考研数学:用定积分定义计算极限的方法和技巧

考研数学:用定积分定义计算极限的方法和技巧
考研数学:用定积分定义计算极限的方法和技巧

考研数学:用定积分定义计算极限的方法和技巧

求极限是考研数学中的一个重要考点,每年都考,因此,各位考生应该学会如何熟练地求极限。求极限的方法很多,包括:利用四则运算、两个准则、两个重要公式、变量代换、等价代换、恒等变形(指数化,有理化,三角变换等)、洛必达法则、泰勒公式、导数定义、定积分定义、中值定理和无穷级数。为了帮助各位考生掌握好求极限的各种方法,文都考研辅导老师会向大家逐步地介绍这些方法,今天将向大家介绍如何用定积分定义求极限的方法,供各位考生参考。

用定积分定义求极限的基本思路:

根据定积分的定义:若()f x 在[,]a b 上可积,则0

1

lim

()()n

b

i

i

a

k f x f x dx λξ→=?=∑?

,其中

1max{}i i n x λ≤≤=?,若取(),i i b a b a k

x a n n

ξ--?=

=+

,则得1

()lim []()n

b a n k b a k b a

f a f x dx n n

→∞

=--+=∑

?,特别是,当0,1a b ==时,

101

1lim ()=()n n k k

f f x dx n n →∞=∑?。如果所求极限可以转化为这些和式的极限形式,则可以运用定积分定义计算极限。 适用情形:

利用定积分定义计算极限,主要用于n 项和式(或可以化为n 项和式)的极限计算,n 项和式中的每项须具有同样的表示形式(是某个函数()f x 的函数值),如果是分式,则分子的次数须相同,分母的次数须相同,且分母的次数须比分子的次数高1次。 一般求解步骤:

1)先对和式进行恒等变形化简,使之符合11()n k k f n n =∑或1

()[]n

k b a k b a

f a n n =--+∑的表示

形式;

2)利用定积分的性质计算出积分值;

3)由定积分值得出原和式的值(有时结合使用夹逼准则)。

典型例题:

例1.

求2

lim

+

n

n →∞

+

解:2lim

+n I

n →∞

=+1

1

1lim n

n i n →∞=

=?

令tan x t =,则24440

00

sec sec ln sec tan ln(1sec t

I dt tdt t t

t

ππ

π

=

==+=+?

?

例2.求1lim

()(1)

n

n k k

n k n k →∞

=+++∑ 解:先进行恒等变形化简,然后用定积分定义计算极限,具体过程如下:

11()()(1)1n

n

k k k k k

n k n k n k n k ===-=++++++∑∑ 112233

()()()()122334

1

n n

n n n n n n n n n n -+-+-++-=+++++++++1121n

k n n k

n =-++∑,

1112122n n n

=→++,

110011

1111lim lim ln(1)ln 211n

n n n k k dx x k n k n x n

→∞→∞===?==+=+++∑∑?,所以,原式=1

ln 22- 例3. 求2sin

sin

sin

lim (

+++

)1

112

n n n n n n n n n π

ππ→∞+++ 解:此题须结合夹逼准则求极限:

112sin

sin

sin

11sin +++sin 1

1112

n

n i i n i i n n n n n n n n n n n π

π

π

ππ==≤≤++++∑∑,101

1112

lim sin lim sin sin 11n n n n

i i i n i xdx n n n n n ππππ→∞→∞===?==++∑∑?,由夹逼准则得,所求极限为2π 例4. 求lim

n n

→∞

解:此题表达式是乘积的形式,通过指数化方法可以化为n 项和的形式:

1

10

11lim

ln

ln 12

lim lim()n

n i i

xdx

n n n

n n n

I e e n n n

n

→∞=→∞→∞∑

?==???==,1

11

1

ln lim ln lim[(ln )]lim [ln 1+]=1xdx xdx x x dx ε

ε

ε

εεεεεε+++→→→==-=---?

