榆林一模)已知cosα=﹣,且α∈(,π),则tan(α+)等于()

A.﹣B.﹣7 C.D.7

【解答】解析:由cosα=﹣且α∈()得tanα=﹣,

∴tan(α+)==,

故选C.

15.(2017?全国三模)已知,则sin2α的值为()

A.B. C.D.

【解答】解:∵已知,则平方可得1﹣sin2α=,∴sin2α=,

故选:C.

16.(2017?山西一模)cos15°?cos105°﹣cos75°?sin105°的值为()A.﹣B.C. D.﹣

【解答】解:cos15°?cos105°﹣cos75°?sin105°

=cos15°?cos105°﹣sin15°?sin105°

=cos(15°+105°)

=cos120°

=﹣.

故选:A.

17.(2017春?陆川县校级月考)若tanα=,则sin2α+cos2α的值是()A.﹣B.C.5 D.﹣5

【解答】解:原式=.故选B.

19.(2017春?福州期末)cos43°cos77°+sin43°cos167°的值是()A.B.C. D.

【解答】解:cos43°cos77°+sin43°cos167°

=cos43°cos77°+sin43°cos(90°+77°)

=cos43°cos77°﹣sin43°sin77°

=cos(43°+77°)

=cos120°

=﹣cos60°

=﹣.

故选D.

21.(2017春?荔城区校级期中)已知sinα+cosα=,则sin2α=()

A.﹣B.﹣C.D.

【解答】解:∵sina+cosa=,

∴(sina+cosa)2=,

∴1+2sinacosa=,

∴sin2a=﹣.

故选:A.

23.(2016?新课标Ⅲ)若tanα=,则cos2α+2sin2α=()

A.B.C.1 D.

【解答】解:∵tanα=,

∴cos2α+2sin2α====.

故选:A.

24.(2016?肃南裕县校级模拟)已知向量,且,则sin2θ+cos2θ的值为()

A.1 B.2 C.D.3

【解答】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.

∴sin2θ+cos2θ===1,

故选A.

25.(2016?河南模拟)已知tan(α﹣)=,则的值为()

A.B.2 C.2D.﹣2

【解答】解:由tan(α﹣)==,

得tanα=3.

则=.

故选:B.

26.(2016?全国二模)已知,则tanα=()

A.﹣1 B.0 C.D.1

【解答】解:∵,

∴cosα﹣sinα=cosα﹣sinα,

∴cosα=sinα,

∴tanα===﹣1.

故选:A.

29.(2017?玉林一模)若3sinα+cosα=0,则的值为()A.B.C.D.﹣2

【解答】解:∵3sinα+cosα=0,

∴tanα=﹣,

∴===,

故选:A.

30.(2017?成都模拟)已知函数f(x)=cos(x+)sinx,则函数f(x)的图象()A.最小正周期为T=2πB.关于点(,﹣)对称

C.在区间(0,)上为减函数D.关于直线x=对称

【解答】解:∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)?sinx=sin2x﹣?

=(sin2x+cos2x)﹣=sin(2x+)+,

故它的最小正周期为=π,故A不正确;

令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=

对称,

且f(x)的图象不关于点(,)对称,故B不正确、D正确;

在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选:D.

高中数学必修四第三章-三角恒等变换知识点总结

第三章 三角恒等变换 一、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= + ? ()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβ αβαβ ++=- ? ()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式: sin 22sin cos ααα =222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin α αααα=-=-=- ?2 2 1cos 2cos 1cos 2sin 2 2 α α αα+=-=, ?2 cos 21cos 2 αα+= ,2 1cos 2sin 2αα-=. ⑶22tan tan 21tan α αα =-. 三、辅助角公式: () 22sin cos sin α+=++a x b x a b x , 2 2 2 2 cos sin a b a b a b ???= = ++其中由,决定

