人教版九年级上册二次函数综合题

人教版九年级上册二次函数综合题
人教版九年级上册二次函数综合题

二次函数综合题33练

1.在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.

已知抛物线y=﹣x2﹣x+2与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.

(1)填空:该抛物线的“梦想直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN 为该抛物线的“梦想三角形”,求点N的坐标;

(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.

2.如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线y=ax 2

+bx+4过点B ,C 两点,且与x 轴的一个交点为D (﹣2,0),点P 是线段CB 上的动点,设CP=t (0<t <10).

(1)请直接写出B 、C 两点的坐标及抛物线的解析式;

(2)过点P 作PE ⊥BC ,交抛物线于点E ,连接BE ,当t 为何值时,∠PBE=∠OCD ?

(3)点Q 是x 轴上的动点,过点P 作PM ∥BQ ,交CQ 于点M ,作PN ∥CQ ,交BQ 于点N ,当四边形PMQN 为正方形时,请求出t 的值.

3.如图

1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交BC 于点

D .tan 2OAD ∠=,抛物线21:(0)M y ax bc a =+≠过A ,D 两点.

(1)求点D 的坐标和抛物线1M 的表达式.

(2)点P 是抛物线1M 对称轴上一动点,当90CPA ∠=?时,求所有满足条件的点P 的坐标. (3)如图2,点(0,4)E ,连接AE ,将抛物线1M 的图象向下平移(0)m m >个单位得到抛物线2M . ①设点D 平移后的对应点为点D ',当点D '恰好落在直线AE 上时,求m 的值.

②当1(1)x m m ≤≤时,若抛物线2M 与直线AE 有两个交点,求m 的取值范围.

4.如图,已知抛物线y=ax 2

+bx+c 过点A (﹣1,0),B (3,0),C (0,3)点M 、N 为抛物线上的动点,过点M 作MD ∥y 轴,交直线BC 于点D ,交x 轴于点E .

(1)求二次函数y=ax 2

+bx+c 的表达式;

(2)过点N 作NF ⊥x 轴,垂足为点F ,若四边形MNFE 为正方形(此处限定点M 在对称轴的右侧),求该正方形的面积;

(3)若∠DMN=90°,MD=MN ,求点M 的横坐标.

5.如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.

(1)求抛物线的解析式;

(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;

(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.

6.如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.

(1)求抛物线的函数表达式;

(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;

(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.

7.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.

(1)求抛物线的解析式;

(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;

(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.

8.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.

(1)求抛物线的解析式及点D的坐标;

(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;

(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标.

9.如图,已知二次函数y=x 2

﹣4的图象与x 轴交于A ,B 两点,与y 轴交于点C ,⊙C 的半径为

,P 为

⊙C 上一动点.

(1)点B ,C 的坐标分别为B ( 3,0 ),C ( 0,﹣4 );

(2)是否存在点P ,使得△PBC 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由;

(3)连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值= .

10如图,已知二次函数()2

30y ax bx a =++?的图象经过点()3,0A ,()

4,1B ,且与

y 轴交于点C ,

连接AB 、AC 、BC .

(1)求此二次函数的关系式;

(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标;

(3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.

11. 如图①,在平面直角坐标系中,二次函数的图像与坐标轴交于,,A B C 三点,

其中点A 的坐标为(-3,0),点B 的坐标为(4,0),连接,AC BC .动点P 从点

A 出发,在线段AC 上以每秒1个单位长度的

速度向点C 作匀速运动;同时,动点Q 从点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 作

匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.

(1)填空:b=▲,a=▲;

(2)在点,P Q运动过程中,APQ

?可能是直角三角形吗?请说明理由;

(3)在x轴下方,该二次函数的图像上是否存在点M,使PQM

?是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;

(4)如图②,点N的坐标为(-3

2

,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的

对称点Q'恰好落在线段BC上时,请直接写出点Q'的坐标.

12.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t

(1)求抛物线的解析式;

(2)当t何值时,△PFE的面积最大?并求最大值的立方根;

(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.

13.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.

(1) 若m=-3,求抛物线的解析式,并写出抛物线的对称轴;

(2) 如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物

线上有一点E,使S△ACE = 10

3

S△ACD,求E点的坐标;

(3) 如图2,设F(-1,-4),FG⊥y轴于G,在线段OG上是否存在点P,使

∠OBP=∠FPG? 若存在,求m的取值范围;若不存在,请说明理由.

