DB34T 404-2004 饲料中抗氧化剂、防腐防霉剂使用规则.pdf

DB34T 404-2004 饲料中抗氧化剂、防腐防霉剂使用规则.pdf
DB34T 404-2004 饲料中抗氧化剂、防腐防霉剂使用规则.pdf

ICS

古老ICS

DB34

DB34/T404—2004

目 次

前言 (Ⅱ)

1 范围 (1)

2 规范性引用文件 (1)

3 要求 (1)

4 使用规则 (2)

5 标志、包装、储存 (3)

I

DB34/T404 —2004

II

前 言 本标准于2004年2月19日首次发布。

本标准由安徽省饲料工业标准化技术委员会提出。

本标准由安徽省产品质量监督检验所、安徽农业大学、安徽省饲料工业标准化技术委员会负责起草。 本标准主要起草人:程静、陈戈、顾亮、卢业举、周明。

DB34/T404—2004 饲料中抗氧化剂、防腐防霉剂使用规则

1 范围

本标准规定了非营养性饲料添加剂(抗氧化剂、防腐防霉剂)的要求、使用规则。

本标准适用于生产畜禽配合饲料、浓缩饲料和复合预混合饲料中使用的非营养性饲料添加剂(抗氧化剂、防腐防霉剂)。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB 1900 食品添加剂 2,6-二叔丁基对甲酚

GB 1901 食品添加剂 苯甲酸

GB 1902 食品添加剂 苯甲酸钠

GB 1903 食品添加剂 乙酸

GB 1905 食品添加剂 山梨酸

GB 1916 食品添加剂 叔丁基-4-羟基茴香醚

GB 1987 食品添加剂 柠檬酸

GB 2023 食品添加剂 乳酸

GB 3263 食品添加剂 没食子酸丙酯

GB 13736 食品添加剂 山梨酸钾

GB 13737 食品添加剂 L-苹果酸

HG 2925 食品添加剂 丙酸

HG 2930 饲料级 丙酸钠

HG 2931 饲料级 丙酸钙

HG 3694 饲料添加剂 乙氧基喹(乙氧基喹啉)

FAO/WHO 食品级 双乙酸钠

FAO/WHO 食品添加剂 富马酸

农业部《允许使用的饲料添加剂品种目录》

3 要求

3.1 抗氧化剂

3.1.1 2,6-二叔丁基对甲酚按GB 1900执行

3.1.2 叔丁基-4-羟基茴香醚按GB 1916执行。

3.1.3 没食子酸丙酯按GB 3263执行。

3.1.4 乙氧基喹按HG 3694执行。

3.2 防腐、防霉剂

3.2.1 苯甲酸:按GB 1901执行。

3.2.2 苯甲酸钠:按GB 1902执行。

1

DB34/T404 —2004

3.2.3 乙酸:按GB 1903执行

3.2.4 山梨酸:按GB 1905执行。

3.2.5 柠檬酸:按GB 1987执行。

3.2.6 乳酸:按GB 2023执行。

3.2.7 山梨酸钾:按GB 13736执行。

3.2.8 L-苹果酸:按GB 13737执行。

3.2.9 丙酸:按HG 2925执行。

3.2.10 丙酸钠:按HG 2930执行。

3.2.11 丙酸钙:按HG 2931执行。

3.2.12 双乙酸钠:按FAO/WHO(1978)

3.2.13 富马酸:按FAO/WHO(1990)执行。。

4 使用规则

4.1 使用品种和用途

饲料中允许使用的抗氧化剂和防腐防霉剂按农业部《允许使用的饲料添加剂品种目录》要求执行。

4.1.1 抗氧化剂品种和用途

4.1.1.1 乙氧基喹:它能保护维生素A、维生素D、鱼肝油、各类脂肪质、肉粉、鱼粉、骨粉、胡萝卜素等饲料中易氧化的成分,防止其变质。

4.1.1.2 2,6-二叔丁基对甲酚(BHT):保护饲料中的维生素,防止脂肪和蛋白质的氧化损失。

4.1.1.3 叔丁基-4-羟基茴香醚(BHA):保护饲料产品中维生素等还原性物质的氧化损失。

4.1.1.4 没食子酸丙酯:防止饲料中油脂、维生素A、胡萝卜素、维生素E等的氧化变质。

4.1.2 防腐防霉剂品种和用途

4.1.2.1 苯甲酸:抑制饲料中霉菌、细菌等的增殖。

4.1.2.2 苯甲酸钠:抑制霉菌如黑曲霉、娄地青霉、啤酒酵母等。

4.1.2.3 乙酸:能透过细胞壁,使细胞内蛋白质变性,从而起到抗菌作用,可作为青贮饲料的防霉、防腐剂。

4.1.2.4 山梨酸:抑制霉菌、酵母、好气性腐败菌。

4.1.2.5 柠檬酸:作为饲料防腐剂或抗氧化增效剂。

4.1.2.6 乳酸:抑制青贮原料中有害微生物的增殖,加速青贮酸化。

4.1.2.7 山梨酸钾:与4.1.2.4相似。

4.1.2.8 L-苹果酸:抑制饲料中霉菌等有害微生物。

4.1.2.9 丙酸:对好气性芽孢杆菌、黄曲霉菌有较好的抑制作用。在青贮饲料中可以抑制有害微生物发酵,加速青贮酸化,防止开窖后的二次发酵。

4.1.2.10 丙酸钠:在酸性条件下,抑制霉菌、好气性芽孢杆菌以及革兰氏阴性菌。

4.1.2.11 丙酸钙:在酸性范围可游离出丙酸,从而抑制好气性芽孢杆菌、黄曲霉菌的生长。

4.1.2.12 双乙酸钠:抑制霉菌、细菌的生长和繁殖,因而可作为饲料的防霉剂。

4.1.2.13 富马酸:广谱菌,防腐、防霉。

4.2 使用抗氧化剂、防腐防霉剂的注意事项。

4.2.1 使用抗氧化剂的注意事项

4.2.1.1 乙氧基喹啉:美国FDA批准配合饲料中乙氧基喹啉的最高浓度为150mg/kg。

4.2.1.2 2,6-二叔丁基对甲酚:其用量为饲料中所含油脂的0.02%以下。

4.2.1.3 叔丁基-4-羟基茴香醚:其用量为饲料中所含油脂的0.02%以下。

2

DB34/T404—2004

4.2.1.4 没食子酸丙酯:其用量为饲料中所含油脂的0.02%以下。

4.2.2 使用防腐防霉剂的注意事项:

4.2.2.1 苯甲酸:在pH为2.5~4.0时抑菌活性高,在饲料中添加量一般在0.05%~0.1%之间,不得超过0.1%,用作青贮饲料防霉剂的添加量为0.3%(以干物质计)。

4.2.2.2 苯甲酸钠:使用方法同苯甲酸,1.18g苯甲酸钠相当于1g苯甲酸。在使用苯甲酸钠时,要注意防止由于苯甲酸钠转变成苯甲酸而造成沉淀和降低其使用效果。

4.2.2.3 乙酸:作为反刍动物青贮添加剂时,添加量为0.2~1%(以干物质计)。乙酸一般只能作为青贮原料的防腐防霉剂。

4.2.2.4 山梨酸:当溶液pH小于4时,其抑菌活性强。山梨酸的适宜添加量为配合饲料的0.05%~0.15%。

4.2.2.5 柠檬酸:其在饲料中的添加量为0.1%~0.5%,但作为抗氧化剂增效剂的添加量为0.005%。本品不宜与山梨酸钾、苯甲酸钠等溶液同时添加。另外,它有刺激性,避免与眼睛、皮肤接触。