四、三角变换方法: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的 相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4 α的二倍; ②2 304560304515o o o o o o =-=-=; ③()ααββ=+-;④ ()4 24 π π π αα+= --; ⑤2()()()()44 ππ ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如 在三角函数中正余弦是基础,通常化切为弦,变异名为同名。 (3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转 化为三角函数值,例如常数“1”的代换变形有: 221sin cos sin90tan45o o αα=+== (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式, 一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手; 基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名, 高次降低次,特殊值与特殊角的三角函数互化等。

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

三角恒等变换问题(典型题型)

三角恒等变换问题 三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。 例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2 3 αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221 cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36 αβαβ+-= 化简得,59sin()72 βα-=- 即59sin()72 αβ-= 方法评析:式的变换包括: 1、tan(α±β)公式的变用 2、齐次式 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) 4、两式相加减,平方相加减 5、一串特殊的连锁反应(角成等差,连乘)

例2 (角的变换---已知角与未知角的转化) 已知7sin()24 25π αα-= =,求sin α及tan()3 π α+. 解:由题设条件,应用两角差的正弦公式得 )cos (sin 22)4sin(1027ααπα-=-=,即5 7 cos sin =-αα ① 由题设条件,应用二倍角余弦公式得 故5 1sin cos -=+αα ② 由①和②式得5 3sin =α,5 4cos -=α, 于是3 tan 4 α=- 故3 tan()34πα-+=== 方法评析: 1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到. 2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例3(合一变换---辅助角公式)

三角恒等变换知识点和例题

三角恒等变换基本解题方法 1、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αα αβααβααβααααα =±=???→=-↓=-=-±±=?-↓=-m m 如(1)下列各式中,值为12 的是 A 、1515sin cos o o B 、221212cos sin ππ - C 、22251225tan .tan .-o o D (2)命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 (3)已知35 sin()cos cos()sin αβααβα---=,那么2cos β的值为____ (4 )11080sin sin -o o 的值是______ (5)已知0tan110a =,求0tan 50的值(用a ,乙求得的结果是212a a -,对甲、乙求得的结果的正确性你的判断是______ 2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与 角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22αβαβ++=?,()() 222αββααβ+=---等),

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

高考总复习三角恒等变换专题习题附解析

高考总复习三角恒等变换专题习题附解析 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

三角恒等变换专题习题 一、选择题(本大题共6小题,每小题5分,共30分) 1.已知α为锐角,cosα=,则tan=( ) A.-3 B.- C.-D.-7 解析依题意得,sinα=,故tanα=2,tan2α==-,所以tan==-. 答案B 2.已知cos=-,则cos x+cos的值是( ) A.-B.± C.-1 D.±1 解析cos x+cos=cos x+cos x+sin x=cos x+sin x==cos=-1. 答案C 3.已知cos2θ=,则sin4θ+cos4θ的值为( ) A. B. C. D.-1 解析∵cos2θ=,∴sin22θ=,∴sin4θ+cos4θ=1-2sin2θcos2θ=1-(sin2θ)2=. 答案B 4.已知α+β=,则(1+tanα)(1+tanβ)的值是( ) A.-1 B.1 C.2 D.4 解析∵α+β=,tan(α+β)==1, ∴tanα+tanβ=1-tanαtanβ. ∴(1+tanα)(1+tanβ)=1+tanα+tanβ+tanαtanβ =1+1-tanαtanβ+tanαtanβ=2. 答案C 5.

