单相电容运转异步电动机

140W单相电机应配多大的电容

140W单相电机应配多大的电容,是怎么计算出来的,计算公式是什么? 单相运行电容公式:C=1950×I/U×cosφ (I:电机额定电流,U:电源电压,cosφ:功率因数为0.7~0.8间) 求140W电机额定电流:I=P/U×cosφ (正常运行经电容补偿提高了功率因数,cosφ为0.9) I=140/220×0.9≈0.7(A) 求运行电容量:C=1950×0.7/220×0.75≈4.7(μF) 工作电容按100W=2UF计算,启动电容是工作电容的5-7倍。 一般550W-2200W电机都用450V200μf的,都可以正常启动。。运行电容已兼起动辅助作用,一般按每100W配电容量为2~3微法,宜配用1.2微法。 电工口诀(七十七)------单台三相异步电动机功率因数补偿 小型微型电动机,功率因数都很低。 满载最大点八五,空载不足零点一。 电源不能充分用,线路损耗更可惜。 减少损耗接电容,灵活方便也经济。 已知电机千瓦数,除三除二得两数。 两数之间千乏值,即为补偿电容数。 若知空载视在功,该数九折配电容。 文章摘要:动力厂给水车间155kW水泵电机进行无功就地补偿的可行性分析及经济效益的研究,对工厂用电如何节能降耗有一定参考价值。(共3页) 文章关键词:水泵电机三相异步电动机电感性负载功率因数就地补偿器无功就地补偿 文章快照:V配电.10kV配 电.0.4kV0.750.0800.0860.130.160.800.0700.0760.120.150.850.0 650.0680.100.130.900.0600.0620.090.12三相感应电动机补偿电容量确定方法有(1)按补偿前后的功率因数计算P~[,v/--L--1-1一爵]式中Q——补偿电容容量/kvarP——电动机有功功率/kWcos——补偿前功率因数cos2——补偿后功率因数(2)按电动机空载电流估计Q=43K。x10式中Q——补偿电容容量/kvar——电动机额定电压/、厂L——电动机空载电流/AK——修正系数,一般取0.9(3)按电动机额定数据计算Q=243K(1一cos)Lx10式中Q——补偿电容容量/kvarCOS——电动机额定功率因数L——电动机额定电流/A——电动机额定电压/、,K——与电动机极数有关的一个系数电机极数2468K值0.70.80.850.9因为受电容补

单相电机各种接法

单相双值电容电机接线 1.电源接在主绕组两端,副绕组串联电容组之后,与主绕组并联。 2.电容组与主绕组首端相接正转,电容组与主绕组尾端相接反转。 3.启动电容串接离心开关,然后和运转电容并联,组成电容组。启动电容大,运行电容小。主绕组阻值小,副绕组阻值大。

220V交流单相电机起动方式大概分一下几种: 第一种,电容运转式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。 图1 电容运转型接线电路 第二种,电容启动式:电机静止时离心开关是接通的,给电后起动参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。 图2 电容起动型接线电路

第三种,电容启动运转式(双值电容电机):电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3 图3 电容启动运转型接线电路(双值电容器) 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。 电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。启动绕组阻值大,运转绕组阻值小。 正反转控制: 图4是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。

单相异步电动机的工作原理

单相鼠笼式异步电动机的工作原理 单相鼠笼式异步动机由单相电源供电,它直接接到220伏单相交流电源上就能工作,但要采取一定的措施,否则启动不起来。我们日常生活用的一些家用电器,如空调器、电冰箱、洗衣机、电扇等广泛应用着单相异步电动机。 单相异步电动机的工作原理 当给三相异步电动机的定子三相绕组通入三相交流电时,会形成一个旋转磁场,在旋转磁场的作用下,转子将获得启动转矩而自行启动。当三相异步电动机通入单相交流电时就不能产生旋转磁场。 下面来分析单相异步电动机定子绕组通入单相交流电时产生的磁场情况。如下图所示为一台简单的单相异步电动机原理图,定子铁心上布置有单相定子绕组,转子为鼠笼结构。 交流电流波形