4.2.2.6 乳酸: D型和DL型乳酸对幼龄动物有害,在饲料中通常添加L-乳酸,饲料中添加量为0.2%~1.5%(以干物质计)。

4.2.2.7 山梨酸钾:其在饲料中添加量一般为0.05~0.3%。本品有刺激性,避免与眼睛和皮肤直接接触。

4.2.2.8 L-苹果酸:它在饲料中添加量一般为0.1%~0.3%。它对眼睛、皮肤、呼吸系统有刺激性,使用时应注意防护。

4.2.2.9 丙酸:添加量一般为0.05%~0.15%,最多不超过0.3%。

4.2.2.10 丙酸钠:饲料中的添加量一般为0.2%~0.3%。添加时需要用外来酸调节饲料pH至5以下。 4.2.2.11 丙酸钙:饲料中的添加量一般为0.2%~0.3%。丙酸钙易于结块,不适合在高温地区使用。

4.2.2.12 双乙酸钠:一般在饲料中的添加量为0.1%~0.8%。

4.2.2.13 富马酸:其在饲料中添加量为0.01%~0.08%。对眼睛有刺激性,使用时应注意防护。

———————————

3

处理霉变饲料的方法

在我国饲料原料来源复杂广泛,越来越多的作物、泔水等可以发酵成牲畜饲料。在潮湿的环境中,饲料容易发霉变质,饲料霉变的因素有很多,像原料的种植和采集时已经霉变;其次是在初级加工时未处理好饲料水分;3、储存条件差、运输环节出了问题。既然已经发生,那么我们如何处理霉变问题呢?肯定会有人说使用脱霉剂或者防霉剂不就行了,而一味地依靠它们是否正确呢?这里有些资料供大家参考,不妥请指正。 (一) 科学使用脱霉剂,适度使用防霉剂 主要针对轻微霉变的原料,采用原料与脱霉剂逐级混匀的办法,使脱霉剂与原料充分混匀,然后作为原料使用。脱霉剂在脱霉的同时也有吸附部分营养物质的作用,不要与维生素等微量成分直接混用,因此,科学使用和掌握一定的技巧十分重要,一味地加大剂量只会适得其反。对于有一定储存期的饲料则需要适度使用防霉剂,推荐使用双乙酸钠、乳酸、丙酸等防霉剂。 (二) 通风晾晒,去表霉 霉菌有很多种,在表皮的霉变量不大的情况下可以采用通风晾晒法,以去掉表皮附着的霉菌体。最典型的是玉米黄曲霉,在晒场进行晾晒后初筛,使表皮霉菌脱落,然后再依据霉变的情况决定使用方法,轻微者可采用第一种方法,中度或严重霉变者则推荐使用下一种方法。

(三)稀释法 中高度霉变原料不应再用作动物饲料,但我国不合格的霉变饲料比重较大,且价值不菲,丢弃不太现实,此时建议稀释法,即用好的原料与其混合使用,比例依情况而定,喜事前必须用第一种和第二种方法进行处理。 (四)水洗法 对于玉米而言可采用此法,玉米粉碎后,采用水洗的方法,洗去霉菌及其毒素,同时去掉浮在表面的胚芽,可以较好地去除霉菌毒素。但此法操作难度较大,量少可以用,处理后的玉米要及时使用,不便存储。 (五)改变用途 在批量大时可用,一是完全改变,用于工业发酵等,收回大部分成本;二是改变饲喂对象,这是退而求其次的做法,比如由猪改成普通水产,但要先进行第1-3种方法处理,否则效果很差。 (六)微生态缓解法 霉变饲料对于有一定储存期的用户来说有继续霉变恶化的风险,会引起拉稀、中毒等等问题,因此推荐大家可使用微生态制剂来缓解损害,它对霉菌具有竞争抑制性作用,其产生的复合酶还有一定的解毒功能。

饲料抗氧化剂的现状和发展动态

饲料抗氧化剂的现状和发展动态 饲料抗氧化剂的现状和发展动态 摘要:本文对各种常用的饲料抗氧化剂在使用性能和安全性方面作了简要的评述,既介绍了近10年来饲料抗氧化剂的现状,又概述了产品的发展动态。重点介绍了抗氧喹(乙氧基喹)、饲料复合抗氧化剂和高铜饲料抗氧化剂等品种。 关键词:饲料添加剂抗氧化剂抗氧喹复合抗氧化剂高铜饲料 饲料中的维生素A、维生素D、维生素E、维生素K、胡萝卜素和脂肪质以及鱼粉、肉骨粉、血粉、羽毛粉等营养成分是极易氧化的组分,在饲料的生产、运输和贮存过程中会因氧化而影响饲料的食效和适口性,甚至引起牲畜中毒直至死亡,因此,需要添加抗氧化剂。 1 饲料抗氧化剂的现状与近10年来的进展 1.1 抗氧喹仍是首选的单一品种抗氧化剂 抗氧喹自50年代由美国孟山都公司投入工业化生产以来,已有40余年的工业化生产和使用历史。由于该品系中有抗氧化效果的喹啉衍生物,故在国内命名为抗氧喹,化学名为6-乙氧基-2,2,4-三甲基-1,2-二氢化喹啉,简称乙氧基喹。我国1988年颁布了食品添加剂乙氧基喹的国家标准(B8849-88),80年代中期开始应用于饲料中作抗氧化剂使用。 通过对单一品种的饲料抗氧化剂使用效果和价格的综合比较发现,至今为止抗氧喹仍是首选的品种,尤其对维生素的保护作用更佳。目前,国内外几乎所有生产维生素A的公司均选用抗氧喹作抗氧化剂。 由于抗氧喹外观为油状液体,在粉体物料中具有“蠕流、扩散”等特性,如果抗氧喹的原油或粉剂与饲料(或饲料原料)混合得不均匀,经过贮存或运输后,抗氧喹会慢慢地渗透到饲料的每个组分中去。这也是许多生产厂愿意将抗氧喹作为保护维生素A、维生素D、维生素E、维生素K、胡萝卜素、鱼肝油、脂肪质以及鱼粉、肉粉、血粉、骨粉、羽毛粉等易于氧化物质的抗氧化剂的重要原因;另外抗氧喹使用安全,只要不超量添加,动物不超量摄入,通常在毒理上不存在安全问题。但是,大量的试验证明,抗氧喹对油脂的抗氧效果不甚理想;另外在预混料中大量使用时,由于抗氧喹的色泽急剧转深,易被误认为饲料的质量发生变化(其实并不影响饲料质量)。 1.2 传统的BHT仍在使用 BHT化学名称2,6-二叔丁基对甲酚,或称二叔丁基羟基甲苯,是传统的食品抗氧化添加剂。据称BHT有抑制人体呼吸酶活性之嫌,因此发达国家趋向于禁止使用;但国内食品行业仍广泛使用。由于BHT价格低廉,尽管有报道称其抗氧化效果不甚理想,但长期以来一些饲料企业还在使用。 BHT是白色结晶颗粒,即使磨成极细的粉末,当与饲料中易于氧化的组分混匀后组成的预混料或配合饲料中,各种组分仍是单独的颗粒,因此,BHT在其中无法充分起到抗氧化作用,这是BHT不能充分发挥效果的关键原因。 1.3 昂贵的BHA较少使用 BHA化学名称叔丁基羟基茴香醚,日常使用的是2-叔丁基羟基茴香醇和3-叔丁基羟基茴香醚的混合物,其中以叔丁基位置与羟基相邻的BHA抗氧效果为优。BHA的抗氧效果优于BHT,且有较强的抗菌力,但因价格昂贵,饲料中几乎没有单独将BHA作抗氧化剂使用的实例。BHA进口价格高达20余美元/kg,国产品更高达人民币400元/kg左右,因此BHA仅局限于在维生素或部分复合的抗氧化剂中少量使用。曾有报道称BHA对大鼠的前胃有致癌作用,故某些发达国家禁止使用。 1.4 较新的TBHQ尚在发展 该产品化学名称叔丁基对苯二酚,美国早已批准其在食品中作抗氧化剂使用。据报道,TBHQ的抗氧效果优于BHA和BHT,尤其在油脂中值得推广使用。 自1991年中国食品添加剂标委会年会上批准TBHQ用作食品抗氧化剂后,其生产应用取得一定的发展。据不完全统计,国内已有近10家企业在生产或准备生产TBHQ,目前的问题是推广应用的力度不够和价格偏高,目前国内最低报价为150-180元/k g,最高的可达250-300元/kg,如此高的价格在食品行业中尚能承受,在饲料中使用恐怕难以接受。 1.5 其它油溶性抗氧化剂 1.5.1 PG PG是没食子酸丙酯的英文缩写。由于价格高且在油脂中溶解度小,在饲料中不可能单独使用。除了没食子酸丙酯外,还有没