??,故1

I e -= 上面就是考研数学中如何用定积分定义求极限这类问题的解题方法,供考生们参考借鉴。在以后的时间里,文都考研辅导老师还会陆续向考生们介绍其它求极限的方法,希望各位考生留意查看。最后预祝各位学子在2015考研中取得佳绩。

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

不定积分计算的各种方法论文.doc

不定积分计算的各种方法 广东石油化工学院高州师范学院312数学(1)班梁多彬 【摘要】本论文将要介绍常见的不定积分的各种计算方法以及某些特殊不定积分的求解方法,如:直接积分法(公式法)、分部积分法、换元积分法(第一换元积分法和第二换元积分法)、以及一些特殊函数的积分技巧与方法(有理函数的不定积分以及简单无理函数与三角函数的不定积分),并将结合例题探讨快捷方便的解题方法。 【关键词】不定积分直接积分法分部积分法换元积分法有理函数不定积分简单无理函数与三角函数有理式的不定积分 一、引言 不定积分是《数学分析》中的一个重要内容,它是定积分、广义积分,瑕积分、重积分、曲线积分以及各种有关积分的基础,掌握不定积分的计算方法对于学习这些后续内容具有重要意义。不定积分的解法不像微分运算有一定的法则,它需要根据不同的题型特点采用不同的解法,因此积分运算比起微分运算来,方法更多样,技巧性更强。下面将不定积分的各种计算方法分类归纳,以便于更好的掌握、运用。 二、不定积分的概念 定义:函数f(x)在区间I的所有的原函数()()R F∈ x C C +称为函数f(x)的不 ? 定积分,表为

?+=C x F dx x f )()( ()()('x f x F =,C 为积分常数), 其中∫称为积分符号,x 称为积分变量,f(x)称为被积函数,f(x)dx 称为被积表达式,C 称为积分常数。 在这里要特别注意:一个函数的不定积分既不是一个数,也不是一个函数,而是一个函数族。列如: at at =??? ? ??' 221,而?+=C at atdt 221; () x x cos sin ' =,而?+=C x xdx sin cos ; 2 ' 331x x =??? ? ??,而?+=C x dx x 3231. 这也就是说: ()?)(d x f dx 和?dx x f )(' 是不相等的,即前者的结果是一个函数, 而后者是无穷多个函数,所以,在书写计算结果时一定不能忘记积分常数。 三、不定积分的计算方法 1.直接积分法 既然积分运算是微分运算的逆运算,那么自然地可以从导数公式得到相应的积分公式,并且我们把一些基本的积分公式列成一个表,这个表通常叫作基本积分表: (1)、?+=C ax adx ,其中a 是常数. ?+=C x dx . (2)、?++= +C x dx 11 1 x ααα,其中α是常数,且α≠-1. (3)、? +=C x x dx ln ,x ≠0. (4)、C a a dx a x x +=?ln 1 ,其中a>0,且a ≠1.

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

巧用定积分求极限(数学分析)

定积分在求极限中的应用 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00”型的极限和“∞ ∞ ”型极限的. 泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入 n-1个分点将 [],a b 分成 n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称 为积分元),把这些乘积相加得到和式 1 ()n i i i f x ξ=?∑(称为积分形式)设 {}max :1i x i n λ=?≤≤,若0 1 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法 及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作 b a ()f x dx ?,即0 1 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理