14.已知点A(-1,1)、B(4,6)在抛物线y=ax2+bx上

(1) 求抛物线的解析式

(2) 如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥A E

(3) 如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值

15.如图,抛物线

c bx x y ++=

2

2

1与x 轴交于B A 、两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知6==OC OB .

⑴求抛物线的解析式及点D 的坐标;

⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;

⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 2

1

=

时,求菱形对角线MN 的长.

16.已知,抛物线2

3y ax bx =++(a < 0 )与x 轴交于A (3,0)、B 两点,与y 轴交于点C . 抛物线的对

称轴是直线x =1,D 为抛物线的顶点,点E 在y 轴C 点的上方,且CE =

1

2

. (1)求抛物线的解析式及顶点D 的坐标;

(2)求证:直线DE 是△ACD 外接圆的切线;

(3)在直线AC 上方的抛物线上找一点P ,使1

2

ACP ACD S S ??=

,求点P 的坐标; (4)在坐标轴上找一点M ,使以点B 、C 、M 为顶点的三角形与△ACD 相似,直接写出点M 的坐标.

17.已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.

(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;

(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;

(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c 的对称轴与x轴相交于E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且S△ADF=

S△ADE,求此时抛物线的表达式.

18.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c 经过A、C两点,与x轴的另一交点为点B.

(1)求抛物线的函数表达式;

(2)点D为直线AC上方抛物线上一动点;

①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;

②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.

19.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C 且垂直x轴于点D.

(1)求线段CD的长及顶点P的坐标;

(2)求抛物线的函数表达式;

(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?

若存在,请求出Q 点的坐标;若不存在,请说明理由.

20.如图,已知抛物线

2y x bx c =-++与x 轴交于点(1,0)A -和点(3,0)B ,与y 轴交于点C ,连接

BC 交抛物线的对称轴于点E ,D 是抛物线的顶点.

(1)求此抛物线的解析式; (2)直接写出点C 和点D 的坐标;

(3)若点P 在第一象限内的抛物线上,且4ABP COE S S ??=,求P 点坐标.

21如图,二次函数 的图像与 轴交于 、 两点,与 轴交于点 ,

.点

在函数图像上,

轴,且

,直线 是抛物线的对称轴, 是抛物线的顶点.

① 图②

(1)求 、 的值;

(2)如图①,连接 ,线段 上的点 关于直线 的对称点 恰好在线段 上,求点 的坐标;

(3)如图②,动点 在线段 上,过点 作 轴的垂线分别与

交于点 ,与抛物线交于点

.试问:抛物线上是否存在点 ,使得 与

的面积相等,且线段

的长度最小?

如果存在,求出点 的坐标;如果不存在,说明理由.

22.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B 两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.

(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.

(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式.

(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.

23如图,已知二次函数

24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点

A .

(1)求二次函数

24y ax bx =++的表达式;

(2)连接

,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作//NM

AC ,交AB

于点M ,当AMN ?面积最大时,求N 点的坐标;

(3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系.

24.抛物线

23y ax bx =++经过点()1,0A 和点()5,0B 。

(1)求该抛物线所对应的函数解析式;

(2)该抛物线与直线

3

35

y x =

+ 相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线

//PM y 轴,分别与x 轴和直线CD 交与点M N 、。

①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ

PM ⊥,

垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。

25.在平面直角坐标系xoy 中,规定:抛物线()2

y a x h k =-+的伴随直线为()y a x h k =-+.例

如:抛物线

()2

213y x =+-的伴随直线为()213y x =+-,即2 1.y x =-

(1)在上面规定下,抛物线

()2

14y x =+-的顶点为 .伴随直线为 ;抛物线

二次函数和圆综合(压轴题+例题+巩固+答案解析)

【例1】.如图,点()40M ,,以点M 为圆心、2为半径的圆与x 轴交于点A B ,.已知抛物 21 6 y x bx c =++过点A 和B ,与y 轴交于点C . ⑴ 求点C 的坐标,并画出抛物线的大致图象. ⑵ 点()8Q m ,在抛物线21 6 y x bx c =++上,点P 为此抛物线对称轴上一个动点,求 PQ PB + 最小值. ⑶ CE 是过点C 的M ⊙的切线,点E 是切点,求OE 所在直线的解析式.