葡萄酒中的抗氧化物质及测定方法

葡萄酒中抗氧化物质及检测方法 姓名:冯朝朝 指导老师:阎贺静 河北科技师范学院食品科技学院酿酒工程专业 摘要:目的: 建立高效液相色谱.二苯基三硝基苯肼在线法评价葡萄酒清除自由基的活性, 研究其抗氧化活性物质基础方法: 葡萄酒样品经分离,在柱后与工作液在三通处混合,于 管中充分反应后,流经检测器记录反应信号,以水溶性维生素类似物为标准计算活性成分的 抗氧化当量,比较不同地区葡萄酒总抗氧化能力及活性成分差异;结果: 通过定性分析得 出葡萄酒样品中没食子酸、原儿茶酸、原花青素、咖啡酸和没食子酸乙酯对自由基具有清除 活性自由基的作用,但原花青素二聚体香草酸、丁香酸和对香豆酸没有清除活性自由基的作 用,不同地区葡萄酒总抗氧化能力不同,所含抗氧化活性成分也有较大差异,其中原花青素 二聚体与没食子酸活性最强,目的: 建立高效液相色谱.二苯基三硝基苯肼在线法评价葡萄酒 清除自由基的活性,研究其抗氧化活性物质基础方法: 葡萄酒样品经分离,在柱后与工作 液在三通处混合,于管中充分反应后,流经检测器记录反应信号,以水溶性维生素类似物为 标准计算活性成分的抗氧化当量,比较不同地区葡萄酒总抗氧化能力及活性成分差异;结 果: 通过定性分析得出葡萄酒样品中没食子酸、原儿茶酸、原花青素、咖啡酸和没食子酸乙 酯对自由基具有清除活性自由基的作用,但原花青素二聚体香草酸、丁香酸和对香豆酸没有 清除活性自由基的作用,不同地区葡萄酒总抗氧化能力不同,所含抗其次是儿茶素和未知物, 活性较弱的是咖啡酸#原儿茶酸和没食子酸乙酯;结论: 葡萄酒中含有多种抗氧化活性物 质; 该法能够实现对天然产物抗氧化活性的分析,具有在线无损高通量筛选快速分析的特 点。 关键词:葡萄酒;抗氧化活性;测定方法 人们的生活水平一直在不断提高,葡萄酒也渐渐地在中国得到普及和流行,它已经发展成为新时代大众所喜爱的时尚饮品。适量的消费葡萄酒可以降低心血管疾病、动脉粥样硬化、血小板聚集和癌症等多种疾病的发病率。葡萄酒的各种保健功效被认为与这些物质的抗氧化能力有关。我国葡萄酒工业以及葡萄酒市场正在不断地发展,并且这一趋势将会不断扩长。但目前为止,系统地研究我国葡萄酒的主要抗氧化成分和抗氧化能力的研究非常少。对于葡萄酒抗氧化能力的研究可以很好的评价葡萄酒的质量,为消费者提供参考,并且为葡萄酒的工艺措施改革提供理论依据。然而,由于抗氧化自身的复杂性和反应机制的多重性,使得目前没有一种标准方法可以代替和概括其它测定方法。抗氧化活性测定方法按照分析原理有不同的分类,根据是否进行生物体试验可以分为:体内试验和体外试验;根据测定目标是否为酶可以分为:酶法测定和非酶法测定;根据反应机理不同可以分为:以供氢为机理的方法、以供电子为机理的方法和兼有二者的方法;根据实验所用仪器可分为:分光光度计法、荧光法、化学发光法、色谱法等。高效

饲料防霉剂的研究进展

饲料防霉剂的研究进展 简介:饲料霉变引起的饲料浪费是世界性难题,作为预防饲料霉变的措施之一即防霉剂的使用是非常重要的,目前饲料工业中化学防霉剂已被广泛采用,本文综述了饲料霉变的原因、危害、常用的饲料防霉剂及其作用机理。 饲料是发展畜禽业的物质基础,它不仅能为畜禽的正常生长发育供给营养,还能提高畜产品的产量和质量。在炎热多雨季节,饲料在储存和运输途中往往因水分含量过高而容易受到黄曲霉菌、灰曲霉菌、寄生曲霉菌、镰刀霉菌和赫曲霉菌等有毒真菌的感染而导致霉变,使饲料的适口性变差,动物采食量减少,从而导致动物的生产性能下降,严重者会导致动物中毒。在这种情况下,搞好饲料的保藏,防止饲料霉变和腐败已成为饲料生产中的一个重要环节。 一、饲料发生霉变的原因 1、霉菌的种类 能引起饲料霉变的霉菌主要有曲霉菌属、青霉属和镰刀菌属。其中曲霉菌属包括黄曲霉、白曲霉、寄生曲霉等;青霉菌属包括圆弧青霉、桔青霉、扩展青霉等;镰刀菌属包括禾谷镰刀菌、串珠镰刀菌、三线镰刀菌等。这些霉菌在适宜的环境条件下都可引起饲料霉变。 2、温度和湿度

霉菌的生长繁殖需要一定的温度和湿度。霉菌大多数属于中温型微生物,最适生长温度为20-30℃,霉菌繁殖产毒的最适温度为25-30℃,其中曲霉菌属最适宜生长温度为30℃,青霉属于最适宜生长温度为28℃左右,镰刀菌属最适宜生长温度为20℃左右。一般危害饲料的霉菌孢子在7℃时即可发芽生长,温度高于49℃时霉菌则被杀死或进入孢子阶段;当空气中相对湿度达到75%时霉菌就能生长,在80%-100%时快速生长,在湿度低于75%时生长受到抑制。 3、饲料的含水量 饲料的含水量是决定饲料中霉菌能否生长的一个重要 原因之一,当饲料中水分超过13%-14%时,易于霉菌生长,当饲料水分>15%时霉菌可大量生长繁殖,其毒素产生也相应增加,饲料水分为10%-18%时是真菌繁殖产毒的最适条件。饲料及原料的安全水分为:谷实类为14%,粉状饲料为≤13%,全价颗粒料为≤12.5%。 4、饲料的加工工艺 在生产颗粒饲料时,如果冷却器及配套风机选择不当,或使用过程中调整校核不当,致使颗粒饲料冷却不够或风量不足时,会导致颗粒饲料水分含量及料温过高,这样的颗粒饲料装袋后易发生霉变。另外,饲料在加工过程中如果饲料流程设备中没有及时清理,会在设备的一些死角积存发霉变质的料块,特别是在生产全价颗粒饲料过程中,当这些物块回流