(2014·成都诊断检测)如图,在平面直角坐标系xOy中,角α,β的顶点与坐标原点重合,始边与x轴的非负半轴重合,它们的终边分别与单位圆相交于A,B两点,若点A,B的坐标为和,则cos(α+β)的值为( ) A.-B.- C.0 D. 解析cosα=,sinα=,cosβ=-,sinβ=,cos(α+β)=cosαcosβ-sinαsinβ=·(-)-·=-.选A. 答案A 6.若=-,则sinα+cosα的值为( ) A.-B.- C. D. 解析∵(sinα-cosα)=-(cos2α-sin2α), ∴sinα+cosα=. 答案C 二、填空题(本大题共3小题,每小题5分,共15分) 7.若tan=,则tanα=________. 解析∵tan==, ∴5tanα+5=2-2tanα. ∴7tanα=-3,∴tanα=-. 答案- 8.(2013·江西卷)函数y=sin2x+2sin2x的最小正周期T为________. 解析y=sin2x+2sin2x=sin2x-cos2x+ =2sin(2x-)+,所以T=π. 答案π 9.(2013·新课标全国卷Ⅰ)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cosθ=________. 解析f(x)=sin x-2cos x=(sin x-cos x)=sin(x-φ)而sinφ=,cosφ=,当x -φ=+2kπ(k∈Z)时,f(x)取最大值,即θ=φ++2kπ时,f(x)取最大值.cosθ=cos(φ++2kπ)=-sinφ=-=-.

三角恒等变换(测试题及答案)

三角恒等变换测试题 第I 卷 一、选择题(本大题共12个小题,每小题5分,共60分) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. 函数sin cos y x x =+的最小正周期为( ) A. 2 π B. π C. 2π D. 4π 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47 - B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( ) A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12 π 个单位

三角恒等变换知识点总结

、知识点总结 1、两角和与差的正弦、 ⑴cos cos ⑶sin si n 三角恒等变换专题 余弦和正切公式: cos sin si n :⑵ cos cos cos si n si n cos cos si n :⑷ sin si n cos cos si n ⑸tan tan tan 1 tan tan ⑹ta n tan tan 1 tan tan 2、二倍角的正弦、 余弦和正切公式: ⑴ sin 2 2si n cos 1 sin 2 ⑵ cos2 cos 2 ?2 sin 2cos 2 升幕公式 1 cos 2cos 2 — 2 降幕公式 2 cos cos2 1 (tan (tan 1 cos 2 ,1 sin 2 .2 sin tan tan 2 cos tan tan 2 sin cos tan tan tan tan (si n ) ; ). cos )2 1 2si n 2 2sin 2 — 2 1 cos2 ⑶tan2 1 2ta n tan 2 万能公式 半角公式 2 tan a cos - 2 a tan - 2 1 "一个三角函数,一个角,一次方”的y A sin ( x a 2 2 a tan — 2 2 a tan - 2 4、合一变形 把两个三角函数的和或差化为 形式。 sin 2 si n ,其中tan 5. (1)积化和差公式 1 cos = [sin( 2 1 cos =— [cos( 2 和差化积公式 si n cos (2) si n + )+sin( + )+cos( +sin = 2 sin ------ cos --- 2 2 )] )] cos si n si n 1 sin = [sin( + )-sin( 2 1 sin = - — [cos( + )-cos( 2 )] )] -sin = 2 cos ----- sin --- 2 2

知识讲解-三角恒等变换-基础

三角恒等变换 【考纲要求】 1、会用向量的数量积推导出两角差的余弦公式. 2、能利用两角差的余弦公式导出两角差的正弦、正切公式. 3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【知识网络】 【考点梳理】 考点一、两角和、差的正、余弦公式 ()sin()sin cos cos sin ()S αβαβαβαβ±±=± ()cos()cos cos sin sin ()C αβαβαβαβ±±=m ()tan tan tan()()1tan tan T αβαβ αβαβ ±±±= - 要点诠释: 1.公式的适用条件(定义域) :前两个公式()S αβ±,()C αβ±对任意实数α,β都成立,这表明该公式是R 上的恒等式;公式()T αβ±③中,∈,且R αβk (k Z)2 ±≠ +∈、、π αβαβπ 2.正向用公式()S αβ±,()C αβ±,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数。公式()T αβ±正向用是用单角的正切值表示和差角 ()±αβ的正切值化简。 考点二、二倍角公式 1. 在两角和的三角函数公式()()(),,S C T αβαβαβαβ+++=中,当时,就可得到二倍角的三角函数公式 222,,S C T ααα: sin 22sin cos ααα= 2()S α;