【巩固】已知抛物线2y ax bx c =++与y 轴的交点为C ,顶点为M ,直线CM 的解析式 2y x =-+并且线段CM 的长为(1)求抛物线的解析式。 (2)设抛物线与x 轴有两个交点A (X 1 ,0)、B (X 2 ,0),且点A 在B 的左侧,求线段AB 的长。 (3)若以AB 为直径作⊙N ,请你判断直线CM 与⊙N 的位置关系,并说明理由。 【例2】如图,在平面直角坐标系中,以点(04)C ,为圆心,半径为4的圆交y 轴正半轴于点A , AB 是C ⊙的切线. 动点P 从点A 开始沿AB 方向以每秒1个单位长度的速度运动,点Q 从O 点开始沿x 轴正方向以每秒4个单位长度的速度运动,且动点P 、 Q 从点A 和点O 同时出发,设运动时间为t (秒). ⑴当1t =时,得到1P 、1Q 两点,求经过A 、1P 、1Q 三点的抛物线解析式及对称轴l ;

⑵当t 为何值时,直线PQ 与C ⊙相切?并写出此时点P 和点Q 的坐标; ⑶在⑵的条件下,抛物线对称轴l 上存在一点N ,使NP NQ +最小,求出点N 的坐标并说明理由. 提示:(1)先求出t=1时,AP 和OQ 的长,即可求得P 1,Q 1的坐标,然后用待定系数法即可得出抛物线的解析式.进而可求出对称轴l 的解析式. (2)当直线PQ 与圆C 相切时,连接CP ,CQ 则有Rt △CMP ∽Rt △QMC (M 为PG 与圆的切点),因此可设当t=a 秒时,PQ 与圆相切,然后用a 表示出AP ,OQ 的长即PM ,QM 的长(切线长定理).由此可求出a 的值. (3)本题的关键是确定N 的位置,先找出与P 点关于直线l 对称的点P ′的坐标,连接P ′Q ,那么P ′Q 与直线l 的交点即为所求的N 点,可先求出直线P ′Q 的解析式,进而可求出N 点的坐标. 【巩固】已知二次函数图象的顶点在原点O ,对称轴为y 轴.一次函数1y kx =+的图象与 二次函数的图象交于A B ,两点(A 在B 的左侧),且A 点坐标为()44-,.平行于x 轴的直线 l 过()01-,点. ⑴ 求一次函数与二次函数的解析式; ⑵ 判断以线段AB 为直径的圆与直线l 的位置关系,并给出证明; ⑶ 把二次函数的图象向右平移2个单位,再向下平移t 个单位()0t >,二次函数的图象与x

九年级数学二次函数应用题 含答案

九年级数学专题二次函数的应用题 一、解答题 1.一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为 2.5米时,达到最大高度 3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。 (1)建立如图所示的直角坐标系,求抛物线的解析式; (2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少? 2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少? 3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式; 米,)2)该男同学把铅球推出去多远?(精确到0.01 ( 元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件)某商场以每件42,4.

件)可看成是一次函数关系:/(元与每件的销售价 之间的函数关系式(每天的销售与每件的销售价写出商场卖这种服装每天的销售利润1. 利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? 5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路 线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。 (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3米,问此次跳水会不会失误?并通过计算说明理由 6.某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时 每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有 如下关系: 转让数量(套)120011001000900800700600500400300200100 价格(元/套)240250260270 280290 300310 320330 340 350 方案1:不转让A品牌服装,也不经销B品牌服装; 方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装; 方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。 问: ①经销商甲选择方案1与方案2一年内分别获得利润各多少元?

人教版九年级上册数学二次函数知识点总结

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质:

1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).

九年级二次函数讲义

二次函数 一.知识梳理 1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。一元二次方程的标准式:ax2+bx+c=0 (a≠0) 其中:ax2叫做二次项,bx叫做一次项,c叫做常数项 a是二次项系数,b是一次项系数 2、一元二次方程根的判别式(二次项系数不为0): “△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac △=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2 △=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2 △=b2-4ac<0 <====> 方程没有实数根。 注:“<====>”是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<0 3、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。 ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有: 因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。 注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。 5、一元二次方程的求根公式: 注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。

一、求二次函数的三种形式: 1. 一般式:y=ax 2 +bx+c ,(已知三个点) 顶点坐标(-2b a ,244ac b a -) 2.顶点式:y=a (x -h )2 +k ,(已知顶点坐标对称轴) 顶点坐标(h ,k ) 3.交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2 对称轴为2 2 1x x h += 二、a b c 作用分析 │a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大, a , b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=- 2b <0,即对称轴在y 轴左侧,当a ,b?异号时,对称轴x=-2b a >0, 即对称轴在y 轴右侧,c?的符号决定了抛物线与y 轴交点的位置, c=0c<0时,与y?轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.