天然抗氧化剂的研究

天然抗氧化剂的研究现状 小组成员:莫娟兰,程小运,韦玲玲,李志宁,梁天贤,谢宏波,覃治达。 目录 中文文摘 [1].Liposomes和micelles结构对天然抗氧化剂稳定性的影响. [2].天然抗氧化剂对抗晶状体氧化损伤作用的实验研究 [3].大豆异黄酮的UV/vis的抗氧化作用 [4].天然抗氧化剂防止精炼油酸败的研究 英文文摘 [a].Antioxidant Activity of Wheat Germ Extracts [1] Liposomes和micelles结构对天然抗氧化剂稳定性的影响 儿茶素等类黄酮类物质广泛存在于茶叶、葡萄、柑橘、柿等多种天然植物中,它具有抗氧化、降血脂、消炎抗癌等多种功效,其保健功能已得到全世界医学界和食品营养界的公认,国内外很多学者对儿茶素等类黄酮类物质的自动氧化及抗氧化机理进行了详细而深入的研究。儿茶素类天然抗氧化剂在发挥其天然抗氧化保健作用的同时,其自身往往氧化成低活性甚至没有活性的氧化产物,特别是在天然植物原料加工过程中,这些天然抗氧化剂发生的自动氧化对其活性损失很大,因此,了解影响儿茶素自动氧化的因素,并寻找避免儿茶素自动氧化的方法以期提高其活性是医学界和食品营养界一直关注的课题。脂质体(Liposomes)和胶束体(micelles)类双亲和结构自发现以来,引起了科技界的高度重视,特别是脂质体结构的缓释性和靶向性在医药上的用途更为广泛,国外八十年代开始投入大量人力和财力进行研究,于九十年代开发出了脂质体靶向抗癌药物面市;我国九十年代引起重视并投入一定的经费开始研究,但到目前国内尚无一例成功开发上市的脂质体靶向药物。本试验试图将脂质体(Liposomes)和胶束体(micelles)类双亲和结构技术在儿茶素等类黄酮类物质。 [2] 天然抗氧化剂对抗晶状体氧化损伤作用的实验研究 目的:探讨五味子乙素(SchB)、水飞蓟宾(SIB)、没食子酸丙酯(PG)、阿魏酸钠(SF)和沙棘总黄酮(TFH)5种天然抗氧化剂对抗实验性晶状体氧化损伤的作用。 方法:将40只健康新西兰白兔麻醉后,无菌操作摘出80只眼球,游离出透明晶状体。将实验分成8组:(1)对照组,(2)Fenton组,(3)白内停组(PS),(4)五味子乙素组(SchB),(5)水飞蓟宾组(SIB),(6)没食子酸丙酯组(PG),(7)阿魏酸钠组(SF),(8)沙棘总黄酮组(TFH)。所配制的各组培养液,除对照组外,均含有Fenton反应液,并分别含有白内停或上述5种天然抗氧化剂。将晶状体随机分为8组分别放入培养液中,在37℃、5% cO2、95%空气的二氧化碳培养箱中温育。24 h后取出晶状体并在冰浴中做匀浆,测定晶状体总蛋白和可溶性蛋白、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、谷胱甘肽(SGH)、总抗氧化能力(TAO)、维生素(Vit c)和丙二醛(MDA)。结果以x±s表示,用SPSS统计软件包行t检验。探讨Fenton氧化损伤和5种抗氧化剂作用下对晶状体上述指标的影响。 结果:(1)各组总蛋白无差异。Fenton可溶性蛋白显著性低于其他组。对照组可溶性蛋白占总蛋白的90.74%,Fenton组仅占26.71%(丢失了71%),阿魏酸钠组可溶性蛋白占49.85%,是Fenton组的1.91倍,且高于白内停组(P<0.01)。(2)Fenton组SOD和GSH-Px活性分别丧失43.92%和49.22%。对照组、五味子乙素组、水飞蓟宾组、没食子酸丙酯组和阿魏酸钠组的SOD和GSH-Px活性均高于Fenton组,其中阿魏酸钠作用最强(P<0.01)。白内停没有提高SOD活性的作用仅有轻微增强GSH-Px活性的作用;(3)Fenton反应使晶状体中GSH和Vit c 分别丢失77.88%和80.95%,各种单体均显示较强的保护作用,且明显优于白内停滴眼液(P

抗氧化实验方法

1还原力的测定 样品2ml加到2ml 0.2mol/L磷酸盐缓冲液(pH6.6)和2ml 1%的铁氰化钾溶液的混合液中。混合物在50℃保温20min,然后在反应混合物中加入2ml 10%的TCA,混合后以3000rpm 离心10min,取上清液2ml与2ml蒸馏水以及0.4ml 0.1%氯化铁在反应试管中反应,10min 后测定其在700nm处的吸光值。吸光值越大表明还原力越强。 注意:建议蛋白浓度以5mg/ml左右变化,例如2.5,5之类变化。但具体情况应根据吸光值大小而定。 0.2mol/L pH6.6的磷酸盐缓冲液的配制见附表。 铁氰化钾溶液应盛装在棕色瓶中。 比色皿的用法:可见光(>400nm)用玻璃比色皿(即没有标字母或者标G的比色皿),紫外光时(<400nm)用石英比色皿(即标Q字比色皿)。 2 DPPH自由基清除活性的测定 将1.5ml样品液添加到1.5ml含0.1 mmol/L DPPH的95%乙醇中,混合,振荡,在 室温下放置30min,然后在波长517nm处检测(Ai)。清除率计算公式为: 空白为1.5 ml 95%的乙醇加入1.5 ml蒸馏水调零。 式中:Ac——对照为1.5 ml DPPH溶液加上1.5 ml蒸馏水在517nm处的吸光值;Aj——1.5ml样品液加上1.5 ml 95%的乙醇在517nm处的吸光值; Ai——1.5ml样品液加上1.5 ml DPPH溶液在517nm处的吸光值; 注意:建议酶解液蛋白浓度以2mg/ml 左右变化,如0.5,1,2,2.5之类变化,但是具体情况应视清除率而定,最终结果应有清除率大于50%和小于50%的情况。 DPPH样品有毒,需戴口罩和手套进行操作。而且DPPH试剂很昂贵,用时注意节约。0.1m mol/L DPPH 乙醇溶液的配制:准确称取0.00395gDPPH,用95%的乙醇溶液溶解并定容到100ml。 3 在卵黄磷脂体系中抗氧化能力的测定 以卵黄脂蛋白为底物的LPO模型反应体系包括:体积比为1:25稀释的卵黄悬液(卵黄用等体积的pH7.45,0.lmol/LPBS配成,使用前磁力搅拌10min)0.2 mL、一定浓度的样品溶液0.lmL、25m moll/LFeSO4溶液0.2mL,用PBS缓冲液补足至2.0mL。对照管除不加样液外其他试剂同前。将上述2种试管同时置37℃恒温水浴锅中保温培养1h。取出后,加入20%TCA0.5mL,静置10 min后,与对照管于3500r/min离心10min,取2.0mL上清液,分别加入质量分数为0.8%硫代巴比妥酸(TBA)溶液1.0mL,加塞于100℃水浴15min,取出冷却。空白管以2.0mLPBS溶液代替,在532nm下测定吸光度,样品对卵黄脂蛋白LPO的抑制率表示为: SA(%)=(Ac一AS)/A C×100 式中:Ac一不加样品的吸光度 As一加入样品的吸光度 注意:卵黄溶液不用时应放置冰箱保存。 酶解液蛋白浓度以5mg/ml左右调整,但具体应视清除率大小而定,对酶解液蛋白浓度