电流正半周产生的磁场 电流负半周产生的磁场 当向单相异步电动机的定子绕组入单相交流电后,由上图可见,当电流在正半周及负半周不断交变时,其产生的磁场大小及方向也在不断变化(按正弦规律变化),但磁场的轴线则沿纵轴方向固定不动,这样的磁场称为脉动磁场。 当转子静止不动时转子导体的合成感应电动势和电流为0,合成转矩为0,因此转子没有启动转矩。故单相异步电动机如果不采取一定的措施,单相异步电动机不能自行启动,如果用一个外力使转子转动一下,则转子能沿该方向继续转动下去。 单相异步电动机根据其启动方法或运行方法的不同,可分为单相电容运行电动机;单相电容启动电动机;单相罩极式电动机等。下面分别介绍。单相异步电动机容量一般较小,运行性能较差。 t 45 90 135 180 225 270 360 315

图1 单相电容运行异步电动机原理图 (a)接线图 (b)电流相量图 图1是单相电容运行异步电动机工作原理图。单相电容式异步电动机的定子铁芯上嵌放两套绕组:主绕组U1—U2(主绕组又称工作绕组)和副绕组Z1—Z2(副绕组又称启动绕组)。两套绕组在空间的位置上互差90度电角度。在启动绕Z1—Z2中串入一个电容器C后再与工作绕组并联,然后接到单相电源上。设流过启动绕组Z1-Z2的电流为iz,流过工作绕组U1—U2的电流以为iu,当接上电源后,由于电容的充放电作用,iz落后于iu90度,流过两套绕组的电流iz与iu在相位上相差90度,如图2所示。 设电动机两个绕组接上交流电源后,电流为正值时,电流从绕组的头端进去尾端出来;电流为负值时,电流从绕组的尾端进去头端出来。 从图2可看到:在t=0瞬间,iz=0,绕组Z1—Z2中无电流流过;而这瞬时iu为负的最大值,绕组U1—U2中电流由U2进Ul出。用右手定则可判断,此时电动机中会产生如图2所示磁场,其合成磁场方向向下。 从图2可看到:在ωt=π/2瞬间,iu=0,绕组U1—U2中无电流流过;这瞬间iz为正的最大值,绕组Z1-Z2中电流从Z1进Z2出。此时电动机磁场分布如图2所示,其合成磁场方向较t=0时刻顺时针方向旋转了90角度。

单相电机,运行电容公式

单相电机选配运行电容公式 一、选配公式1: C=8JS(uF) 式中,C-配用的电容量,单位为微法(uF);J-电机启动绕组电流密度,一般选5~7A/mm2 ;S-启动绕组导线截面积(mm2 )。例如:金龙台扇电机启动绕组线圈重新绕制后,测出启动绕组线径为0.17mm2 ,则截面积S=0.0226mm2 ,选J=7A/mm2 ,所以 C=8×7×0.0226≈1.26uF 实际选配参数为1.2uF±5%,耐压500V的电容。另外应注意电容的耐压值一定要高于400V,以防击穿。 二、选配公式2: 单相运行电容公式:C=1950×I/U×cosφ (I-电机额定电流,U-电源电压,cosφ-功率因数为0.7~0.8间) 例如:一台单相电机,额定电流为4.8A 功率为750W 如何选择它的电容值? C=1950×I/U×COSφ =1950×4.8/220×0.8≈34(μF) 例如:求140W电机额定电流:I=P/U×cosφ (正常运行经电容补偿提高了功率因数,cos φ为0.9) I=140/220×0.9≈0.7(A) 求运行电容量:C=1950×0.7/220×0.75≈4.7(μF) 单相电动机工作电容按每100W 1-4uf 选用 三、选配公式3: 三相电动机,分相电容器容量公式: C=350000*I/2p*f*U*cosφ 耐压公式:U(电容)大于或等于1.42*U C为容量;I为电流;f为频率;U为电压;功率因数高2p=2,功率因数低2p=4;cosφ为功率因数取0.55~0.75。 四、选配公式4: 双值电容的运转电容容量公式: C=120000×I/2p×f×U×cosφ 2p=2.4 耐压公式:U(电容)大于或等于(2~2.3)×U 起动电容容量公式:C=(1.5~2.5)×C(运转)耐压公式:U(电容)大于或等于1.42×U 电容选得太大造成电机电流过大,起动转矩大。