专题利用定积分定义求极限

专题1——利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法: ① 是n →∞时的极限 ② 极限运算中含有连加符号1n i =∑ 在定积分的定义中,我们把区间[,]a b 平均分成n 个小区间(定积分的定义中是任意分割区间[,]a b , 我们当然可以平均分割),那么每个小区间的长度为 b a n -(即定义中的i x ?),这n 个小区间分别为[,]b a a a n -+,[,2]b a b a a a n n --++,[2,3]b a b a a a n n --++,……,[(2),(1)]b a b a a n a n n n --+-+-,[(1),]b a a n b n -+-,在定义中每个小区间上任意取的i ξ我们一致取为每个小区间的右端点i b a a i n ξ-=+(也可以取左端点(1)i b a a i n ξ-=+-),那么定义中的1()n i i i f x ξ=?∑就变为1()n i b a b a f a i n n =--+∑,那么1 lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑?。(取左端点时1lim ((1))()n b a n i b a b a f a i f x dx n n →∞=--+-=∑?) 注意:定积分的定义中0λ→表示的意思是把区间分割为无线个小区间(n →∞也表示把区间分割成无数个小区间,但是在任意分割的前提下,不能用n →∞来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了),当分割方式为均等分割时,n →∞就表示把区间分割成无数个小区间,所以这里是1 lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑?,而不是01 lim ()()n b a i b a b a f a i f x dx n n λ→=--+=∑?。 如()f x 在区间[0,1]上的积分可以表示为1 01 1()lim ()n n i i f x dx f n n →∞==∑?——i ξ取每个小区间的右端点,或者1 01 11()lim ()n n i i f x dx f n n →∞=-=∑?——i ξ取每个小区间的左端点。 举例:求3 41lim n n i i n →∞=∑

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

定积分论文

§ 1 定积分概念 教学要求: 知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题; 教学重点:深刻理解并掌握定积分的思想. 一、问题背景: 1. 曲边梯形的面积; 2. 变力所作的功 二、定积分的定义 从上面两个例子看出,不管是求曲边梯形的面积或是计算变力作的功,它们都归结为对问题的某些量进行“分割、近似求和、取极限”,或者说都归结为形如 ∑=?n i i i x f 1 )(ξ 的和式极限问题。我们把这些问题从具体的问题中抽象出来,作为一个数学概念提出来就是今天要讲的定积分。由此我们可以给定积分下一个定义 定义 设 )(x f 是定义在区间],[b a 上的一个函数,在闭区间],[b a 上任取 n-1个分b x x x x a n i i =<<<<<<-ΛΛ11 把 [a,b] 分成 n 个小闭区间,我们称这些分点和小区间构成的一个分割,用T 表示, 分割的细度用}max {||||i x T ?=表示,在分割T 所属的各个小区间内各取一点],[1i i i x x -∈ξ称为介点,作和式 ∑=?n i i i x f 1 )(ξ 以后简记为 ∑)(T f

此和式称为)(x f 在],[b a 上属于分割T 的积分和(或黎曼和,设J 是一个确定的数,若对任意0>ε总存在某个0>δ,使得 ],[b a 上的任何分割T ,只要它的细度δ<||||T ,属于分割T 的所有积分和 ∑)(T f 都有 ε<-∑|)(|J T f 则称)(x f 在],[b a 上可积,称J 为函数)(x f 在区间],[b a 上的定积分(或黎曼积 分),记作 ?b a f(x)dx 其中)(x f 称为积分函数,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为积分 的上限和下限。 利用积分的定义,前面提到曲边梯形面积可简洁的表示为 ?=b a dx x f S )( 变力作功问题可表示为 ?=b a dx x F W )( 三.理解定积分定义要注意以下三点: 1)定积分定义与我们前面讲的函数极限的“δε-”定义形式上非常相似,但是两者之间还是有很大差别的。对于定积分来说,给定了细度||||T 以后,积分和并不唯一确定,同一细度分割由无穷多种,即使分割确定,介点i ξ仍可以任意选取,所以积分和的极限比前面讲的函数极限要复杂的多。 2)定积分是积分和的极限,积分值与积分变量的符号无关 ???==b a b a b a du u f dx x f dt t f )()()(

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

专题1——利用定积分定义求极限(1)