果汁中抗氧化剂的使用

1饮料中抗氧化剂的使用 7.1饮料中防腐剂的使用情况 通过市场上调查,我们知道饮料主要种类有:乳品、茶饮料、碳酸饮料、功能饮料、果汁。其中乳品和啤酒中一般不含抗氧化剂。在各种饮料品牌中,标明无抗氧化剂的品牌有:雪碧,可口可乐,百事可乐,伊利,燕糖,子母奶,旺仔牛奶,各类牌子的啤酒等。经整理调查结果,得出的饮料中抗氧化剂使用情况如下表所示。 种类品牌名称抗氧化剂 果汁类水溶c100 西柚汁饮料维生素E、维生素c、D- 异抗坏血 酸钠 柠檬味复合果汁饮料维生素E、维生素c、D- 异抗坏血 酸钠 健力宝番石榴汁维生素E、维生素c 纯果乐鲜橙汁β-胡萝卜素、维生素c 美汁源酷儿β-胡萝卜素、维生素c 橙汁β-胡萝卜素、维生素c 东一堂金桔柠檬果 汁 β-胡萝卜素、D- 异抗坏血酸钠 真田枇杷植物饮 料 山梨酸钾 Pal爆果汽苹果汁山梨酸钾、维生素c、β-胡萝卜素 柳橙汁山梨酸钾、β-胡萝卜素 蜂蜜雪梨果 汁 山梨酸钾 统一绿茶D- 异抗坏血酸钠 冰糖雪梨D- 异抗坏血酸钠 冰红茶D- 异抗坏血酸钠 洛神花茶无 竹蔗马蹄无 鲜橙多D- 异抗坏血酸钠、维生素C 雪碧柠檬味汽水无 牛奶旺仔牛奶无 优酸乳原味无 维他奶黑豆奶无 巧克力奶无

香草味无 原味无 麦香味无 燕糖甜牛奶无 高钙奶无、维生素E 红枣枸杞无 花生核桃无 草莓味无 子母奶香蕉味无 巧克力味无 原味无 营养快线水果味维生素E 酸奶味维生素E 伊利纯牛奶无 高钙奶无 酸奶味无、维生素E 茶类康师傅经典奶茶香浓味D- 异抗坏血酸钠 炼乳味D- 异抗坏血酸钠统一奶茶煎茶奶绿D- 异抗坏血酸钠 阿萨姆奶茶D- 异抗坏血酸钠酒类广式啤酒菠萝味亚焦硫酸钠 好德啤酒菠萝味无 纯生啤酒原味无 珠江啤酒原味无 龙啤原味无 白金龙啤酒原味无 生力啤酒原味无 红马啤酒原味无 半岛阳光月桂酒山梨酸钾 韩国真露酒原味无 红广场预调酒青柠味山梨酸钾 紫莓味山梨酸钾 水蜜桃味山梨酸钾

几种抗氧化剂含量的测定

几种抗氧化剂含量的测定 一、实验目的 1.掌握抗坏血酸(AsA)含量的测定。 二、实验原理 抗坏血酸(AsA)测定的原理: (1)AsA生理生化作用 抗坏血酸是植物细胞重要的抗氧化剂,通过清除体内的自由基和活性氧(H2O2)等,使机体免受氧化损伤。 (2)AsA含量的测定方法 a、2, 6-二氯靛酚滴定法 b、2, 4-二硝基苯肼分光光度法 c、荧光分光光度法 d、近红外分光光度法 e、电位滴定法 f、钼蓝比色法 g、2,2-联吡啶分光光度法 (3)二联吡啶法测定AsA含量的原理 三、实验材料和主要试剂 实验材料:菠菜叶片 实验试剂:5%TCA溶液、150mmol/L NaH2PO4(PH7.4)溶液、10%TCA溶液、44% H3PO4、4% 2, 2-二联吡啶;3% FeCl3。 四、实验步骤 (一)AsA含量的测定 1、标准曲线的制作 配制浓度为1mmol/L的AsA标准母液,分别配制成0、0.1、0.2 、0.3、0.4、0.5、0.6、0.7mmol/L 的AsA标准液。分别取0.2ml AsA标准液,分别加入0.2ml NaH2PO4(PH7.4)溶液、0.2ml H2O,混匀,30s后,分别加入0.4ml 10% TCA溶液、0.4ml H3PO4溶液、0.4ml 2, 2-二联吡啶溶液,0.2ml 3%FeCl3溶液,37℃,60min,测A525nm。以AsA浓度为横坐标,

以OD值为纵坐标,制作标准曲线。 2、提取 称2.5g菠菜叶片1份,将样品剪碎加入10ml 5% TCA, 研磨,15000xg离心10min,上清液定容至25ml。 3、测定 分别取0.2ml上述制备的上清液和去离子水,分别加入0.2ml NaH2PO4(PH7.4)溶液、0.2ml H2O,混匀,30s后,分别加入0.4ml 10% TCA溶液、0.4ml H3PO4溶液、0.4ml 2, 2-二联吡啶溶液,0.2ml 3%FeCl3溶液,37 ℃,60min,在525nm下测定OD值。 根据标准曲线计算样品中AsA的含量。 五、实验结果 抗氧化剂含量(ug/gFW)=抗氧化剂浓度(ug/ml)*提取液体积(ml)/样品的重量(g)抗氧化剂浓度(ug/ml)=(3.214*17.613+0.0012)/1.3095=43.23ug/ml 抗氧化剂含量(ug/gFW)43.23*25ml/2.500g=432.3(ug/gFW) 六、分析和讨论 1.抗氧化剂由植物体合成,待植物被破坏易被氧化,在实验中需迅速操作,防止抗氧化剂 被氧化。 2.还原型谷胱甘肽是植物细胞内另一种重要的抗氧化剂。它含有活性的巯基,极易被氧化。 GSH可以预知不饱和脂肪酸生物膜组分及其他敏感部位的氧化分解,防止膜脂过氧化,

饲料中防霉剂的添加方法及用量

饲料中防霉剂的添加方法及用量 在饲料中添加的化学防霉剂种类很多,可分为单方和复方两大类:1、单方防霉剂 单方防霉剂包括丙酸盐类、甲酸及甲酸钙、山梨酸、柠檬酸、马酸二甲酯以及大蒜素等。这些防霉添加剂具有破坏或阻断病原微生物的作用,但又不会阻碍消化道中正常有益菌群和酶的活动,有的还能改变饲料的口味和提高饲料的适口性。 2、复方防霉剂 为了提高防霉剂的防霉能力和综合品质,除了使用单方防霉剂以外,还经常使用复方防霉剂。复方防霉剂的广谱抗菌防霉能力更强,适用范围更宽,经常使用的复方防霉剂有: 用92%海藻物、4%碘酸钙、4%丙酸钙组成,使用时按8%的比例添加到饲料中。这种防霉剂除了防霉效果好以外,最大特点是增加了海藻物中各种微量元素,如钙、铁、锌、碘、铜等,使饲料中的微量元素更丰富。 用1份醋酸钠和2份醛酸混合均匀,然后在混合物中加入1%的山梨酸,充分搅拌并干燥即可,使用时按1%的比例加入到饲料中。 添加量 1、苯甲酸和苯甲酸钠:苯甲酸和苯甲酸钠都能非选择性地抑制微生物细胞呼吸酶的活性,使微生物的代谢受障碍,从而有效地抑制多种微生物的生长和繁殖,且对动物的生长和繁殖均无不良影响。在饲料中主要使用苯甲酸钠,一般的使用量不超过0.1%。 2、富马酸及其酯类:富马酸酯类包括富马酸二甲酯、富马酸二乙酯和富马酸二丁酯等,其中防霉效果较好的为富马酸二甲酯。富马酸及其酯类也是酸性防霉剂,抗菌谱较广,并可改善饲料的味道以及提高饲料利用率,一般使用量在0.2%左右。 3、脱氢乙酸:脱氢乙酸是一种高效广谱抗菌剂,具有较强的抑制细菌、霉菌及酵母菌发育作用,尤其对霉菌的作用最强,在酸、碱等条件下均具有一定的抗菌作用。脱氢乙酸是一种低毒防霉剂,一般无不良影响,使用量为0.05%左右。 注意事项 1、根据水分含量等实际情况灵活使用防霉剂:影响防霉剂作用效果的因素有很多,如防霉剂的溶解度、饲料环境的酸碱度、水分含量、温度、饲料中糖和盐类的含量、饲料污染程度等。但饲料中使用防霉剂主要是根据季节和水分含量来决定是否使用和用量。因