人教版九年级数学上册二次函数教案

教材分析 本节课是数学新人教版九级(上)第二十二章《二次函数》第一节课内容 二次函数教学设计 一、教学目标知识方面: 1.理解并掌握二次函数的概念; 2.能根据实际问题中的条件列出二次函数的解析式。 3.经历探索、分析和建立两个变量之间的二次函数关系的过程,体会二次函数是刻画现实世界的一个有效的数学模型。 4.通过分析实际问题列出二次函数关系式,培养学生分析问题、解决问题的能力。情感方面:通过学生的主动参与,师生、学生之间的合作交流,提高学生的学习兴趣,激发他们的求知欲、培养合作意识。 二、教材分析 本节课是数学新人教版九年级(上)第二十二章《二次函数》第一节课内容.知识方面,它是在正比例函数,一次函数,对函数认识的完善与提高;也是对方程的理解的补充,同时也是以后学习初等函数的基础。根据本节的教学内容及学生学情,给彩虹、桥梁等图片这些丰富的生活实例,进一步让学生充分感受到二次函数的应用价值与实际意义。 重点是理解二次函数的概念,能根据已知条件写出函数解析式; 难点是从实例中抽象出二次函数的定义,会分析实例中的二次函数关系。 三、教学过程教学过程: 一、提出问题,导入新课。 1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?图象形状各是什么? 2、教师提出问题:投篮球时篮球运行的路线是什么曲线?这种曲线的形状是怎样的?是否象以前学过的函数图象?能否用新的函数关系式来表示?怎样计算篮球达到最高点时的高度?这将在本章——二次函数中学习。 3、你能举出一些生活中类似的曲线吗? 二、合作交流,形成概念。1.列式表示下面函数关系。 问题1:正方体的六个面是全等的正方形,如果正方形 的棱长为x,表面积为y,写出y与x的关系。 问题2:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? 活动中教师关注: (1)学生参与小组合作讨论后,能否明白题意,写出相应关系式。 (2)问题3中可先分析一年后的产量,再得出两年后的产量。 2.教师引导学生观察,分析上面三个函数关系式的共同点。 学生小组交流、讨论得出结论,它们的共同点: (1)等号左边是变量y,右边是关于自变量x的整式。 a,b,c为常数,且a≠0 (2)等式的右边最高次数为,可以没有一次项和常数项,但不能没有二次项。(3)x的取值范围是任意实数。 教师口述二次函数的定义并板书在黑板上:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫二次函数。

新人教版九年级上二次函数知识点总结与练习

新人教版九年级上二次函数知识点总结与练习知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数. 其中a是二次项系数,b是一次项系数,c是常数项. 知识点二:二次函数的图象与性质 ? 2. 二次函数()2 =-+的图象与性质 y a x h k (1)二次函数基本形式2 =的图象与性质:a的绝对值越大,抛物线的开口越小 y ax (2)2 =+的图象与性质:上加下减 y ax c

(3)()2 y a x h =-的图象与性质:左加右减

(4)二次函数()2 y a x h k =-+的图象与性质 3. 二次函数c bx ax y ++=2的图像与性质 (1)当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. (2)当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值 2 44ac b a -.

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤: ① 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ② 可以由抛物线2 ax 经过适当的平移得到具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:a b ac a b x a c bx ax y 44222 2 -+ ?? ? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2- =. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线h x =.

-圆与二次函数综合题精练(带答案)教学文案

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

数学九年级上册 二次函数专题练习(解析版)

数学九年级上册 二次函数专题练习(解析版) 一、初三数学 二次函数易错题压轴题(难) 1.在平面直角坐标系中,将函数2 263,(y x mx m x m m =--≥为常数)的图象记为G . (1)当1m =-时,设图象G 上一点(),1P a ,求a 的值; (2)设图象G 的最低点为(),o o F x y ,求o y 的最大值; (3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ; (4)设1112,,2,16816A m B m ????+ ? ????? ,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围. 【答案】(1)0a =或3a =-;(2) 118;(3)21136x -<<-;(4)1 8 m <-或1 16 m >- 【解析】 【分析】 (1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值; (2)分m >0和m ≤0两种情况,结合二次函数性质求最值; (3)结合二次函数与x 轴交点及对称轴的性质确定取值范围; (4)结合一元二次方程根与系数的关系确定取值范围. 【详解】 解:(1)当1m =-时,()2 2613y x x x =++≥ 把(),1P a 代入,得 22611a a ++= 解得0a =或3a =- (2)当0m >时,,(3)F m m - 此时,0o y m =-< 当0m ≤时,2 22 3926=2()22 y x mx m x m m m =----- ∴239,22F m m m ?? -- ??? 此时,229911=()22918 m m m - --++ ∴0y 的最大值1 18 =