专题1 ---- 利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法: ①是n 时的极限 n ②极限运算中含有连加符号 i 1 在定积分的定义中,我们把区间[a,b]平均分成n个小区间 b a 我们当然可以平均分割),那么每个小区间的长度为—a 成无数个小区间,但是在任意分割的前提下,不能用n 来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了) n lim0 f(a .b a、b a i )- n n 表示把区间分割成无数个小区间,所以这里是 n lim f (a n i 1 baba i )- n n b f (x) dx , a 而不是 (定积分的定义中是任意分割区间[a,b], (即定义中的x),这n个小区间分别为 r b a、「b a b a n r [a, a ] , [a ,a 2 ] , [a n n n b a b a _ [a (n 2) ,a (n 1) ], n n [a (n n _ b a 2 ,a n b a 3山],…, n 1),b],在定义中每个小区间上任意取的i我们n 致取为每个小区间的右端点i a(也可以取左端点i a (i 1)),那么定义中 左端点时i) x i就变为 f (a i- a) b a n n ,那么lim n n f(a i 1 b a f (X)dX。 n lim f (a n i 1 (i baba b 忖匚a?) 注意:定积分的定义中0表示的意思是把区间分割为无线个小区间(n也表示把区间分割 ,当分割方式为均等分割时,n 就 f (x)dx。

定积分的数值计算方法[含论文、综述、开题-可编辑]

设计 (20 届) 定积分的数值计算方法 所在学院 专业班级信息与计算科学学生姓名学号 指导教师职称 完成日期年月

摘要:数值计算是许多科学与工程计算的核心.定积分的数值计算方法有很多,其中一些常用的计算方法有牛顿-科茨求积公式,梯形求积公式,辛普森求积公式,复合求积公式,龙贝格积分法,高斯求积公式,切比雪夫求积法等.本篇论文主要介绍定积分数值计算的多种方法,并对其中几种做了比较评述,最后给出了梯形求积公式,龙贝格积分法在Matlab环境中的编程实现. 关键词:牛顿-科茨求积公式;复合求积公式;高斯求积公式

Some numerical methods of definite integral Abstract: Numerical calculation is the core of many science and engineering calculation. There are many numerical calculation methods, including some commonly used numerical methods are Newton – Cotes Quadrature formula, Trapezoidal Quadrature formula, Simpson formula,Composite Quadrature formula, Romberg Quadrature method, Gaussian Quadrature formula, chebyshev Quadrature formula, and so on. This theies mainly introduces Some numerical methods of definite integral and compare several of these methods, finally gives the Trapezoidal Quadrature formula, Romberg Quadrature method in the Matlab environment for programming realize. Key words:Newton – Cotes Quadrature formula; Composite Quadrature formula; Gaussian Quadrature formula

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

(完整版)关于利用定积分定义去解决数列极限问题总结

关于利用定积分定义去解决数列极限问题总结 ()()()()()()b 1 1 b n 0 首先研究一下定积分的定义函数f 如果对a,上一切分割及相应的一切积分和,只要分割的细度趋于0,就有一确定的极限,则称该极限为f 在a,上定积分,记为lim 在求部分数列极限问题中,经常会利用定积分的定义去解决,下面我跟大家讲解的再详细具体实用点,在求解过程中方法1:lim 这种做法是从左端n i i a T i n i i a k :x b x b f x dx f x f x dx f x ξξ→=-→∞ =??????=???=?∑?∑?()()()()()()()()()b n 1 11b n n 00b 点开始取函数值方法2:lim 这种做法是从右端点收尾取函数值一般在数列极限问题中我们通常是从右边往左边推,但是我发现在考研真题中上面两个等式 还是不实用,因为考试中通常是对区间取等分间隔=,也就是比如 n 方法1:lim =lim 方法2:n i i a k i n n i i a k k a f x dx f x b a x k b a b a f x dx f x f a n n f x ξξ→∞ =--→∞→∞===?-???--=?+ ? ??? ∑?∑∑?()()()()()()()n n 111b n 0lim =lim 易错点:我可以保证基本每个人都错过,就是在解决具体的真题时候,经常忘了乘错误示范:=lim ?具体求数列极限问题中一般是写成右边这个形式,然后去推测相应的f ,和a,具体数值也就是说要推测三个n n i i k k n a k k b a b a dx f x f a n n b a n k b a f x dx f a n x b ξ→∞→∞==-→∞=??--=?+ ? ?????- ? ? ???- ?+ ? ? ?????∑∑?∑?()()()()1 1 100n n 0量,我感觉有点难,所以我想把这个问题变得再详细具体实用点,我发现在具体应用中不管怎么出,我都可以把a=0,b=1去研究 我是有理由的,大家可以思考下为什么我可以敢这样说,这样做题有一个好处就是只需要推测f 这一个量就可以了, 此时把上面两种方法再修改一下:令a=0,b=1 1 方法1:=lim ,方法2:=lim n k k x k k f x dx f f x dx f n n n -→∞→∞==???? ? ??? ??∑??11 现在问题又来了,在考试的时候涉及到关于数列极限的问题时,怎么才能想到是利用 定积分的定义去求呢? 带着这个疑问,我们再研究一下上面两种方法划横线部分的形式n n ∑