抗氧化剂问答

饲料油脂氧化的危害以及影响因素分析(问与答) 郭福存曾德强黄俊文韩忠燕 诺伟司国际公司 1.饲料中油脂氧化有什么样的危害? 众所周知,油脂氧化引起的脂肪变质、变味,氧化产物主要为醛、酮、酯、酸和大分子聚合物等,这些产物有些产生异味,或有毒性。脂肪氧化酸败的危害大致可归纳如下几点: 1)氧化油脂的营养价值降低 a)脂肪酸组成发生变化:主要表现在不饱和脂肪酸相对比例减少即植物中亚油酸(18:2ω—6)和亚麻酸(18:3ω—3)。动物油特别是鱼油中ω—3系列脂肪酸显著下降。伴随这一系列变化,氧化油脂的消化率下降;许多研究表明,氧化的油脂及形成聚合物妨碍脂类的消化吸收,表现在动物消化器官受损、下痢及增重减慢。同时,氧化油脂中生育酚明显减少。 b)蛋白质与次级氧化产物发生交联反应,降低蛋白质的消化吸收:油脂氧化物可与蛋白质分子中许多活性氨基酸残基起反应,可导致蛋白质聚合,溶解度或酶活性降低。油脂氧化产物丙二醛可与蛋白质发生交联。 2)油脂氧化会产生不良味道,影响动物的适口性和采食,其至拒食:油脂在氧化过程中,分解产生的小分子丙二醛、戊醛、酮、低聚物等,其中醛类是刺激性味道主要来源。产生的不良味道包括: a)回味:油脂轻度氧化时会出现回味现象。大豆油、菜籽油含亚麻酸及其它不饱和脂肪酸的油脂容易引起回味。例如大豆油的回味,历经了豆腥味--青草味--油漆味--鱼醒味四个阶段。微量金属元素的存在会促进油脂的回味。b)酸败:酸败是指油脂从产生油漆味等酸败味道到对口、鼻产生强烈刺激的变化过程,动物对此味道和有害生理作用的反馈记忆深刻。 4)破坏饲料中的维生素:饲料中维生素被破坏的原因有两类:一是无机微量元素直接的氧化和催化氧化,二是无机微量元素催化油脂氧化产生的自由基的氧化。尤其是油脂氧化产生的氧化物都是强氧化剂,对脂溶性维生素VA、VD3、及多种水溶性的维生素都有破坏作用。维生素破坏导致的生长缓慢、繁殖机能下降、外观不良、抗应激能力差和下痢。

总抗氧化能力检测试剂盒(FRAP法)

总抗氧化能力检测试剂盒(FRAP法) 产品编号产品名称包装 S0116 总抗氧化能力检测试剂盒(FRAP法) 100次 产品简介: 总抗氧化能力检测试剂盒(FRAP法),即Total Antioxidant Capacity Assay Kit with FRAP method,简称T-AOC Assay Kit,是一种采用Ferric Reducing Ability of Plasma (FRAP)方法,可以对血浆、血清、唾液、尿液等各种体液,细胞或组织等裂解液、植物或中草药抽提液、或各种抗氧化物(antioxidant)溶液的总抗氧化能力进行检测的试剂盒。 活性氧(Reactive oxygen species, ROS)主要包括羟基自由基、超氧自由基和过氧化氢。在细胞或组织的正常生理代谢过程中会产生活性氧,同时一些环境因子例如紫外照射、γ射线照射、吸烟、环境污染等也可以诱导活性氧的产生。活性氧产生后,可以导致细胞内脂、蛋白和DNA等的氧化损伤,诱发氧化应激(Oxidative stress),继而导致各种肿瘤、动脉粥样硬化、风湿性关节炎、糖尿病、肝损伤、以及中枢神经系统疾病等。 机体中存在多种抗氧化物,包括抗氧化大分子、抗氧化小分子和酶等,可以清除体内产生的各种活性氧,以阻止活性氧诱导的氧化应激(oxidative stress)的产生。一个体系内的各种抗氧化大分子、抗氧化小分子和酶的总的水平即体现了该体系内的总抗氧化能力。因此测定血浆、血清、尿液、唾液等各种体液,细胞或组织等裂解液中的总抗氧化能力具有非常重要的生物学意义。 植物或中草药抽提液、或各种抗氧化物溶液的总抗氧化能力的检测可以用于检测各种溶液的抗氧化能力的强弱,可以用于筛选强抗氧化能力的药物。 FRAP法测定总抗氧化能力的原理是酸性条件下抗氧化物可以还原Ferric-tripyridyltriazine (Fe3+-TPTZ)产生蓝色的Fe2+-TPTZ,随后在593nm测定蓝色的Fe2+-TPTZ即可获得样品中的总抗氧化能力。由于反应在酸性条件下进行,可以抑制内源性的一些干扰因素。并且由于血浆等样品中的铁离子或亚铁离子的总浓度通常低于10μM,因此血浆等样品中的铁离子或亚铁离子不会显著干扰FRAP法的检测反应。由于反应体系中的铁离子或亚铁离子是和TPTZ螯合的,样品本身含有的少量金属离子螯合剂通常也不会显著影响检测反应。 Antioxidant Fe3+-TPTZ ——————> Fe2+-TPTZ (蓝色) 提供了抗氧化物Trolox作为对照。Trolox是一种维生素E的类似物,水溶性较好,抗氧化能力和维生素E相近。 本试剂盒方便快捷,加入待测样品后3-5分钟即可进行吸光度测定,通常10-20个样品可以在十多分钟内检测完毕。 本试剂盒可以检测100个样品。 包装清单: 产品编号产品名称包装 S0116-1 TPTZ稀释液 15ml S0116-2 TPTZ溶液 1.5ml S0116-3 检测缓冲液 1.5ml S0116-4 FeSO4·7H2O 200mg S0116-5 Trolox溶液 (10mM) 0.1ml —说明书1份 保存条件: -20℃保存,一年有效。其中S0116-2 TPTZ溶液,S0116-3 检测缓冲液和S0116-5 Trolox溶液 (10mM)需避光保存。 注意事项: 在酸性条件下呈蓝色或接近蓝色的试剂会对本试剂盒的检测产生干扰,需尽量避免。 如果样品中含有外加的较高浓度的铁盐或亚铁盐,会干扰测定。但血浆、血清、细胞或组织裂解液等样品中含有的微量的铁盐或亚铁盐不会干扰测定。 样品中不能添加DTT、巯基乙醇等影响氧化还原反应的物质,也不宜添加Tween、Triton和NP-40等去垢剂。 测定时需可以测定A593的酶标仪一台(测585-605nm也可以)或可以测定微量样品的分光光度计一台。 TPTZ对人体有刺激性,请注意适当防护。 为了您的安全和健康,请穿实验服并戴一次性手套操作。

抗氧化剂抗氧化活性的测定方法

1.抗氧化剂是指在低浓度下能有效延缓或阻止底物氧化的物质。被氧化的底物包括蛋白质、脂质、糖和DNA。 2.初始型抗氧化剂(AH)可通过与脂质自由基L.、过氧自由基LOO.或烷氧自由基LO.反应抑制脂质氧化链反应。 L.+ AH--- LH + A. LOO.+ AH--- LOOH + A. LO.+ AH--- LOH + A. 抗氧化剂自由基A.也能与过氧自由基、烷氧自由基反应从而终止脂质氧化反应。 LOO.+ A.---LOOA LO.+ A.---LOA 次级型抗氧化剂可通过各种机理延缓脂质氧化,如螯合过渡金属、给初始型抗氧化剂补充氢、清除氧以及使活性物质失活等。 抗氧化剂的活性分为在生物体外(如食品中)的活性和在生物体内的活性。本文综述了体外测定抗氧化剂抗氧化活性的方法,不包括在生物体中测定生物活性的方法。 3.评价或表征抗氧化活性的方法为了说明在特定条件下被测物抑制底物氧化的效力或清除自由基的能力 实际测定时至少要说明在测试条件下被测物是抗氧化剂还是促氧化剂;在指定浓度下比较不同测试材料(如被测物与标准抗氧化剂或添加有被测物的测试体系与空白体系)对底物的作用。 评价或表征抗氧化活性的方法有: (1)在指定的时间测量氧化产物或官能团的浓度或吸光度值;( 2)测量反应的速率;