ααα22sin cos 2cos -=2()C α; 22tan tan 21tan α αα = -2()T α。 要点诠释: 1.在公式22,S C αα中,角α没有限制,但公式2T α中,只有当)(2 24 Z k k k ∈+≠+ ≠ππ αππ α和时才成立; 2. 余弦的二倍角公式有三种:ααα2 2 sin cos 2cos -==1cos 22 -α=α2 sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。 3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍, 24α α是的二倍,332 α α是 的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公 式的关键。 考点三、二倍角公式的推论 降幂公式:ααα2sin 21 cos sin = ; 22cos 1sin 2 αα-=; 22cos 1cos 2 αα+=. 万能公式:α α α2 tan 1tan 22sin +=; α α α2 2tan 1tan 12cos +-=. 半角公式:2cos 12 sin α α -± =; 2cos 12 cos α α +± =; α α α cos 1cos 12 tan +-± =. 其中根号的符号由2 α 所在的象限决定. 要点诠释: (1)半角公式中正负号的选取由 2 α 所在的象限确定; (2)半角都是相对于某个角来说的,如2 3α 可以看作是3α的半角,2α可以看作是4α的半角等等。 (3)正切半角公式成立的条件是α≠2k π+π(k ∈Z)

简单的三角恒等变换(讲义)

简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公 式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会 换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理 问题的能力. 要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式: 22 1 cos2 2cos , 1 cos2 2sin 降幂公式: 2 1 cos 2 2 1 cos2 cos , sin 22 要点诠释: 利用二倍角公式的等价变形: 1 cos 2sin 2 , 1 cos 2cos 2 进行“升、降幂”变换,即由左边的 22 “一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为 “降幂”变换. 要点二:辅助角公式 1.形如 asinx b cosx 的三角函数式的变形: asin x bcosx asin x b cosx = a 2 b 2 sin x cos a 2 b 2 sin(x ) (其 中 角所在 象限由 a,b 的 符号确 定, 角的值 由 tan b 确定, 或由 sin b 和 a 确定, 或由 a 2 b 2 a cos 共同确定.) a 2 b 2 2.辅助角公式在解题中的应用 通过应用公式 asinx bcosx = a 2 b 2 sin (x )(或 asinx bcosx = a 2 b 2 cos ( ) ),将形如 asinx bcosx ( a, b 不同时为零)收缩为一个三角函数 a 2 b 2 sin (x )(或 a 2 b 2 cos ( )).这种 恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数, 这样做有利于函数式的化 简、求值等. a a 2 b 2 sinx cosx 令 cos a a 2 b 2 ,sin cosxsin b a 2 b 2 b

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

必修四三角函数和三角恒等变换知识点及题型分类的总结

三角函数知识点总结 1、任意角: 正角: ;负角: ;零角: ; 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n n α ∈N 所在象限的方法:先把各象限均分n 等份, 再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象 限对应的标号即为n α 终边所落在的区域. 5、 叫做1弧度. 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 7、弧度制与角度制的换算公式: 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S= 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距 离是() 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:. 12、同角三角函数的基本关系:(1) ; (2) ;(3) 13、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