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

运用定积分求极限

运用定积分求极限 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00 ”型的极限和“∞∞”型极限的.泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入n-1个分点将[],a b 分成n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=) ,1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称为积分元),把这些乘积相加得到和式 1()n i i i f x ξ=?∑(称为积分形式)设{}max :1i x i n λ=?≤≤,若01 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作b a ()f x dx ?,即01 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理解.

浅谈用定积分的定义解决极限问题

浅谈用定积分的定义解决极限问题 王涛 (周恩来政府管理学院 政治学与行政学 0612723) 摘 要:数学是一门锻炼人的逻辑思维能力的科目。我们在学习数学的过程中经常遇到的是计算题和证明题,掌握一定的方法和技巧对于我们快速地解出题目是非常有帮助的。有些方法和技巧其实是对定义、概念深入理解所得到的。本文主要探讨用定积分的定义来解决求极限的问题。 关键词:定积分的定义;定积分;极限;曲边梯形的面积 在高等数学的学习中,微积分的学习占有很大的比重,地位也是很重要的。微积分分为微分学和积分学,而微分运算与积分运算之间是互为逆运算的关系。我们通常把微分运算看作正向运算,而把积分运算看作是微分的逆运算,在以往的实际学习上我们也可以看出这点:加减法,乘除法,平方开方,指数对数,三角函数反三角函数等等。而在高等数学的学习中我们首先接触的是微分,然后是积分;从掌握程度上,我们对于正向运算的掌握程度可能要好于逆向运算,不管是学习的速度还是做题的准确性,正向运算可能都要好于逆向运算。然而正逆运算是互通的,熟练掌握这两种运算对于增加解题方法,做到融会贯通都是很有帮助的。下面就来介绍用积分学中定积分的定义来解决微分学中极限的问题。 我们一般在求解极限问题时,经常用到的方法是:极限的定义、性质,几种重要极限、洛必达法则、泰勒公式等。但这些方法都局限于微分学中,没有超越微分学的范围,而我们知道微分与积分是互为逆运算的,那么运用积分学的方法来解决极限问题是否可行?答案是肯定的。用定积分的定义就是解决极限问题的又一方法。 要用定积分的定义来求解极限问题,我们首先要弄清定积分的定义。 定积分的定义:设函数y =)(x f 定义在区间[]b a ,上有界,在[]b a ,上任意插入分点:a =n n x x x x <<<<110-?=b ,令i x ?=1--i i x x ,又任取[∈i ξi i x x ,1-], i =1,2,…n .作和式 i n i i n x f I ?∑==)(1 ξ,令{}i n i x x ?=?≤≤m a x 1, 如果当0→?i x 时,和式n I 的极限存在,且此极限与[]b a ,的分法及i ξ的取法无关,则称函数)(x f 在[]b a ,上是可积的,并称该极限值为)(x f 在[]b a ,上的定积分,记作? b a dx x f )(, 即 i n i i b a x x f dx x f ?=∑? =→?)()(1 0lim ξ.

相关文档
最新文档