( 3)测量诱导期(延滞期)或氧化达到一定程度所需的时间;( 4)测量速度的积分(即动力学曲线下的面积) ; ( 5)测量被测物产生与标准抗氧化剂相当作用的浓度。4.参数 4.1诱导期( induction period) 诱导期tIND(也叫延滞期, lag period)常定义为化学反应的速度。诱导期是一个相当不确定的值,受检测方法、使用仪器的灵敏性以及一些其他因素的影响。对于脂质氧化,诱导期通常是指链增长阶段动力学曲线的切线和时间轴的交点。 4.2抑制率( percentag e of inhibition)和IC50 抑制率和IC50 (抗氧化剂提供50%抑制作用时的浓度,也可用EC50表示的)常用来表征抗氧化能力。它们不仅与被测抗氧化剂的反应性能和氧化的底物有关,而且受其他因素的影响,如脂质氧化链反应的长度和抑制速率等。此外,用IC50表征抗氧化剂 的活性与比较活性的时间点有关。只有在其他参数相同的情况下,在某一研究中测得的抑制率和IC50才可以与另一研究中测得的值进行直接比较。TEC50是指抗氧化剂提供50%抑制作用所需的时间,也常用来表征抗氧化活性 5.对测定方法的要求 测定抗氧化剂抗氧化活性的方法应满足如下要 求: ( 1)能说明测试体系中发生的反应,并能用明确的动力学图解描述;( 2)测试要有再现性; ( 3)测试效率要足够高; ( 4)方法要相对简单; ( 5)能连续检测; ( 6)应使用与体内或食品有关的活性自由基;

饲料防霉剂及其应用

饲料防霉剂及其应用 饲料霉变引起的饲料浪费是世界性难题。农作物在田间、收获、加工、储存过程中都可感染霉菌。霉菌不是一个分类学上的名称,凡是在基质上长成绒毛状、棉絮状或蜘蛛网状的菌丝体的真菌,统称为霉菌。因其种类繁多(一般泛指毛霉、根霉、毛壳霉、曲霉、青霉和镰刀霉菌属等真菌〕、生长性强(温度在-5~60℃,相对湿度80%以上都可以生长)繁殖力强等,给饲料的贮存带来了诸多不利。作为预防霉变的重要措施之一,防霉剂的使用是非常重要的。但目前市场上防霉剂种类繁多,适用范围及防霉效果不尽相同,如使用不当还会引起中毒现象,如何选用合适的防霉剂是在实际生产中值得重视的问题,本文旨在探讨对各种防霉剂的应用及其机理,以供广大饲料工作参考。 1常用防霉剂及作用机理 联合国FAO/WHO对防霉剂有严格的要求:①防霉剂添加应很小,无毒性和无刺激性;②能溶解达到有效浓度;③性质稳定、贮存时不发生变化、也不与饲料或其它成分起反应;④无异味、臭味;⑤有较广的抑菌谱。具备以上各点才是较为优良的防霉剂。目前常用的防霉剂主要为有机酸、有机酸盐类及有机酸或有机酸盐与特殊的载体结合制成的复合防霉剂。 1.l丙酸 丙酸为无色液体,具有挥发性。带有乙醇味,是应用最早、最广的防霉剂之一。目前市场上用的露保丝、万路保、克霉霸及诗华抗霉素等主要成分均为丙酸。丙酸的防霉机理目前公认的有两个:①非离解的丙酸活性分子在霉菌细胞外形成高渗透压,使霉菌细胞内脱水,而失去繁殖能力;②丙酸活性分子可穿透霉菌细胞壁,抑制细胞内的酶活性,而阻止霉菌的繁殖。丙酸作为挥发性液体,在饲料贮存中可挥发产生丙酸气体,与饲料表面充分接触,因此抑菌均匀,效果好。对饲料混合均匀度要求不高,有效用量低,见效快。对好气性芽孢杆菌、黄曲霉有较好的抑制作用。缺点是,热稳定性不好,80℃制粒过程中挥发量达40%,用于制粒时损失大;在贮存过程中损失快,药效持力短,不利于长期保存;易受饲料中钙盐或蛋白质的中和,而失去活性。因此,要求即时起作用,防霉时间不需要太长时,丙酸是较好的防霉剂。1.2丙酸盐 丙酸盐为白色颗粒或粉末,无臭或稍有异臭味,溶于水。我国生产的克霉灵、除霉净、霉敌、101等主要成分为丙酸盐类。丙酸盐的有效作用成分是丙酸分子而非丙酸盐类。丙酸盐释放丙酸分子受饲料中水分和pH值的影响,pH=7时丙酸盐溶于水,游离出丙酸分子仅为0.8%,pH=4.9游离酸含量为50%。因此丙酸盐的防霉效果不如丙酸。而且丙酸盐离解后形成弱碱性,阻碍进一步离解。饲料pH值调节必须依靠外来酸。丙酸盐的抑霉菌作用取决于丙酸的效果。从以上特点可知丙酸盐的抑菌效果不如丙酸,不具有熏蒸作用,对饲料混合均匀度要求高;用量大,并因此影响适口性;对饲料含水分、pH值要求严格,且不能即时起作用。丙酸盐的优点是,不挥发、耐高温,不受饲料中成分影响,腐蚀性低,刺激性小,且适合持续贮存。 1.3山梨酸及其盐 山梨酸又名2,4一己二酸,为化学合成品,白色结晶粉末或无色针状结晶,无臭或少有刺激性气味,溶于水,其盐为无色或白色鳞片结晶或白色结晶粉末,在空气中易受潮分解不稳定,一般应用较少。而山梨酸却和丙酸一样是目前最常用的防霉剂。山梨酸及其盐的作用机制为山梨酸与微生物酶系统中的巯基结合,而破坏酶系统达到抑菌目的(汪锦邦,1985)。另外,Paster等(1987)认为山梨酸还可在饲料表面形成一均匀的有机酸保护膜,阻止霉菌进入内层。山梨酸的优点是,防霉效果好,对霉菌、酵母菌、好气性细菌均有抑制作用,毒性小、价格低。缺点是防霉效果受pH值的影响,pH值大于7.5时,几乎无抑菌作用;对乳酸菌几乎无效;在水中易氧化,在塑料容器中其活性会降低。 1.4苯甲酸及其盐 为无色或白色针状或鳞片状结晶,稍溶于水。是目前使用量最大的防霉剂之一。添加量一般为0.1%~0.3%。有效成分为非离解态的苯甲酸活性分子。作用机理为完整的苯甲酸活性分子穿过霉菌细胞壁,抑制细胞内呼吸酶的活性及阻碍乙酰辅酶的缩合反应,使三羧酸循环受阻,代谢受影响。并可阻碍