电容启动三种单相电动机正反转接线图

电容启动三种单相电动机正反转接线(图) 江苏省泗阳县李口中学沈正中 单相电容启动电动机有两个绕组,分别是主绕组(又叫工作绕组、运行绕组),另一个是副绕组(又叫起动绕组)。两个绕组的线径和匝数一般是不同的,主绕组线径比粗些,匝数略少些。副绕组电阻大些,用万用表量下就知了,但也有少数主绕组和副绕组完全相同(倒顺电动机)。多数电动机的副绕组和主绕组在电路中是同时工作的。接线方法是:副绕组和电容电路串联后与主绕组并联,再接到220V 电路中。 单相电容启动电动机可分为三种,即电容运转式、电容起动式和电容运转兼起动式(双电容电动机)。其正反转比起三相电动机(任意交换两相接线即可)正反转的接线稍复杂些,因为单相电动机有启动电容、运行电容、离心开关等辅助装置,且运行绕组和启动绕组也不同,接错线有可能损坏电动机。 单相电机从绕组上看有两种:一种是正反转电动机(也叫倒顺电动机),主绕组和副绕组完全相同;另一种是单向电机,主绕组和副绕组不同,反转时,它的输出功率将变小,有可能损坏电动机。 一、电容运转式电动机 电容运转式电动机是在副绕组上串接有一个电容器,然后与主绕组并联,电动机在工作时或起动时,电容器都参与主绕组共同工作。其接线如图1、图2、图3所示。

二、电容起动式电动机 电容起动式电动机是在副绕组上串接一个电容器和后,再与主绕组并联。电容器在电动机起动时有电流通过,待电动机转速达到其的70%左右,由于转子在运转时产生离心力作用,把离心开关断开,切断了通过电容器的电源,单独由主绕组工作。其接线如图4、图5、图6所示。

三、电容运转兼起动式电动机 电容运转兼起动式电动机是采用双电容连接形式,多用在功率1 KW以上的单相电动机中。其中的起动电容C2容量比运转电容C1容量大一些,接线时不得接错。其接线如图7、图8、图9、图10所示。

单相双值电容电动机

单相双值电容加离心开关电动机 传宝专用: 220V交流单相电机起动方式大概分一下几种:第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。接线图 第二种,电机静止时离心开关就是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。 第三种,电机静止时离心开关就是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3。838电子 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。 电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。 正反转控制: 图4就是带正反转倒顺开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值就是一样的,就就是说电机的起动绕组与运行绕组就是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。 图1,图2,图3,图5 正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。 对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。 以后我会陆续告诉大家倒顺开关实物的接线图

电容启动运转电动机

原理 1、单相交流电动机只有一个绕组,转子是鼠笼式的。当单相正弦电流通过定子绕组时, 电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。 要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。 这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短时工作方式。但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变电容器串接的位置来实现。 2、单相电机流过的单相电流不能产生旋转磁场,需要采取电容用来分相,目的是使两个 绕组中的电流产生近于90゜的相位差,以产生旋转磁场。 电容感应式电机有两个绕组,即启动绕组和运行绕组。两个绕组在空间上相差90度。在启动绕组上串连了一个容量较大的电容器,当运行绕组和启动绕组通过单相交流电时,由于电容器作用使启动绕组中的电流在时间上比运行绕组的电流超前90度角,先到达最大值。在时间和空间上形成两个相同的脉冲磁场,使定子与转子之间的气隙中产生了一个旋转磁场,在旋转磁场的作用下,电机转子中产生感应电流,电流与旋转磁场相互作用产生电磁场转矩,使电机旋转起来。

单相电动机电容选配

单相电动机电容选配 江苏省泗阳县李口中学沈正中 一、耐压 耐压必须大于交流输入电压最大峰值:220V×1.414≈311V,可取400V耐压或更高的耐压。 耐压公式:U C≥1.5U(V)。 二、电容选配 涉及物理量及单位、常数: C为电容值,单位μF;I为电流值,单位A;U为电压值,单位V;P为功率值,单位W;cosφ为功率因数,一般在0.5~0.8。通常取 0.65。 1、只用一只电容的单相电动机 用一个电容,既是启动电容又是运行电容,电风扇、洗衣机等小容量电动机常用。 电容计算公式:C=1950I cosφ/U=1950Pcosφ/U2 =1950×P×0.65/2202≈0.026P。 2、用一只电容只是启动时投入,正常运行时断开,用转换开关或离心开关切换 启动电容器容量公式:C Q=3500I cosφ/U=3500Pcosφ/U2 =3500×P×0.65/2202≈0.047P。 3、用2个电容,一个负责运行,一个负责启动 运转电容容量公式:C Y=1200I cosφ/U=1200Pcosφ/U2 =1200×P×0.65/2202≈0.016P。 起动电容容量公式:C Q=2.5C Y (一般取为运转电容值的2~3