三角恒等变换知识点总结详解

第三章 三角恒等变换 一、知识点总结 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +? (()()tan tan tan 1tan tan αβαβαβ-=-+) ; ⑹()tan tan tan 1tan tan αβ αβαβ ++= -? (()()tan tan tan 1tan tan αβαβαβ+=+-) . 2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.2 2 2 )cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2 222cos2cos sin 2cos 112sin ααααα=-=-=- ?升幂公式2 sin 2cos 1,2cos 2cos 12 2 α αα α=-=+ ?降幂公式2cos 21cos 2αα+= ,2 1cos 2sin 2 αα-=. ⑶2 2tan tan 21tan α αα = -. 3、 ? (后两个不用判断符号,更加好用) 4、合一变形?把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(??形式。()sin cos ααα?A +B = +,其中tan ?B = A . 5.(1)积化和差公式 sin α·cos β=21[sin(α+β)+sin(α-β)]cos α·sin β=21 [sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)]sin α·sin β= -2 1 [cos(α+β)-cos(α-β)] (2)和差化积公式 sin α+sin β= 2 cos 2 sin 2β αβ α-+sin α-sin β=2 sin 2 cos 2β αβ α-+ αααα ααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos : +-±=-± =+±=2 tan 12tan 1 cos ;2tan 12tan 2 sin : 2 2 2α α αααα万能公式+-=+=

简单的三角恒等变换(教案)

简单的三角恒等变换(一) 张掖中学 宋娟 一、教学目标 知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用; 过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力; 情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点 教学重点:利用公式进行简单的恒等变换; 教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容 复习引入(学生组织完成) 问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解 思考1(学生组织完成):如何用cos α表示222sin cos tan 222 ααα、、? 分析:观察α与2 α 的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的 变形公式. 解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2 α 代 替α,即得2cos 12sin 2 α α=-, 所以21cos sin 22 αα -=; ① 在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2 α 代替α,即得 2cos 2cos 12 α α=-, 所以21cos cos 22 αα +=. ② 将①②两个等式的左右两边分别相除,即得 21cos tan 21cos ααα-=+. 思考2:若已知cos α,如何计算sin cos tan 222 ααα、、?

高中数学三角恒等变换精选题目(附答案)

高中数学三角恒等变换精选题目(附答案) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C 2 D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. tan 20tan 4020tan 40? ? ? ? ++的值为( ) A 1 B 3 C D 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47- B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于 5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-= 的图像( )

A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位 10. 函数sin 22x x y =+的图像的一条对称轴方程是 ( ) A 、x =113π B 、x = 53π C 、53x π=- D 、3 x π =- 11. 已知1cos sin 21cos sin x x x x -+=-++,则x tan 的值为 ( ) A 、34 B 、34- C 、43 D 、4 3- 12.若0,4πα? ? ∈ ?? ?()0,βπ∈且()1tan 2αβ-=,1 tan 7 β=-,则=-βα2 ( ) A 、56π- B 、23π- C 、 712 π- D 、34π- 13. .在ABC ?中,已知tanA ,tanB 是方程2 3720x x -+=的两个实根,则tan C = 14. 已知tan 2x =,则 3sin 22cos 2cos 23sin 2x x x x +-的值为 15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ?面积的最小值为 。 16. 关于函数( )cos2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ?? - ???? 上是单调递增; ③函数()f x 的图像关于点,012π?? ??? 成中心对称图像; ④将函数()f x 的图像向左平移 512 π 个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上) 17. 已知02 π α<< ,15tan 2 2tan 2 α α + = ,试求sin 3πα? ?- ?? ?的值. 18. 求) 212cos 4(12sin 3 12tan 30 200--的值.

三角恒等变换各种题型归纳分析

三角恒等变换基础知识及题型分类汇总 /4的两倍,3α是 “二倍角”的

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换(利用辅助角公式结合正余弦的和角差角公式进行变形) 例1 方法:角不同的时候,能合一变换吗? .cos sin ,,cos sin .cos sin cos sin )(;cos sin cos sin )(.cos )(;cos )(; sin )(;sin )(.x x x x x 2203132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθθθθα α<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,54cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,2 4,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==??? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπαπα????? ??-??? ??---?-?-???72cos 36cos )2(;125cos 12cos )1(.34cos 4sin )3(;23tan 23tan 1)2(;2cos 2sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.124422πππααπαααα求值:化简下列各式:求下列各式的值:.)70sin(5)10sin(3.3.2cos )31(2sin )31(,.212 cos 312sin .1的最大值求大值有最大值?并求这个最取何值时当锐角?++?+=-++-x x y θθθππ

