10KV电网单相接地电容电流1

10KV电网单相接地电容电流1
10KV电网单相接地电容电流1

山西朔州平鲁区西易党新煤矿有限公司

10KV电网单相接地电容电流测试报告

山西朔州平鲁区西易党新煤矿有限公司

201 年月日

山西朔州平鲁区西易党新煤矿有限公司35KV变电站10KV母线单相接地电容电流测试报告

中性点不接地系统的优点是单相接地电流较小,单相电流不形成短路回路,电力系统安全运行规章规定可继续运行1~2小时。但是,长时间接地运行,极易形成俩相接地短路,弧光接地还会引起全系统过电压。特别是矿井电网,因其大部分为电缆供电,若单相接地电流较大,加之井下环境恶劣,故障多,高压电缆经常发生单相漏电或单相接地故障,且过大的单相接地电流经常引起电缆放炮和击穿现象,影响正常生产,并给矿井和人身安全带来严重后果。因此,正确测量、了解电网单相接地电流情况,对保证矿井安全运行极为重要。

1、单相接地电流及其分量的测量方法

电网单相对地绝缘参数的常用测量方法有:附加电源测量法,交流伏安法,中性点位移电压法,谐振测量法。其中第一种方法所测的是测量频率下的绝缘参数,只可间接地反映工频下的绝缘参数;而后三种方法是采用电网工作电源进行测量,反映了电网的实际绝缘参数。中性点位移电压法也称间接测量法,是目前测量小电流接地系统单相接地电容电流的常用方法。其一般作法是在电网一相与地之间接入一个附加电容,实测流过此电容的电流与中性点位移电压,通过计算来求得电网单相接地电容电流。但由于电容的充电效应,在人为接地的瞬间,相当于在电网中产生了一个金属性接地故障,这显然不利于安全。因此,有必要研究一种更加安全可靠地新方法,即单相经电阻接地的间接测量方法。

图1 中性点不接地电网绝缘参数测量模型

图1为一中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到实验的安全性,采用电网单相经电阻接地的方法,电网的任何一相(如A 相)经附加电阻R 和电流表A 接地。接地电阻R 选用500—1000 Ω,接地电流可控制在几安培,并通过理论计算,求出电网单相直接接地时的电流。

我们知道,电网单相接地电流是电网对地总的零序电流之和,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是:

R E I U I ?=02

100 (1) 式中,E I 为电网单相直接接地电流,R I 为电网单相经电阻接地的电流,02U 为

电网单相经电阻接地时的二次零序电压,100为电网单相直接接地时的二次零序电压(100V )。

由此可见,只要测得电网电源相电压、单相经电阻接地时电阻中的电流与电网零序电压,即可方便地求得单相接地电流。该方法非常简单,而且安全、可靠。

考虑到测量的安全性,电网相电压与零序电压通常经过电压互感器进行测量。实际测量时,由于电网不一定恰好在额定电压下运行,应考虑到实际电网电压的波动情况,因此式(1)还应进一步改写为

R E I U U I ?=02

12 (2) 式中12U —电压互感器二次线电压

关于电网没相对地绝缘电阻r 相对地电容C 的计算方法,可根据其它数学模型进一步计算。

2 测试数据及结果

该矿10KV 母线共有 2 段母线,采用 双母线并列 运行方式。 母线电网经电阻接地的有关测试数据为:

R I = 5.2 A, 02U = 92 V , 12U = 106 V , 计算出该段母线电网单相直接接地电流为:

E I = 4.8 A

由以上数据可得,在忽略电网电阻绝缘电阻时,电网总的单相接地电流

电容为 4.8 A 。

消弧线圈投入运行后,根据上述提出的测量方法进行接地实验,得到数据如下

R I = 4.5 A, 02U = 93 V , 12U = 107 V , 计算出该段母线电网单相直接接地电流为:

E I = 3.9 A

则消弧线圈补偿了

残余电流为3.9A

结论:工程实际中应根据系统具体情况,选取适合的智能型自动补偿装置。首先,要根据系统电容电流大小来决定消弧线圈的补偿范围,即容量。如果消弧线圈在最大补偿电流档位运行,脱谐度仍大于5%,说明消弧线圈的容 量已不能满足要求。其次,要确定消弧线圈的调节步长,即分接头数。从理论上讲,最好是连续可调的消弧线圈.现该矿10KV 系统经过电容补偿及消弧消谐处理后,单项接地电流大小满足供电安全要求。

机 运 部

2017年11月16日

测试人: 年 月 日

审核人: 年 月 日

三相电机的电流计算公式

三相电机的电流计算公式 如果一台排风扇是三相电机,它的标签上只写了电压380V,功率是4KW,还有转速,那么怎么计算它的电流呢? 公式是什么呢 A=KW/(1.732*0.38*COS) COS=功率因数 第 2.0.1条电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度进行分级,并应符合下列规定: 一、符合下列情况之一时,应为一级负荷: 1.中断供电将造成人身伤亡时。 2.中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。 3.中断供电将影响有重大政治、经济意义的用电单位的正常工作。例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经

常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。 在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。 二、符合下列情况之一时,应为二级负荷: 1.中断供电将在政治、经济上造成较大损失时。例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等。 2.中断供电将影响重要用电单位的正常工作。例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱。 三、不属于一级和二级负荷者应为三级负荷。 第2.0.2条一级负荷的供电电源应符合下列规定: 一、一级负荷应由两个电源供电;当一个电源发生故障时,另一个电源不应同时受到损坏。 二、一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统。 第2.0.3条下列电源可作为应急电源:

电容电流测试报告

XZZNDQAQ-2014-019 某某煤矿集团西风井35kV变电所6kV电网单相接地电容电流测试报告 徐州智能电气安全研究所 二〇一四年四月

编写:审核:审批:

1. 测量方案 1.1. 测量原理 电网对地电容电流常用的测量方法有:单相直接接地测量法、单相经电阻接地测量法、附加电容测量法和注入法等。其中单相直接接地测量法属于直接测量方法,其它属于间接测量方法。本次测试采用单相经电阻接地测量法,该方法有简单、易实施、测试过程安全、测量精度高、测试时间短、对电网冲击小等优点,并且适用于中性点非有效接地系统各种中性点接地形式,具体原理如下。 R 图1-1 中性点不接地电网绝缘参数测量模型 上图为中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到试验的安全性,采用电网单相经电阻接地的方法,电网的一相经接地电阻和电流表接地。接地电阻R 根据电网类型一般在500~1000Ω范围选取,接地电流控制在几安培范围,测量必要的参数,即可求出电网单相直接接地时的接地电流。 电网单相接地电流是电网对地总的零序电流之和,理论推导可知,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: 2 02 l E R U I I U (1-1) 式中:I E 为电网单相直接接地电流 U l2为电压互感器二次线电压 U 02为电网单相经电阻接地时的二次零序电压 I R 为电网单相经电阻接地的电流 因此,只要测得电网的二次线电压、零序电压、单相经电阻接地时电阻流过

电容电流计算书

电容电流的计算书 电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。 1.架空线路的电容电流可按下式估算: I C =(2.7~3.3)U e L×10-3 (F-1) 式中:L——线路的长度(㎞); U e——线路系统电压(线电压KV) I C ——架空线路的电容电流(A); 2.7 ——系数,适用于无架空地线的线路; 3.3 ——系数,适用于有架空地线的线路; 同杆双回线路的电容电流为单回路的1.3~1.6倍。 亦可按附表1所列经验数据查阅。 附表1 架空线路单相接地电容电流(A/km) 2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算 I C=0.1U e L (F-2) 按电容计算电容电流 具有金属保护层的三芯电缆的电容值见附表2。 附表2 具有金属保护层的三芯电缆每相对地电容值(μF/㎞)

将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。单相接地电容电流可由下式求出: I C = 3 U e ωC ×10-3 (F-3) 其中 ω=2πf e 式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz ); C —— 厂用电系统每相对地电容(μF ); 2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。 6kV 电缆线路 = I C 6S 22002.84S 95++U e (A ) (F-4) 10kV 电缆线路 =I C 0.23S 22001.44S 95++U e (A ) (F-5) 式中 S —— 电缆截面 (㎜2) U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。 附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞) 2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。 前述各公式主要用于油浸纸绝缘电力电缆,而目前广泛采用的交联聚乙烯绝缘电力电 缆,由于其结构特点,其单独接地电容电流比同截面的纸绝缘电缆的电容电流大,根据厂家提供的参数和现场实测数据,大约增大20%左右,其值见附表4。 附表4 6~10 kV 交联聚乙烯绝缘电缆的接地电容电流

最新DRL300P配网电容电流测试仪说明书汇总

D R L300P配网电容电 流测试仪说明书

配网电容电流测试仪 使用说明书 上海菲柯特电气科技有限公司

目录 一、仪器的用途及特点 (2) 二、主要技术指标及使用条件 (2) 三、面板及各键功能介绍 (3) 四、测量原理 (3) 五、配电网中PT接线方式及PT的变比 (4) 六、从变压器中性点测量配网电容电流的方法 (10) 七、仪器使用方法 (11) 八、测量其他电压等级电网的电容电流的方法 (13) 九、仪器检验和日常校准 (14) 十、常见的故障及处理 (14)

十一、仪器成套性 (14) 十二、维修保养和售后服务: (14) 一、仪器的用途及特点 目前,我国配电系统的电源中性点一般是不直接接地的,所以当线路单相接地时流过故障点的电流实际是线路对地电容产生的电容电流。据统计,配电网的故障很大程度是由于线路单相接地时电容过大而无法自行熄弧引起的。因此,我国的电力规程规定当10kV和35kV 系统电容电流分别大于30A和10A时,应装设消弧线圈以补偿电容电流,这就要求对配网的电容电流进行测量以做决定。另外,配电网的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量

配电网的对地电容值。传统的测量配网电容电流的方法有单相金属接地的直接法、外加电容间接测量法等,这些方法都要接触到一次设备,因而存在试验危险、操作繁杂,工作效率低等缺点。 为解决这些问题,我菲柯特公司与大专院校及试验研究院共同潜心研制,开发出配网电容电流测试仪。该新型智能化测试仪直接从PT的二次侧测量配电网的电容电流,与传统的测试方法相比,该仪器无需和一次侧直接相连,因而试验不存在危险性,无需做繁杂的安全工作和等待冗长的调度命令,只需将测量线接于PT的开口三角端就可以测量出电容电流的数据。由于从PT开口三角处注入的是微弱的异频测试信号,所以既不会对继电保护和PT本身产生任何影响,又避开了50Hz的工频干扰信号,同时测试仪的输出端可以耐受100V的交流电压,若测量时系统有单相接地故障发生,亦不会损坏PT和测试仪,因而无需做特别的安全措施,使这项工作变得安全、简单、快捷,且测试结果准确、稳定、可靠。 该测试仪采用大屏幕液晶显示,中文菜单,操作非常简便,且体积小、重量轻,便于携带进行户外作业,接线简单,测试速度快,数据准确性高,大大减轻了试验人员的劳动强度,提高了工作效率。 二、主要技术指标及使用条件 1)电容电流测量范围:1A~250A 0.3μF~125μF 2)测量误差:≤5% 3)工作温度:-10℃~50℃ 4)工作湿度:0~80% 5)工作电源:AC 220V±10% 50Hz±1Hz 6)外行尺寸:350mm×200mm×150mm 7)仪器重量:2.5kg 8)电压等级:1KV、3KV、6KV、6.3KV、10KV、20KV、35KV、66KV。 三、面板及各键功能介绍(图一) 1)电流输出端子:输出测量信号,接到PT开口三角端 2)保险管:配置220V/2A保险管,用于保护仪器过载或故障 3):仪器的接地端子 4)液晶屏:显示测试状态和测试数据 5)对比度:调节液晶屏的显示对比度 6)AC220V:电源插座及开关 7)复位键:用于仪器复位初始化或中断测试 8)电压选择键:按该键,可以在1kV、3kV、6kV、6.3KV、10kV、20KV、35kV、66KV系 统线电压间循环选择 9)方式/测量键:多功能键,短按(即按下后立刻松开)时,用于循环选择系统PT的 接线方式;长按(即按下2秒后才松开)时,用于启动测量。