倍, 通常取2.5) 一般如果不用计算,按每100W配运行电容2~3μF,通常取0.025μF/W,起动电容是运行电容的2~3倍,通常2.5倍。 电动机的电容选择对电压要求严格,一定要等于或大于于电动机额定电压的1.5倍以上。额定电压220V电源的,电容额定电压通常不能低于400V。电容值有一定的宽泛性,大点小点短时间内没有太大关系,特别是启动电容,可以在工作电容的2~5倍选取。但不能为了提高电动机的启动转矩,常随意选大容量的电容换上,误认为电容容量越大越好。其实,这种做法虽能提高启动转矩,但电机的启动电流也会以更大的比率增加,这对电机是极为不利的。一般情况,在单相电容启动式电机中,启动绕组中串联的电容容量增加1倍,启动转矩只能增加50%,而启动电流却要增加200%。在单相电容运转式电机中,当电容容量增加2倍时,启动转矩虽可增加近2倍,但电机的效率将降低50%。这会使电机几乎不能驱动原来的负载,如继续通电,电机长时间处于过负载状态,将烧坏绕组。 可见,如果对配用的电容器选择不当,会给电机带来严重后果。更换启动、运转电容时,最好选用与原配置参数相同的电容。如果电容器损坏,又不知道或看不清标注参数,可按上面的方法进行计算。 下图是单电容单相电动机接线图,cosφ取0.7~0.75时,运行电容公式。

单相电动机电容选择

单相电机电容 2011年06月27日17:02:31 单相电机电容 220V交流单相电机起动方式大概分一下几种:第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3。838电子Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。Y5e838 电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。 Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 正反转控制:Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 图4是带正反转倒顺开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。 图1,图2,图3,图5 正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 以后我们会陆续告诉大家倒顺开关实物的接线图Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号

单相电机电容接线图

单相电机电容接线图 220V交流单相电机起动方式大概分一下几种:第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。接线图 第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。 第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3。838电子 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。 电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。 正反转控制: 图4是带正反转倒顺开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。 图1,图2,图3,图5 正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。 对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。 以后我们会陆续告诉大家倒顺开关实物的接线图 一般单相电机是起动绕组比运行绕组的电阻大. 一般如果要调速抽头的话,调速抽头一般是在运行绕组的情况多 如果调速抽头在运行绕组。火线接调速抽头时和接公共点时一样大.

单相电容式电机

电容分相式单相电机正反转电路图 加一个起动电容,使主绕组和副绕组中的电流在空间上相差90度,从而产生一个(单相)旋转磁场。在这个旋转磁场的作用下,电机转子就可以自动启动,起动后,待转速升到一定时,借助一个安装在转子上的离心开关或其他自动控制装置将启动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短时工作方式。但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电机的转向,可由改变电容器串接的位置来实现。

单相异步电容式电动机 第一类 是无离心开关,单电容移相式的,比如电风扇那些,通常都是小电动机上用的。由于这种设计,启动钮矩不大,所以不适合高载荷设备,特别是比如空气压缩机这些的启动需要很大钮矩的,这种无法胜任。 第二类 有离心开关,单电容移相启动式的,比如一些风机等设备,但目前由于各种原因,这种电动机似乎越来越少。但在一些特殊地方,的确他还存在;这种启动性能比前者大,但是他只适合启动后稳定运行的,因为他的辅助绕组是作为启动使用,启动后就完全依靠主绕组的旋转磁场,已经没有所谓的换相了,因为电容器以及辅绕组在电动机转速到达一个速度后,通过离心开关以及分离,他们已经不工作,这种电动机致命的缺点就是,一旦带一些高载荷设备,比如空气压缩机,经常会转转就慢下来,然后又再次通过辅绕组启动,所以实在不适合很多地方,通常只有用在风机等地方才有一些用,但已经被第三类所说的那种电动机取代。 第三类 有离心开关,双电容双值移相式的,目前在很多地方最常见,比如空气压缩机,切割机,台式电钻等地方。原理就是:他既有主绕组,也有辅绕组,也有离心开关,辅绕组和主绕组一同工作,和第一类所说的那种差不多,但这样启动性能下降了怎么办?他们就通过使用离心开关来解决(注:离心开关是一种双掷开关,其作用是(1)单相电机:用于启动绕组的通断(启动绕组为短时工作制),当转速到达某一值时,离心开关断开;(2)三相电机需要反接制动时,常用离心开关,当反接时转速降到很低时,离心开关断开,反接运转结束。)。这样启动时,会串一个大容量的电容,即启动电容(我们也知道,电容容量越大,移相电流越大,启动性能越好,但容量太大绕组则会发热)也就是说就是在电动机低速时候,并入使用大的电容,这个大电容所提供的电流通常都超过绕组的额定电流,这样的高电流驱动下,旋转磁场非常强烈,从而驱动转子高扭矩输出转动。但启动之后,为了避免第二类电动机的缺点,沿用第一类的优点,离心开关离心接到另一个触点上,然后并入一个容量比较小的电容[俗称运转电容],这样辅绕组依然在工作,但电流比启动时候小了。这样,电动机就同时具有了第一类以及第二类的优点,这种电动机目前被广泛应用在单相动力系统中。 离心开关在第二类中,只起到连接和分断辅绕组(也称启动绕组)以及电容器与电路之间的连接,,而在第三类电动机中,则起到控制辅绕组使用的电容器是大容量的还是小容量的作用。