抗氧化剂的作用机理研究进展

抗氧化剂的作用机理研究进展 摘要:食品抗氧化剂的作用比较复杂。BHA和BHT等酚型抗氧化剂可能与油脂氧化所产生的过氧化物结合,中断自动氧化反应链,阻止氧化。抗坏血酸、异抗坏血酸及其钠盐因其本身易被氧化,因而可保护食品免受氧化。另一些抗氧化剂可能抑制或破坏氧化酶的活性,借以防止氧化反应进行。研究食品抗氧化剂的作用机理并合理使用抗氧化剂不仅可延长食品的贮存期,给生产者、经销者带来良好的经济效益,也给消费者提供可靠的商品。 关键词:抗氧化剂作用机理自由基现状前景展望 食品的变质,除了受微生物的作用而发生腐败变质外,还会和空气中的氧气发生氧化反应。食品氧化不仅会使油脂或含油脂食品氧化酸败(哈败),还会引起食品发生退色、褐变、维生素破坏,从而使食品腐败变质,降低食品的质量和营养价值,氧化酸败严重时甚至产生有毒物质,危及人体健康。防止食品氧化变质,在食品的加工和储运环节中,除采取低温、避光、隔绝氧气以及充氮密封包装等物理的方法还可以配合使用一些安全性高、效果大的食品抗氧化剂以防止食品发生氧化变质。 1 食品抗氧化剂的定义 食品抗氧化剂是指防止或延缓食品氧化,提高食品稳定性和延长食品储藏期的食品添加剂。具有抗氧化作用的物质有很多,但可用于食品的抗氧化剂应具备以下条件:①具有优良的抗氧化效果; ②本身及分解产物都无毒无害;③稳定性好,与食品可以共存,对食品的感官性质(包括色、香、味等)没有影响;④使用方便,价格便宜。[1] 2 食品抗氧化剂的分类 目前,对食品抗氧化剂的分类,按来源可分为人工合成抗氧化剂和天然抗氧化剂(如茶多酚、植酸等)。按溶解性可分为油溶性、水活性和兼溶性三类。油溶性抗氧化剂有BHA、BHT等;水溶性抗氧化剂有维生素C、茶多酚等;兼溶性抗氧化剂有抗坏血酸棕榈酸酯等。按作用方式可分为自由基吸收剂、金属离子螯合剂、氧清除剂、过氧化物分解剂、酶抗氧化剂、紫外线吸收剂或单线态氧淬灭剂等。[2] 3 食品抗氧化剂的作用机理 由于抗氧化剂种类较多,抗氧化的作用机理也不尽相同,归纳起来,主要有以下几种: 一是抗氧化剂可以提供氢原子来阻断食品油脂自动氧化的连锁反应,从而防止食品氧化变质; 二是抗氧化剂自身被氧化,消耗食品内部和环境中的氧气从而使食品不被氧化; 三是抗氧化剂通过抑制氧化酶的活性来防止食品氧化变质。 四是将能催化及引起氧化反应的物质封闭,如络合能催化氧化反应的金属离子等。[3]

饲料抗氧化剂

饲料抗氧化剂. 饲料抗氧化剂 饲料中的主要成分均不同程度易受外界影响而产生氧化反应,导致饲料变质,对畜禽健康生长产生副作用,轻者影响畜禽生长,严重

则导致畜禽痢疾、呕吐或其他中毒症状。 一、饲料中容易氧化的成分 1.油脂性类:主要有大豆油、花生油、鱼油等 其共同的特点是含有极高的不饱和脂肪酸,有些产品的游离脂肪酸含量达到5%以上,经一段时间的不当环境下贮存,其含量会成倍增加。在配合饲料的生产加工、贮存过程中极易发生氧化酸败。即使是有些动植物油脂,如果在其加工、贮存过程中存在若干不利因素,均会造成严重的水解、氧化酸败。在饲料厂常见贮存于露天或室内的油脂,在炎热的环境下不断冒泡、自温升高。表明这些油脂在加入配制饲料之前已发生严重的酸败。加入饲料后在其它物质的催化下酸败更为严重,而且会迅速波及其它脂类物质的酸败过程。

2.饼粕类:主要有豆粕、花生粕、菜籽粕等。 饼粕类不饱和脂肪酸含量较高,易氧化酸败。 3.糠麸类:主要有全脂米糠、统糠和小麦麸皮 米糠含较高粗脂肪,其中又以不饱和脂肪酸居多。在高温环境下,大米在贮存过程中,全脂米糠或统糠就可能会产生严重的酸败。在水稻产区,饲料中使用大量的糠麸类可能是造成饲料酸败的主要原因之一。使用水分含量过高、贮存时间过长的小麦麸,同样会造成类似情况的出现。. 4.鱼粉、肉骨粉类:主要有鱼粉、肉骨粉及动物屠宰加工的副产品 脂肪含量较高,易发生氧化酸败。 5.饲用香味剂:饲用香味剂主要含有醚、醛、酯等具有挥发性芳香类

物质,有些成分本身极易被氧化,有些则提供非配对电子将其它成分氧化,因而是一类极不稳定的物质。事实上在生产实践中屡见一些劣质香味剂还未使用已严重氧化酸败,加入饲料中无疑成为氧化酸败的导火线。 6.维生素添加剂:脂溶性维生素、胡萝卜素及类胡萝卜素等物质易被空气中的氧氧化、破坏,使饲料营养价值下降、适口性变差,甚至导致饲料酸败变质,所形成的过氧化物对动物还有毒害作用。 二、抗氧化剂基本知识 1. 抗氧化剂的概念是什么? 抗氧化剂即为防止或延缓饲料中某些活性成分发生氧化变质而添加于饲料中的制剂。主要用于含有高脂肪的饲料,以防止脂肪氧化酸

植物总抗氧化能力(TAC)比色法(ABTS)定量检测试剂盒

植物总抗氧化能力(TAC)比色法(ABTS)定量检测试剂盒产品说明书(中文版)
主要用途
植物总抗氧化能力 (TAC) 比色法 (ABTS) 定量检测试剂盒是一种旨在通过过硫酸钾的参与, 使染料 ABTS 氧化,在抗氧化剂的存在下,通过分光光度仪,观察其峰值下降的变化,来定量检测对应于标准水溶性生 育酚 Trolox 的总抗氧化能力,即抑制氧化等值浓度的权威而经典的技术方法。该技术经过精心研制、成功 实验证明的。适用于各种体液包括血浆、血清、尿液、脑脊液、唾液、精液等各种体液的总抗氧化能力检 测。产品严格无菌,即到即用,操作简易,性能稳定。b5E2RGbCb5E2RGbC
技术背景
超氧自由基阴离子(superoxide radical;O2-) 、过氧化氢(hydrogen peroxide;H2O2) 、羟自由基或氢氧基 (hydroxyl radical;OH-) 、过氧化基(peroxyl radical;ROO-) 、氢过氧自由基(hydroperoxyl;HOO) 、烷 氧自由基(alcoxyl radical) 、氮氧基(nitric Oxide;NO-) 、过氧亚硝基阴离子(peroxynitrite anion;ONOO-) 次氯酸(hypochlorous acid;HOCl) 、半醌自由基(semiquinone radical) 、单线态氧气(singlet oxygen)等 细胞内活性氧族(Reactive Oxygen Species;ROS)的产生和增多,将导致细胞衰老或凋亡,甚而导致诸如 冠心病、风湿性关节炎、肿瘤、退行性病变等各种病理状况。在生物系统内,通过抗氧化酶例如超氧化物 歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶等,大分子,例如白蛋白、铜蓝蛋白(ceruloplasmin;CER) 、 铁蛋白(ferritin)和抗氧化因子,例如生育醇、类胡萝卜素、抗坏血酸、还原性谷胱甘肽和尿酸胆红素 (bilirubin)等,产生抗氧化能力,即捕获自由基的能力,达到消除或降低ROS的损害。通过过硫酸钾 (potassium persulfate)氧化2,2’-连氮-双(3-乙基苯并噻唑-6-磺酸) (2,2'-Azino-bis(3-ethylbenzthiazoline6-sulfonic acid),diammonium salt;ABTS)产生的ABTS自由基,衡量体系中抗氧化剂捕获自由基或者消耗 抗氧化剂的能力,在分光光度仪(730nm波长)的帮助下,观察其峰值下降的变化,并与标准化抗氧化剂 水溶性生育酚Trolox对照。p1EanqFDp1EanqFD
产品内容
1 / 13

相关文档
最新文档