第5章 电力电容器局部放电测试方法

第5章电力电容器局部放电测试方法 5.1 电力电容器局部放电的产生和危害 电力电容器采用浸渍纸、浸渍薄膜以及浸渍纸和薄膜组合的绝缘结构。与其它绝缘结构相 比,电力电容器的重要特点是介质的工作场强特别高,由于局部放电使电容膨胀,早期损坏以及发生爆炸的现象早已引起制造部门和运行部门的重视。例如,在全膜电容器中,介质损耗大大降低,热击穿可能性下降了,更加突出了电击穿的可能性。因此,在设计制造全膜电容器时,首先应考虑的就是局部放电问题。 电容器是由几种介质串联的组合绝缘,在交流电压下,电压分配与各层的电容量成反比, 在直流电压下,电压分配与各层的绝缘电阻成正比,因此组合绝缘的耐电强度与各成分的耐电强度和搭配情况有关。局部放电包括绝缘结构内气隙中的放电和浸渍剂中的局部放电。局部放电可以发生在电容器极下面的绝缘层中,即均匀电场部分所包含的气隙中,也可以发生在极板边缘电场集中处。 绝缘中气泡发生放电后,除了产生热,破坏介质的热稳定性之外,还产生离子或电子对介 质的撞击破坏,以及形成臭氧和氮的氧化物,对介质产生化学腐蚀作用。 当气隙厚度增加、介质厚度增加或介质的介电常数增加时,均使局部放电场强下降。在理 想情况下 E可以很高,但如果浸渍剂干燥不够,去气不彻底或液体中含有杂质,则会使电场i 发生畸变,产生电场集中,使 E下降很多。因此,电容器必须采取严格的真空浸渍。 i 另外,产生放电的原因是过电压的作用使介质内部某处场强过高而产生局部放电。在交流 电压作用下,电容器绝缘中局部放电首先在场强较高的电极边缘产生。用显微镜观察油浸纸局部放电的破坏过程,当电场足够高时、首先在电极边缘上的纸纤维发生断裂,于是电极边缘下的纸发生突起并出现小洞,此后小洞不断扩大延伸到下一层纸,这时部分纤维断裂完全脱离了纸,扩散到油中或沉积在损伤部位,但纸没有炭化,最后多层纸均被损伤,在最薄弱点产生击穿,在击穿通道上生成整齐的炭化边缘。当遇到纸层中弱点时也会贯穿纸层,最后发生击穿。 对绝缘材料研究表明,在局部放电作用下寿命是随电场的增加而呈指数式下降的。大量的 事实证明,电力电容器内部局部放电是造成电容器膨胀和早期损坏的一个重要原因。 5.2 电力电容器局部放电测量参数及技术规定 5.2.1 评定电力电容器局部放电的参数 目前,在电力电容器局部放电试验中主要有放电量、起始放电电压以及放电熄灭电压等。 一、放电量q 有的产品(如耦合电容器)规定,在测量电压下放电量不超过某一数值为合格;在另一些 产品中(如移相、串联等电容器)只规定在测量电压下一定时间内放电量不变大就为合格。 放电量q随电压作用时间的变化趋势分析是判断试品质量的重要手段,如图5.1中曲线a 中放电量随电压作用时间变化而增加不多,而曲线b却增加很多,显然试品a的质量好于b。

配电网电容电流计算

配电网电容电流计算 一、概述 随着城市电网的扩大,电缆出线的增多,系统电容电流大大增大。当系统发生单相接地故障,其接地电弧不能自熄,极易产生间隙性弧光接地过电压,持续时间一长,在线路绝缘弱点还会发展成两相短路事故。因此,当网络足够大时,就需要采用消弧线圈补偿电容电流,这是保证电力系统安全运行的重要技术措施之一。为避免不适当的补偿给电力系统安全运行带来威胁,首先必须正确测定系统的电容电流值,并据此合理调整消弧线圈电流值,才能做到正确调谐,既可以很好地躲过单相接地的弧光过电流,又不影响继电保护的选择性和可靠性。 目前,电容电流的测定方法很多,通常采用附加电容法和金属接地法进行测量和计算,但前者测量方法复杂,附加电容对测量结果影响较大,后者试验中具有一定危险性。目前,根据各种消弧线圈不同的调谐原理,有多种间接测量电网电容电流的方法。其根本思想都是利用电网正常运行时的中性点位移电压、中性点电流以及消弧线圈电感值等参数,计算得到电网的对地总容抗,然后由单相故障时的零序回路,计算当前运行方式下的电容电流。 在实际运行中,对于出线数较多、线路较长或包含大量电缆线路的配电系统,当其发生单相接地故障时,对地电容电流会相当大,接地电弧如果不能自熄灭,极易产生间隙性弧光接地过电压或激发铁磁谐振,持续时间长,影响面大,线路绝缘薄弱点往往还会发展成两相短路事故。因此,DL/T620-1997《交流电气装置的过电压保护和绝缘配合》规定:3~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,当单相接地故障电流大于10A时应装设消弧线圈;3~10kV电缆线路构成的系统,当单相接地故障电流大于30A,又需在接地故障条件下运行时,应采用消弧线圈接地方式。消弧线圈一般为过补偿运行(即流过消弧线圈的电感电流大于电容电流),也就是说装设的消弧线圈的电感必须根据对地电容电流的大小来确定,以防止中性点不接地系统发生单相接地而引起弧光过电压。 故障后,消弧线圈必须快速合理地补偿电容电流,以使接地电弧快速自熄,所以消弧线圈应实时跟踪电网运行方式的变化,在电网正常运行时,测量计算当前运行方式下的电容电流,以合理调节消弧线圈的出力。显然,电网电容电流的