单相电机配用电容是越大越好吗

单相电机配用电容是越大越好吗 立帜低压电网电风扇、排气扇、吸油烟机、洗衣机、电冰箱、空调器、农用小型水泵、木工电动刨床、家庭保健摇摆机等电器上,常使用单相电容运转式电动机。 在家电维修实践中,电容损坏是造成电机运转失常的常见故障,但有的修理员对运转电容的选配不很注意,甚至有“运转电容越大越好”的错误认识。下面举出的两个实例,是在近年维修中遇到的。 [例1]一台金龙牌300mm台扇,在中、低挡位不能启动运转,电机发出“哼哼”声;在高挡位时,扇叶运转很慢。 打开风扇前罩,用手拨动扇叶感觉很吃力,扇叶不能靠惯性转动。拆开机头外壳,发现电机轴承中润滑油已干涸,用注射器在前后轴承中滴进少许润滑油后,拨动扇叶转动自如。 通电试机,发现电机运转仍很不理想,在中、低挡位扇叶只是很缓慢地运转,在高挡位上转速也远达不到要求,吹出来的风很弱。再次拆开电机外壳,发现有部分线圈烧焦变色。再检查电扇机座底板,发现所配用的电容容量为3uF/500V,根据经验容量显然过大。 经询问用户得知,去年自己曾修过这台风扇,因嫌启动性能不好,就向邻居电工要了一只吊扇用的电容器装了上去,结果风扇越用越坏,最后导致启动线圈发热严重而烧毁。 [例2]一台得康牌家用保健摇摆机,空载时电机带动的搁架摇摆10多分钟即自动停止,而将双腿放上搁架后,只能摇摆几分钟就停了下来。 用户告知:此机因摇摆无力曾送出修理,换了一只电容器后,虽然运转很有力,但运转几分钟就会停下来。 打开摇摆机底板,发现新换上去的电容规格为3uF/400V。通电观察,电机运转10分钟后即停止转动,摸电机外壳很烫,手根本不能在上面停放。这说明控制电路已经处于过热保护状态,电机因保护电路切断电流而停转。换用一只规格为1.5uF/500V的电容,通电试机,电机连续运转了30分钟,机壳只有微热,温度升高正常,并且运转也很有力。维修把-https://www.360docs.net/doc/fa6296755.html, 有的人在维修单相电容运转式电机时,为了提高电动机的启动转矩,常随意选大容量的电容换上,误认为电容容量越大越好。其实,这种做法虽能提高启动转矩,但电机的启动电流也会以更大的比率增加,这对电机是极为不利的。一般情况,在单相电容启动式电机中,启动绕组中串联的电容容量增加1倍,启动转矩只能增加50%,而启动电流却要增加200%。在单相电容运转式电机中,当电容容量增加2倍时,启动转矩虽可增加近2倍,但电机的效率将降低50%。这会使电机几乎不能驱动原来的负载,

交流单相电动机正反转接线示意图

交流单相电动机正反转接线(图) 220V交流单相电机一般都有两个绕组,其中阻值大的是启动绕组(也叫副 绕组),阻值小的是运行绕组(也叫主绕组),如果两绕组阻值相同,则不用区分启动绕组和运行绕组,任一组都可作启动绕组或运行绕组。用万用表找到引出端测量电阻就可以发现了:对于起动绕组与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。电阻最大的是两线圈的串联阻值,最小的是运行绕组,连接电源,阻值在中间的就是启动绕组,串联电容后连接电源。 起动方式一般都是分相起动式,可分为以下几种: 第一种,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电动机,如图1所示。 图1电容运转型接线电路 第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开,不参与运行工作,而电动机以运行绕组线圈继续动作。 图2电容起动型接线电路 第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方,如图3所示。带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般大于400V。