三角恒等变换 知识点总结

三角恒等变换 知识点总结 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式: ⑴ sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ?升幂公式2 sin 2cos 1,2cos 2cos 122α ααα=-=+ ?降幂公式2cos 21cos 2αα+=,21cos 2sin 2 αα-=. 3、 22tan tan 21tan ααα= -. 4、 ?(后两个不用判断符号,更加好用) 5、合一变形?把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(??形式。()sin cos ααα?A +B =+,其中tan ?B =A . 6、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角 与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的 αα半角公式2t an 2cos :==2tan 12tan 1 cos ;2tan 12tan 2 sin :2 22αααααα万能公式+-=+=

(完整版)简单的三角恒等变换(一)

§3.2 简单的三角恒等变换(一) 学习目标:⒈熟练掌握二倍角的正弦、余弦、正切公式的正用、逆用. ⒉能灵活应用和(差)角公式、二倍角公式进行简单三角恒等变形. 教学重点:以推导积化和差、和差化积、半角公式作为基本训练,学习三角变 换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计, 不断提高从整体上把握变换过程的能力. 教学方法:讲练结合. 教具准备:多媒体投影. 教学过程: (Ⅰ)复习引入: 师:前面一段时间,我们学习了三角函数的和(差)角公式、二倍角公式等十一个公式,请同学们默写这些公式. 生:(默写公式). 师:学习了上述公式以后,我们就有了研究三角函数问题的新工具,从而使三角函数的内容、思路和方法更加丰富,为我们提高推理、运算能力提供了新的平台 本节课我们将利用已有的这十一个公式进行简单的三角恒等变换,了解三角恒等变换在数学中的应用. (Ⅱ)讲授例题: 例1试以cos α表示2 sin 2α,2cos 2α,2tan 2α. 分析:α是2 α的二倍角,因此在仅含α的正弦、余弦的二倍角公式(2)C α中,以2 α代替α就可以得到2sin 2α、2cos 2α,然后运用同角三角函数的基本关系可得2tan 2 α. 解:略. 师:例1的结果还可以表示为:

sin 2α =cos 2α=tan 2α=, 有些书上称之为半角公式,其符号由角2 α终边的位置确定. 师:由例题1和以往的经验,你认为代数式变换与三角变换有什么不同? 生:代数式变换往往着眼于式子结构形式的变换.三角恒等变换常常首先寻找式子所包含的角之间的联系. 师:由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此以式子所包含的角之间的关系为依据选择可以联系它们的适当公式,这是三角恒等变换的特点. 例2求证: ⑴1sin cos [sin()sin()]2 αβαβαβ=++-; ⑵sin sin 2sin cos 22 θ?θ?θ?+-+=. 分析:对于⑴我们可以从其中右式出发,利用和(差)的正弦公式展开、合并即可得出左式.我们也可以从两个式子结构形式的不同点考虑,发现 sin cos αβ与和(差)的正弦公式之间的联系.记sin cos x αβ=,cos sin y αβ=, 则有sin()x y αβ+=+,sin()x y αβ-=-,由此解出x ,即求出了sin cos αβ. ⑵的证明可以直接利用⑴的结果,令αβθ+=,αβ?-=,解出α、β后代如即可. 证明:略 师:在此例中,如果不利用⑴的结果,怎样证明⑵?大家可以从角与角之间的关系入手考虑. 生:将22θ?θ?θ+-=+,22 θ?θ??+-=-代入左边,然后利用和(差)的正弦公式展开、合并即可得出右式. 师:在例2的证明中,把sin cos αβ看成x ,cos sin αβ看成y 把等式看作x , y 的方程,通过解方程组求得x ,是方程思想的体现;把αβ+看作θ,αβ-看作?,从而把包含α、β的三角函数式变换成θ、?的三角函数式,是换元思想的应用.

相关文档
最新文档