电容电流测量

附加电容法测量电网单相接地电容电流被测单位: 被测站名称: 日期: 天津市天变航博电气发展有限公司

(1)准备测量工具 a)0.5 级电流表、电压表各一块 b)uF左右高压力率电容器一只 c)高压绝缘线4米左右 d)高压试电笔一只 e)绝缘手套一副 (2)单相接地电容电流的估计 I JD=(电缆总长度)+(架空线总长度/10)+(3倍浪涌电容器的单相值),其中长度单位为KM,电容器单位为uF。 (3)测量前先将网上的消弧线圈退出,PT开口电压上的负载断掉,用万用表测量测量开口电压U0,如果U0>400mv,则需测量三相后取平均值,U0<400mv则测一相便可。 (4)接线(见附图) a)按图接线,注意所有接线必须悬空,并保持安全绝缘距离 b)电容器需放在绝缘垫上,外壳接地 c)封表线方便用试点笔挑开 d)所有接线尤其接地线要可靠接触 e)准备好电容器放电接地线 f)选择电流表量程,电流表的量程安培数必须大于附加电容的微 法数25%左右

(5)重新检查接线,要求无关人员远离现场 (6)开始试验 a) 测量PT二次U AB= v、U BC= v、U AC= v ; U L= (U AB +U BC +U AC)/3= v b) 将万用表接在PT 开口上,封上电流表,合上上隔离开关, 合上空开后一秒,用高压试电笔将电流表封线挑开, 读电流表I= 读开口电压表U jd0= c)断开断路器,拉下隔离开关,将电容器放电 如果三相都测,请重复上面步骤并记录下 I AJD= A U A0= v I BJD= A U B0= v I CJD= A U C0= v d)计算 Uo<0.4V:I C= (U L/Ujd0)*I = Uo>0.4V:

电容电流估算方法

1.1.1 电容电流估算方法 1.1.1.1 6~10kV 电网单相接地电流的计算 在中性点不接地的6~10kV 电网中,电网每相对地存在着分布电容和分布绝缘电阻,在计算接地电流时,可以把它们用集中参数来表示,如图8所示。当电网某相发生单相经电阻接地时(电阻为零便为直接接地),在接地点有一接地电流流过,下面分析一下接地电流的计算。 图8 6~10kV 供电系统 A U 、B U 、C U ——电网各相电源电压;A U ' 、B U ' 、C U ' ——电网各相对地电压; C ——电网每相对地电容;R ——电网每相对地绝缘电阻;E R ——接地电阻 当电网某相(如图8中的A 相)经电阻E R 接地时,按照对称分量法的原理, 可以将故障点处的三相电流、电压分解成正序电流(1A I 、1B I 、1C I )、电压(1A U 、1 B U 、1 C U );负序电流(2A I 、2B I 、2C I )、电压(2A U 、2B U 、2C U )和零序电流0I 、零序电压0U 。可以求出流过电阻E R 的电流E I 和各序电流之间]的关系为: E A A I I I I 3 1021=== (31) 由(31)式得出复合序网如图9所示。 C U

图 9 单相接地故障的复合序网 图9中1Z 、2Z 、0Z 分别表示电网的正序阻抗、负序阻抗、零序阻抗,由于1Z 、2Z 是电网线路和变压器的漏抗与电网对地阻抗的并联,很小,均可忽略,0Z 是电网线路阻抗与电网对地阻抗的串联,有:1Z =2Z ≈0,0Z ≈Z = C j R ω+1 1。 根据对称分量的原理,故障点处的对地电压: ?????++='++='++='0 21021021U U U U U U U U U U U U C C C B B B A A A (32) 可以得出: ???????======0 22211 1C B A C C B B A A U U U U U U U U U (33) 所以在故障点存在有正序电压和零序电压,负序电压接近于零。 下面分析计算一下零序电压和零序电流以及接地电流。根据前面的分析我们知道:流过每相对地电容和对地绝缘电阻及流过接地电阻的电流分别为: E R 3

电机计算公式

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

为什么国家电力规程要求做电容电流测试

为什么国家电力规程要求做电容电流测试? 为什么国家电力规程要求做配电网电容电流测试? 作者:山凡,时间:2014年8月27日 部分电力测试10年经验的人士,对配电网电容电流测试也不能正确理解此试验的重要性。 在中国,66kV及以下电力系统配电网的中性点都是非直接接地系统,当发生线路系统单相接地时,流过故障点的电流实际是线路对地电容产生的电容电流,并不立即对设备造成损坏,不会造成断路器掉闸。但是,单相接地一定要设法找到故障点并加以消除,否则,它会给电气设备的安全构成威胁,极易发展成为其他事故,这些威胁包括: 1.单相接地电流通过铁心(如调相机、变压器的铁心)会使铁心烧坏。 2.在单相接地的故障点附近,人身有遭到跨步电压的危险。当导线一相碰地时,电流已触地一点为圆心向外扩散,在20m以内的地面上画许多同心圆,则这些圆周均有不同的电位。 人体两脚接触地面两点,该两点之间的电压称为跨步电压。人身遭受跨步电压的作用当然是有一定危险的。 3.易发展成两相短路。因单相接地时,非故障对地电压升高为原来的几倍。若是弧光接地,非故障相甚至还会出现2.5~3倍的电压,尤其弧光还会使导线周围的气体发生游离,这两种情况碰在一起,很容易造成相间短路。这对设备和系统来说,都是破坏性的故障。 4.接地点的存在还会使故障设备外皮(如电缆外皮)或遮拦带电,易造成人身触电事故。 我国电力规程规定当10kV电容电流分别大于30A,或35kV系统电容电流分别大于10A 时,应装设消弧线圈以补偿电容电流,这就要求对配电网电容电流测试以决定是否安装消弧线圈。 配电网的对地电容和PT的参数配合会产生PT铁磁谐振过压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量配电网的对地电容值,这样解释大家一定理解了配电网电容电流测试在电力测试行业的重要性了。 配电网电容电流测试,在2009年以前,常规测试方法是开口三角异频信号注入法测量,测量电容电流要求系统必须平衡,而现场95%的系统都不平衡,所以此方法的适用场合很窄; 武汉某电气试验仪器制造企业经过2年多的设计研发,成功推出中性点外加电容法,实现配电网电容电流测试, 中性点外加电容法对系统平衡与否几乎没有要求,故适用场合很宽,特别适用于煤矿、钢铁等复杂线路,测量过程一下子从复杂变得简单,且测试结果无干扰因素更准确。 关于如何寻找中性点,及中性点外加电容法做配电网电容电流测试的操作方法,目前网上已经有电容电流试验视频和详细的操作说明,有兴趣的朋友可以搜一下。 1 / 1