单相异步电动机原理及正反转

单相异步电动机原理及正反转 单相异步电动机是指用单相交流电源供电的异步电动机。单相异步电动机具有结构简单、成本低廉、噪声小、使用方便、运行可靠等优点,因此广泛用于工业、农业、医疗和家用电器等方面,最常见于电风扇、洗衣机、电冰箱、空调等家用电器中。但是单相异步电动机与同容量的三相异步电动机相比,体积较大,运行性能较差。因此,单相异步电动机一般只制成小容量的电动机,功率从几瓦到几千瓦。单相异步电动机在家用电器中的应用特别广泛,与人们的生活密切相关。 单行异步电动机的结构如下图: 一、单相异步电动机的工作原理和机械特性 当单相正弦交流电通入定子单相 绕组时,就会在绕组轴线方向上产生 一个大小和方向交变的磁场,如图1 所示。这种磁场的空间位置不变,其 幅值在时间上随交变电流按正弦规律 变化,具有脉动特性,因此称为脉动 图1 单相交变磁场 磁场,如图2(a)所示。可见,单相异 步电动机中的磁场是一个脉动磁场,不同于三相异步电动机中的旋转磁场。

图3 单相异步电动机的机械特性 (a)交变脉动磁场 (b)脉动磁场的分解 图2 脉动磁场分解成两个方向相反的旋转磁场 为了便于分析,这个脉动磁场可以分解为大小相等,方向相反的两个旋转磁场,如图2(b)所示。它们分别在转子中感应出大小相等,方向相反的电动势和电流。 两个旋转磁场作用于笼型转子的导体中将产生两个方向相反的电磁转矩T + 和 T - ,合成后得到单相异步电动机的机械特性,如图3所示。图中,T + 为正向转矩,由旋转磁场B m1产生;T - 为反向转矩,由反向旋转磁场B m2产生,而T 为单相异步电动机的合成转矩。 从图3可知,单相异步电动机一相绕组通电的机械特性有如下特点: 1.当n=0时, T + =T - ,合成转矩T=0。即单相异步电动机的启动转矩为零,不能自行启动。 2.当n >0时,T >0;n <0时,T <0 。 即转向取决于初速度的方向。当外力给转子 一个正向的初速度后,就会继续正向旋转; 而外力给转子一个反向的初速度时,电机就 会反转。 3.由于转子中存在着方向相反的两个 电磁转矩,因此理想空载转速n 0小于旋转磁 场的转速n 1;与同容量的三相异步电动机相 比,单相异步电动机额定转速略低,过载能 力、效率和功率因数也较低。 二、 单相异步电动机的启动 单相异步电动机由于启动转矩为零,所以不能自行启动。为了解决单相异步电动机的启动问题,可在电动机的定子中加装一个启动绕组。如果工作绕组与启动绕组对称,即匝数相

单相交流电机的工作原理

单相交流电机的工作原理 一、单相交流电动机只有一个绕组,转子是鼠笼式的。当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电动机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。 要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短时工作方式。但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电动机的转向,可由改变电容器串接的位置来实现。 在单相电动机中,产生旋转磁场的另一种方法称为罩极法,又称单相罩极式电动机。此种电动机定子做成凸极式的,有两极和四极两种。每个磁极在1/3--1/4全极面处开有小槽,把磁极分成两个部分,在小的部分上套装上一个短路铜环,好象把这部分磁极罩起来一样,所以叫罩极式电动机。单相绕组套装在整个磁极上,每个极的线圈是串联的,连接时必须使其产生的极性依次按N、S、N、S排列。当定子绕组通电后,在磁极

单相电容运转异电动机接线

单相电容运转异步电动机接线 单相电容运转异步电机与三相电机的区别: 三相电机的绕组在空间按120°电角度分部,单相异步电机则按则按90°电角度分部,见下图 在单相电机中,由于单相绕组产生的是脉振磁场,电机没有起动转矩,不能起动,如右图表示: i=Icosωt

要使单相电机具有起动转矩并旋转,就必须使其分相,一般的,单相电机分相有以下几种型式: 1、电阻分相 2、电容分相 3、罩极分相 空调风机用单相异步电机几乎均采用第二种方式,即要使单相电机既能运转又能独立启动,就必须在电机定子铁芯中嵌放轴线在空间相隔90°电角度的两相绕组,其中一相绕组称为主绕组(用M表示)。另一相称为副绕组或起动绕组(用A表示)。副绕组串接一移相元件电容器,形成事实上的两相电源。原理如下图示:

在单相电机中,若定子上的主、副两相绕组完全对称,两相绕组接到两相对称电源上,则与4页三相电机图示一样也产生在空间旋转的圆形旋转磁势和磁场。 可见对称两相绕组通入对称两相电流产生的旋转磁势与三相电机产生旋转磁势一样。其旋转速度与电源频率和电机极数有关:即n=2×60f/p, 其中“f”—电源频率(Hz) “p”—电机极对数 “n”—磁场旋转转速,即电机同步转速(r/min) 当电机中磁场以n速度旋转时,处于旋转磁场中的转子导条就会切割磁力线而产生感应电势和感应电流,感应电流在磁场的作用下产生电磁力和电磁力矩,行成一定的转速n’。一般情况下电机转速n’不等于旋转磁场转速n。因为n’= n时,转子导条相对旋转磁场是静止的,导条中就不会产生感应电势和感应电流,电机就不会产生电磁力矩,电机转速就会自然下降。因转子速度始终低于旋转磁场速度,故称此种电机为“单相异步电动机”。

单相电机的启动电容和运转电容之分

[转] 单相电机的启动电容和运转电容之分 2014-3-20 10:52阅读(3)转载自天子娇之 ?赞(21)赞(21)赞(21)赞(21) ?评论 ?转载(706) ?分享(99) ?复制地址 ?收藏夹按钮收藏 ?更多 上一篇| 下一篇:视频: 电工作业安... 单相双电容电动机接线示意图 一。 220V单相双电容电动机有一个启动电容和一个运行电容。容量较大的是启动电容,容量较小的是运行电容。电动机启动后离心开关将启动电容从电路中断开。 如果缺少启动电容,电动机启动困难或无法启动(常表现为空载启动正常,加载后无法启动);如果缺少运行电容,电动机可以启动,但输出功率变小(常表现为带负载能力降低)。

二。接法 一般启动电容是串接在单相电机的启动绕组上,与工作绕组并联。

三。启动电容和运行电容容量计算 运行电容容量 C=120000 * I / 2.4*f*U*cosφ 式中:I为电流;f为频率;U为电压;cosφ为功率因数取0.5~0.7。运行电容工作电压大于或等于(2~2.3)U。 起动电容容量=(1.5~2.5)运行电容容量。 起动电容工作电压大于或等于1.42 U。

(工作时电容两端电压为311V时为最佳) 工作电容按每100W1-4UF.启动电容是工作电容4-10倍(电动机要求启动转距大取大值). 经验数据,如果你的电机不超过200W,启动电容不会超过100uF,如果运转电容,你可以选择几个数值通电试验,看哪一个电容的容量下整机电流最小,则该电容的容量就是最佳数值.) 单相分相电机电容器的容量可以用经验公式C=35000I/2PUfcos&算出 如;I=250W/220V=1.2A C=35000x1.2/2x1x50x220X0.8=24uf 可以选择350V30uf的电容 关于所配电容易损.首先应考虑电容器的耐压是否大于1.5倍(包括1.5倍)以上的额定电压:其次是容量是否太小(因为启动电流较大),这要由试验决定。实际中还没有总结出计算启动、工作电容的简便公式。表1给出上述《教材》中的“单相电动机启动电容和工作电容范围参考表”供参考。 四。离心开关 装有离心开关的单相电机,也就是双电容的电机,一般都是重负荷启动,需要一个大的启动力矩,离心开关上面串接一个启动电容,当转速达到一定转数时轴套离心器靠离心力顶开离心开关,切断启动电容,完成了启动任务后这个时候还剩一个运行电容持续工作。

单相电机中电容的作用

目前单相异步电容式电动机主要有三大类 第一类,则是无离心开关,单电容移相式的,比如电风扇那些,通常都是小电动机上用的 第二类,则是有离心开关,单电容移相启动式的,比如一些风机等设备,但目前由于各种原因,这种电动机似乎越来越少。但在一些特殊地方,的确他还存在。 第三类,即是有离心开关,双电容双值移相式的,目前在很多地方最常见,比如空气压缩机,切割机,台式电钻等地方。 首先简单说, 第一类,由于这种设计,启动钮矩不大,所以不适合高载荷设备,特别是比如空气压缩机这些的启动需要很大钮矩的,这种无法胜任。 第二类,这种是以前设计的为主,启动性能比前者大,但是他只适合启动后稳定运行的,因为他的辅助绕组是作为启动使用,启动后就完全依靠主绕组的旋转磁场,已经没有所谓的换相了,因为电容器以及辅绕组在电动机转速到达一个速度后,通过离心开关以及分离,他们已经不工作,这种电动机致命的缺点就是,一旦带一些高载荷设备,比如空气压缩机,经常会转转就慢下来,然后又再次通过辅绕组启动,所以实在不适合很多地方,通常只有用在风机等地方才有一些用,但已经被第三类所说的那种电动机取代。 第三类的,他的原理就是,他既有主绕组,也有辅绕组,也有离心开关,辅绕组和主绕组一同工作,和第一类所说的那种差不多,但这样启动性能下降了怎么办?他们就通过离心开关,这种开关是一种双掷开关了,这样启动时候,串一个大容量的电容[俗称启动电容](我们也知道,电容容量越大,移相电流越大,启动性能越好,但太大绕组则会发热)所以,这种电动机,就是在电动机低速时候,并入使用大的电容,这个大电容所提供的电流通常都超过绕组的额定电流,这样的高电流驱动下,旋转磁场非常强烈,从而驱动转子高钮矩输出转动起来。 但启动之后,为了可以避免第二类电动机的缺点,沿用第一类的优点,离心开关离心接到另一个触点上,然后并入一个容量比较小的电容[俗称运转电容],这样辅绕组依然在工作,但电流比启动时候小了 这样,电动机就同时具有了第一类以及第二类的优点,这种电动机目前被广泛应用在单相动力系统中,他的确很优秀。 你可以到一些卖切割机以及空气压缩机(但缸的似乎现在很多为了造价低廉还是用第二类电动机,而双缸以上的,几乎都是这种电动机了)的地方看看,电动机上都有2个金属盒,圆柱体的,每个就是装一个电容器,而他们一个是启动电容(容量大)另一个则为运转电容(容量小)

单相电容异步电动机原理_单相异步电动机接线图

单相电容异步电动机原理_单相异步电动 机接线图 单相电机一般是指用单相沟通电源(AC220V)供电的小功率单相异步电动机。这种电机一般在定子上有两相绕组,转子是一般鼠笼型的。两相绕组在定子上的散布以及供电状况的纷歧样,能够发作纷歧样的起动特性和作业特性。当单相正弦电流转过定子绕组时,电机就会发作一个交变磁场,这个磁场的强弱和方向随时刻作正弦规则改动,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子接连时,这两个旋转磁场在转子中发作两个巨细持平、方向相反的转矩,使得构成转矩为零,所以电机无法旋转。当咱们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切开磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切开磁力线运动变大。这么平衡就打破了,转子所发作的总的电磁转矩将不再是零,转子将顺着推进方向旋转起来。要使单相异步电动机能主动旋转起来,咱们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个适合的电容,使得与主绕组

的电流在相位上近似相差90度,即所谓的分相原理。这么两个在时刻上相差90度的电流转入两个在空间上相差90度的绕组,将会在空间上发作(两相)旋转磁场,图1电容分相电动机接线图及向量图在这个旋转磁场效果下,转子就能主动起动,起动后,待转速升到必守时,仰仗于一个设备在转子上的离心开关或别的主动操控设备将起动绕组断开,正常作业时只需主绕组作业。因而,起动绕组能够做成短时作业办法。但有许多时分,起动绕组并不断开,咱们称这种电机为单相电机,要改动这种电机的转向,只需把辅佐绕组的接线端头沟通一下即可。在单相异步电动机中,发作旋转磁场的另一种办法称为罩极法,又称单相罩极式电动机。此种电动机定子做成凸极式的,有南北极和四极两种。每个磁极在1/3--1/4全极面处开有小槽,把磁极分红两个有些,在小的有些上套装上一个短路铜环,好象把这有些磁极罩起来相同,所以叫罩极式电动机。单相绕组套装在悉数磁极上,每个极的线圈是串联的,联接时有必要使其发作的极性顺次按N、S、N、S摆放。当定子绕组通电后,在磁极中发作主磁通,依据楞次规则,其间穿过短路铜环的主磁通在铜环内发作一个在相位上滞后90度的感应电流,此电流发作的磁通在相位上也滞后于主磁通,它的效果与电容式电动机的起动绕组恰当,然后发作旋转磁场使电动机翻滚起来。

相关文档
最新文档