10KV电网单相接地电容电流1

山西朔州山阴金海洋台东山煤业有限公司 35kv变电站10KV母线单相接地电容电流测试报告中性点不接地系统的优点是单相接地电流较小,单相电流不形成短路回路,电力系统安全运行规章规定可继续运行1~2小时。但是,长时间接地运行,极易形成俩相接地短路,弧光接地还会引起全系统过电压。特别是矿井电网,因其大部分为电缆供电,若单相接地电流较大,加之井下环境恶劣,故障多,高压电缆经常发生单相漏电或单相接地故障,且过大的单相接地电流经常引起电缆放炮和击穿现象,影响正常生产,并给矿井和人身安全带来严重后果。因此,正确测量、了解电网单相接地电流情况,对保证矿井安全运行极为重要。 1 单相接地电流及其分量的测量方法 电网单相对地绝缘参数的常用测量方法有:附加电源测量法,交流伏安法,中性点位移电压法,谐振测量法。其中第一种方法所测的是测量频率下的绝缘参数,只可间接地反映工频下的绝缘参数;而后三种方法是采用电网工作电源进行测量,反映了电网的实际绝缘参数。中性点位移电压法也称间接测量法,是目前测量小电流接地系统单相接地电容电流的常用方法。其一般作法是在电网一相与地之间接入一个附加电容,实测流过此电容的电流与中性点位移电压,通过计算来求得电网单相接地电容电流。但由于电容的充电效应,在人为接地的瞬间,相当于在电网中产生了一个金属性接地故障,这显然不利于安全。因此,有必要研究一种更加安全可靠地新方法,即单相经电

阻接地的间接测量方法。 图1 中性点不接地电网绝缘参数测量模型 图1为一中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到实验的安全性,采用电网单相经电阻接地的方法,电网的任何一相(如A 相)经附加电阻R 和电流表A 接地。接地电阻R 选用500—1000 Ω,接地电流可控制在几安培,并通过理论计算,求出电网单相直接接地时的电流。 我们知道,电网单相接地电流是电网对地总的零序电流之和,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: R E I U I ?=02 100 (1)

10kV母线电容电流测试仪

10kV母线电容电流测试仪 我国的电力规程规定当10kV和35kV系统电容电流分别大于30A和10A时,应装设消弧线圈以补偿电容电流,这就要求对配网的电容电流进行测量以做决定。另外,配电网的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量配电网的对地电容值。 测量配网电容电流的方法有单相金属接地的直接法、外加电容间接测量法以及在PT开口三角形加信号等方法,但是,在现场最受欢迎和使用较频繁的还是使用中性点电容法。 全自动电容电流测试仪采用大屏幕液晶显示,中文菜单,在做好安全措施后,事先设置仪器参数后则无需触碰操作仪器,使这项工作变得安全、简单、快捷,且测试结果准确、稳定、可靠,不受其他运行条件影响,特别是系统不平衡的时候。注意事项: 测量时操作绝缘棒人员应带绝缘手套、穿绝缘靴! 绝缘棒碰触变压器中性点时间应尽可能短,在读数完毕后立即断开,读表人员宜站在绝缘垫上 保护间隙F放电电压要低于CN的额定电压,在系统中性点无过电压时不应动作。 1、外加电容C可以按估算电网电容的至3倍值分为几档来选定,以便进行重复测量,电容器的额定电压应在1kV以上。 2、如直接用电压表测量电压,除量程应满足要求外,还要求选用高内阻的,不宜使用内阻低、0.2级或更精密的电压表,也不宜采用磁电式电压表或真空管电压表。

3、测量工作应在天气良好无大风情况下进行,以免系统发生单相接地后中性点产生高电压带来危险。 4、电缆馈电系统一般不对称电压很低,为提高系统电容测量精度,要求有较高的不对称电压值,为此可在一相上接入电容器或断开一相电缆,其容量能 使不对称电压提高到2%相电压,不过最后应当从计算出的系统对地电容中减去或加上这一部分电容。 例如,某一10kV电缆馈电系统估算的电容电流为100A,造成人不对称电压为2%相电压的电容电流 IC≈100×2%=2A 为此可选表2-5中截面95mm2,6km长具有电容电流等于6A的三相备用用电缆,使其一相断开(具有2A电流),即可满足要求。 5、对没有中性点的电网可以利用连接组标号为Y?d11的配电变压器人为构成临时的中性点,然后应用中性点外加电容法确定电网电容电流。 6、在直馈送电系统中,如选择发电机中性点应用外加电容法时,要考虑电机3倍次数谐波对不对称电压的影响; 在测量中发电机的零序保护也要暂时退出,以免电机中性点接入CN后过大的电流使保护误动。 ◆ FS500P配网电容电流测试仪技术参数 ☆电容电流测量范围:0.3μF~125μF ,1A~250A ☆测量误差:0.3μF~90μF,1A~160A时,≤5% ;90μF~125μF,160A~250A时,≤10% ☆工作温度:-10℃~50℃ ☆相对湿度:≤80% ☆工作电源:AC 220V±10% 50±1Hz ☆外行尺寸:350mm×200mm×150mm

10KV的电网中性点不接地单相接地时的电容电流

10KV的电网中性点不接地单相接地时的电容电流 下面是一些摘录资料: 在GB50070-94《矿山电力设计规范》第2。0。10条中规定,“矿井6-10KV电网,当单相接地电容电流小于等于10A时,宜采用电源中性点不接地方式;大于10A时,必须采取限制措施”。这条规定是依据国内外有关科研成果和国内外现行规程、标准以及人身触电安全要求等三方面作出的。现分述如下: 1、试验研究和运行经验数据 ①《电缆网络单相接地电弧电流不自熄下限试验研究》技术鉴定书指出,“电弧引弧试验的数据近200个。这些数据客观地、真实地描述了在给定工况条件下,电缆接地电弧电流的熄灭情况”。部级鉴定委员会同意由西北电力中试所和北京煤炭设计研究院完成的试验研究报告,并肯定该报告可供修改规程、规范时参考。该报告的结论是,电弧接地不自熄电流下限值:全塑电缆25A;油浸纸绝缘电缆15A;交联电缆10A。以安全计应取其中最小值10A。 ②华中、湖北电力试验研究所1992年试验研究的成果表明,3-10KV架空配电线路,当电容电流在16A及以上时,不能自熄电弧;当电容电流小于10A,几乎全能自熄。 ③湖北省6-10KV配电网运行经验与上述试验研究结果一致。 ④开滦矿务局赵各庄煤矿从60年代以来,单相接地电容电流达18A左右,井下高压电缆发生着火事故次数显著增多。 ⑤原中国统配煤矿总公司6KV电网安全调研组于1988年对引起矿井电缆“放炮”事故做了统计分析。结论是,电容电流在20A左右的矿井电缆“放炮”事故仍很严重。 ⑥(GB50070-94)《矿山电力设计规范》专题组编写的《关于矿井高压电网单相接地电流限值问题的分析讨论》报告中指出,某矿实测6KV电网电容电流为16A,曾发生多重接地故障。 ⑦中国矿业大学《矿井6KV电网单相接地电流及限制方案的制定》一文指出,实验研究和仿真计算结果表明,当单相接地电弧电流小于10A时,电弧可自熄。 ⑧前苏联《煤矿供电效率的提高》专著中指出,当接地电容电流大于10A时,中性点应采用消弧线圈补偿方式。 ⑨美国EBASCO公司认为,为了减少单相接地故障对设备的损坏程度,应限制单相接地电流在10-15A范围之内。 ⑩前苏联电力专家石林才思认为,接地故障电流减小到10A以下,配电装置单相接地故障不易转变为相间短路故障。 2、国内外标准、规程的相关规定 ①《苏联电气装置安装法规》(1988年版)规定,3-20KV架空线路电网(钢筋水泥或金属电杆)和所有35KV电网,当接地电容电流大于10A时,应进行补偿。 ②美国电气标准规定,为了减少单相接地故障时对设备的损坏程度,单相接地电流应限制在不大于10-15A。 ③英国电气规程规定,由于电弧接地引起电缆故障,并常引起电气灾害,为此限制接地故障电流小于等于15A。英国变压器制造厂向我国及英国国内供货时,均保证符合这一要求。④德国矿业电气规程规定,接地故障电流大于10A时,必须加装自动跟踪补偿灭弧装置,以把接地残流限制在4A以内。 ⑤瑞典推荐中性点消弧装置的补偿效果是应使6-11KV电网故障点的残流小于等于7A。 ⑥罗马尼亚国家电气规程规定,接地电容电流大于10A时,应采用连续可调式消弧装置。

单相接地电容电流

自动化论坛: 单相接地电容电流的计算方法 单相接地电容电流的计算 4.1 空载电缆电容电流的计算方法有以下两种: (1)根据单相对地电容,计算电容电流(见参考文献2)。 Ic=√3×UP×ω×C×103 式中: UP━电网线电压(kV) C ━单相对地电容(F) 一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。 (2)根据经验公式,计算电容电流 Ic=0.1×UP ×L 式中: UP━电网线电压(kV) L ━电缆长度(km) 4.2 架空线电容电流的计算有以下两种: (1)根据单相对地电容,计算电容电流 Ic=√3×UP×ω×C×103 式中: UP━电网线电压(kV) C ━单相对地电容(F) 一般架空线单位电容为5-6 pF/m。 (2)根据经验公式,计算电容电流 Ic= (2.7~3.3)×UP×L×10-3 式中: UP━电网线电压(kV) L ━架空线长度(km) 2.7━系数,适用于无架空地线的线路 3.3━系数,适用于有架空地线的线路 关于单相接地电容电流计算 单相接地电容电流我所知道估算公式: 对架空线:Ic=UL / 350 对电缆:Ic=UL / 10 我想请问的是L是指的架空线长度还是架空线距离?比如是三相的L是不是为距离X 3 另请问有没有更详细的计算方法? 工业与民用配电设计手册上对L的定义是线路的长度,单位km,这里的长度与楼主说的距离是同一个概念,也就是说L是指架空线或电缆的距离,三相不需要再用距离乘以3 更详细的单相接地电容电流计算公式见附件,摘自工业与民用配电设计手册152页 描述:没有文件说明 附件:( 189 K)单相接地电容电流计算.pdf下载次数(27) 首先应该明确为什么要算这个电容电流,一般计算单相接地电容电流首先要了解,中性点接地系统的分类,什么样的系统才要计算单相接地电容电流,相关国家规定是怎样规定的,算出这个电流怎样进行相关的补偿,选用什么装置进行补偿,补偿的分类是欠补偿,还是过补

XX地区电网电容电流测试及补偿状况分析

XX地区电网电容电流测试及补偿状况分析 发表时间:2018-03-12T14:55:27.890Z 来源:《电力设备》2017年第30期作者:刘宁超1 乔恺1 刘华英2 [导读] 摘要:随着系统电网规模的不断扩大和配网电缆出线的不断增加,发生单相接地时,系统电容电流也在不断增大。 (1国网平顶山供电公司河南平顶山 467000;2国网新郑供电公司河南新郑 451100) 摘要:随着系统电网规模的不断扩大和配网电缆出线的不断增加,发生单相接地时,系统电容电流也在不断增大。本文通过测试6--35kV配网电容电流的大小,分析其现有的消弧线圈补偿状况及存在的问题,并提出解决的方法。 关键词:电容电流消弧线圈补偿状况 0、引言 在6-35 kV的电缆网络中,当电容电流达到规定的限值时,应加装消弧线圈进行补偿,消弧线圈的容量应按系统实测电容电流值来选择。由于运行方式的变化,电容电流也在发生变化。XX供电公司多次因消弧线圈的投退和补偿不到位导致6-35 kV设备故障扩大化,为了掌握电容电流基本情况,对其6-35 kV系统进行了电容电流测试,分析现阶段消弧线圈的补偿状况及存在的问题,并提出解决的方法。 1、系统电容电流测试及分类 《中华人民共和国电力行业标准》DL/T620-1997中“交流电气装置的过电压保护和绝缘配合”3.1.2中规定3-10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统中,如果接地电容电流大于10A,都需要采用中性点经消弧线圈接地方式[1]。由于变电站运行方式的变化,系统电容电流也在发生变化。而理论计算值与实际运行值误差大,当采用理论值选择消弧线圈进行补偿时,易造成欠补偿,形成谐振过电压,从而产生负作用。因此对供电区域内各变电站电容电流值进行定期测量,为便于进行分析,现将xx年的测量结果按不同方式进行列表分析: a 、变电站电容电流超过规定值,并且未装设消弧线圈进行补偿,如表一: 2、电容电流现状分析 1、李庵变系统电容电流IC为110.8A,如表一所示,其为110/10kV终端变电站,低压侧为△接线且无中性点引出,10kV出线13条,担任新城区政府、学校等重要负荷,未安装消弧线圈,较大的电容电流远远超过其自熄弧能力,一旦出现弧光过电压,造成绝缘损坏,引发的开关柜和母线事故,将会出现大面积停电。 2、通过表二数据,我们可以发现,中兴路变电站IC为115.1A,IL为73.78A;肖营变IC为165.9,IL为50.94,相差115A,属于欠补偿,与电网常采用的过补偿方式相悖。当系统运行方式发生改变时,消弧线圈不仅未能消除弧光接地过电压,还可能造成谐振过电压,进一步损坏设备。 3、五一路、光明等变电站电容电流均较大,如表三所示,远远超过了100A,虽然这些变电站均加装了消弧线圈,但感性电流都大于电容电流,属于过补偿。一般情况下,补偿系数为1.35左右,消弧线圈通过其自身的调节装置,根据电容电流的大小自动调整消弧线圈的补偿电流,满足了现场要求。 4、规程中规定3kV—35kV电容电流不能超过10A,因此当IC小于10A时,不需考虑消弧线圈进行补偿,如表四所列的变电站,电容电流最大者不超过9A,能够自动熄弧。 5、有些变电站如表五所列出的,由于某些方面的原因,电容电流无法测量。在未知电容电流值的情况,无法分析是否需要采用消弧线圈进行补偿。一旦出现单相接地故障,出现间歇性电弧时,将对出线较多、担任重要用户的变电站,如孙岭变,带来极大的安全隐患。 3、存在问题分析 对于架空线路,虽然中性点不接地系统有较好的供电可靠性,在出现单相金属性接地时,可以运行1—2小时[2],但根据理论及现场经验分析,现有的杆塔入地、电缆延伸等电网改造状况,导致电容电流不断增大,电弧难以熄灭,弧光过电压的可能性增加,且在电缆发生单相接地时,易导致相间短路,扩大故障范围。在电容电流较大且没有消弧线圈补偿或者补偿容量不足时,将导致以下问题: 1、过电压对设备绝缘破坏:当发生间歇性接地时,电容电流持续时间比较长,非故障相电压升高至正常相电压的3.1-3.5倍,在过电压持续作用下,将造成绝缘的积累性损伤,最终可能导致绝缘薄弱点击穿而发展成相间短路,扩大故障范围。 2、弧光接地产生过电压可致PT烧毁或熔断保险:电压互感器的最大饱和值为正常数值的1.7倍左右,在弧光接地产生过电压情况下,其互感器的饱和状态更是严重超标,故可大大地增强励磁电流,加重电压互感器的过载程度,将会造成烧毁互感器或熔断保险。 3、过电压可致避雷器发生爆炸:发生弧光接地时,在长时间的作用下,可聚集大量能量,而通常的避雷器所能承受的最大能量指标为400A、2ms,因此一旦聚集的能量超过此值,就势必会引发避雷器发生爆炸。 4、防范措施 1、增加变电站系统电容电流检测密度,随时掌握系统电容电流数值,同时安装可调节容量的消弧线圈。 在系统发生单相接地时,规程规定电网可带单相接地故障运行2小时,不需要跳闸。实际运行经验和资料表明,当电容电流电流小于10A时,电弧能自灭。当电容电流大于10A时,易产生间歇性弧光接地,引起过电压。当采用消弧线圈补偿,调节适当时(接地电流小于10A),电弧能熄灭。 2、采用消弧及过电压保护装置。 当系统发生单相接地时,消弧控制器根据电压互感器传来的电压信号进行计算处理,判断接地相别、接地性质,作出如下判断:(1)判断是金属性或稳定性电阻接地,直接进行线路拉路选线处理;(2)判断是不稳定的间歇性弧光接地,若消弧控制器显示是A相接地,消弧控制器自动将A相真空接触器闭合,使系统由不稳定的弧光接地快速转变成稳定的金属性接地,消除电弧的影响和危害[3]。 3、快速隔离故障 在已投运且无补偿或补偿容量不足的变电站中,发生单相接地且电容电流大于10A时,应立即断开故障分路,不能再执行原规程规定的单相接地故障可以运行2小时的规定。 4、在变电站改造、扩建、增容时考虑消弧及过电压保护装置和自动补偿装置的容量。 一般的110/10kV变电站,其变压器低压侧为△接线,系统低压侧无中性点引出,电缆馈电回路日益增加,电容电流将不断增加。在变

发电机电容电流的测量及数据分析

发电机电容电流的测量及数据分析 摘要:凌津滩电厂装机9台,总容量27万千瓦,是我国大容量、灯泡式贯流式机组的电厂。其中#1—#5机组为日立公司生产,#6—#9机组为日立设计哈尔滨电机厂生产。单机容量为30MW,额定电压10.5KV,发电机中性点不接地。 关键词:发电机电容电流测量数据分析 0 前言 凌津滩电厂装机9台,总容量27万千瓦,是我国大容量、灯泡式贯流式机组的电厂。其中#1—#5机组为日立公司生产,#6—#9机组为日立设计哈尔滨电机厂生产。单机容量为30MW,额定电压10.5KV,发电机中性点不接地。 根据《凌津滩电厂水轮发电机组及其附属设备》合同: 1)第6.6.3.8中第2条《中性点装置》第3项中规定:两台机联合运行,单相接地电容电流大于3A时,若不能保证机组安全运行2小时,则各机组中性点均应采取补偿措施,补偿装置由卖方配套供货。 2)附件6.3条设备性能保证及参数中规定:定子绕组每相对地电容0.3μF。 3)第6.8条规定现场试验:6.8.3.8条定子对地电容电流测量。这一条明确规定与电机交流耐压并列,即每台机都应作电容电流测量。 1发电机电容的计算 凌津滩电厂发电机定子绕组为波绕双层、每槽两根线棒,定子线棒采用真空压力浸渍环氧树脂浸透线圈、线圈表面涂阻燃林料,分上下层嵌放到定子槽内。定子Z=342槽、计684根线棒,单支路每相线棒N=228根。 定子绕组对地电容,由线圈的机械尺寸、绝缘材料的电介系数所确定。按机械尺寸、交流耐压及单相接地三种方法可计算得出,以#1机为例,分述如下。 1.1 机械尺寸进行电容的计算 一般的平板极电容计算,电容与电介系数εO及εr、极板面积 S成正比,与极间距离d成反比。 常用式子 C0=εOεr S/d 发电机的绕组电容计算,可将线棒导体展开成为一极。包有半导体材料的线棒与铁芯是紧靠的,当另外一极同时展开。中间的绝缘材料也展开,这是极板间的介质。 线棒导体的面积 S1=(2b1+2h1)L 包半导体的面积 S2=(2b2+2h2)L

电机的耗电量的公式计算

电机的耗电量的公式计 算 -CAL-FENGHAI.-(YICAI)-Company One1

电机的耗电量以以下的公式计算:耗电度数=(根号3)X 电机线电压 X 电机电流 X 功率因数) X 用电小时数/1000 电机的额定功率是750W,采用星形接法,接在三相380伏的电源上,用变频器监测电流是1.1A;我又用钳形电流表进行测量,测得每相电流为1.1A,这就说明变频器和钳形电流表测得的电流是一致的。因为电机是星形接法,线电压是相电压的倍,线电流等于相电流,电机实际消耗的功率:380×× = 724 W,这样电机实际消耗的功率就接近于电机的额定功率。如果电机是三角形接法,线电压等于相电压,线电流是相电流的倍,电机实际消耗功率的计算是一样的。 这就说明:三相交流电机实际消耗的功率就等于线电压 × 线电流。 电机额定功率为450kW,功率因数为,电机效率为%,现运行中发现电流为40A,电压为6000V,那么怎么正确计算电机的各项功率以及电机有功及无功的损耗 高压电机一般为三相电机. 视在功率=×6000×40= 有功功率 =×6000×40×= 无功功率=(视在功率平方减有功功率平方开根二次方) 有功损耗=有功功率×%)=×= 无功损耗=无功功率×%)=×= 注明:

电机不运行于额定状况,效率及功率因数是有偏差的,上述数值只能为理论值,可能与实际会有点小偏差。 因为铭牌上所标的额定功率是电机能输出的机械功率,所以不等于电压和电流的乘积就象一个10KW的电动机,他能输出的机械功率是10KW,但它所消耗的电功率要大于10KW,三相电动机的功率计算公式:P=*U*I*cosΦ . 三相异步电动机功率因数 异步电动机的功率因数不是一个定数,它与制造的质量有关,还与负载率的大小有关。为了节约电能,国家强制要求电机产品提高功率因数,由原来的到提高到了现在的到,但负载率就是使用者掌握的,就不是统一的了。过去在电机电流计算中功率因数常常取,现在也常常是取。 2.实际功率和额定功率 三相异步电动机的功率计算公式就是*线电压*线电流*功率因数。那你的实际电压是395V,实际电流是140A,那么它的实际功率就是: *395*140*=81kw 如果是空载,功率因数还要小,功率也就还要少,消耗电能也就少。

相关文档
最新文档