新人教版九年级上册数学:《二次函数》基础练习含答案(5套)

时间:10分钟 满分:25分 一、选择题(每小题3分,共6分) 1.若y =mx 2+nx -p (其中m ,n ,p 是常数)为二次函数,则( ) A .m ,n ,p 均不为0 B .m ≠0,且n ≠0 C .m ≠0 D .m ≠0,或p ≠0 2.当ab >0时,y =ax 2与y =ax +b 的图象大致是( ) 二、填空题(每小题4分,共8分) 3.若y =x m - 1+2x 是二次函数,则m =________. 4.二次函数y =(k +1)x 2的图象如图J22-1-1,则k 的取值范围为________. 图J22-1-1 三、解答题(共11分) 5.在如图J22-1-2所示网格内建立恰当直角坐标系后,画出函数y =2x 2和y =-12 x 2 的图象,并根据图象回答下列问题(设小方格的边长为1): 图J22-1-2 (1)说出这两个函数图象的开口方向,对称轴和顶点坐标; (2)抛物线y =2x 2,当x ______时,抛物线上的点都在x 轴的上方,它的顶点是图象的最______点; (3)函数y =-1 2 x 2,对于一切x 的值,总有函数y ______0;当x ______时,y 有 最______值是______.

时间:10分钟 满分:25分 一、选择题(每小题3分,共6分) 1.下列抛物线的顶点坐标为(0,1)的是( ) A .y =x 2+1 B .y =x 2-1 C .y =(x +1)2 D .y =(x -1)2 2.二次函数y =-x 2+2x 的图象可能是( ) 二、填空题(每小题4分,共8分) 3.抛物线y =x 2 +14 的开口向________,对称轴是________. 4.将二次函数y =2x 2+6x +3化为y =a (x -h )2+k 的形式是________. 三、解答题(共11分) 5.已知二次函数y =-12 x 2 +x +4. (1)确定抛物线的开口方向、顶点坐标和对称轴; (2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?

人教版九年级数学上册二次函数 单元测试题

初中数学试卷 二次函数单元测试题 一、选择题: 1、已知二次函数的图象与x轴有交点,则k的取值范围是() A. B. C.且 D.且 2、抛物线y=2(x﹣3)2的顶点在() A.第一象限B.第二象限C.x轴上D.y轴上 3、函数的顶点坐标是(). A.(1,) B.(,3) C.(1,-2) D.(-1,2) 4、把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是() A.y=-2(x-1)2+6 B.y=﹣2(x-1)2-6 C.y=-2(x+1)2+6 D.y=-2(x+1)2-6 5、如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF 是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为() A.y=5﹣x B.y=5﹣x2C.y=25﹣x D.y=25﹣x2

6、若二次函数的对称轴是x=3,则关于x的方程的解为() A.=0,=6 B.=1,=7 C.=1,=-7 D.=-1,=7 7、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为() A.B.C.D. 8、抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示: x…﹣2﹣1012… y…04664… 从上表可知,下列说法中,错误的是() A.抛物线于x轴的一个交点坐标为(﹣2,0) B.抛物线与y轴的交点坐标为(0,6) C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的 9、在同一直角坐标系中,函数和函数(是常数,且)的图象可能

人教版九年级上册数学 二次函数专题练习(word版

人教版九年级上册数学 二次函数专题练习(word版 一、初三数学二次函数易错题压轴题(难) 1.已知,抛物线y=- 1 2 x2 +bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A. (1)直接填写抛物线的解析式________; (2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN. 求证:MN∥y轴; (3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG ?CH 为定值. 【答案】(1)2 1 2 2 y x x =-++;(2)见详解;(3)见详解. 【解析】 【分析】 (1)把点C、D代入y=- 1 2 x2 +bx+c求解即可; (2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解; (3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】 详解:(1)∵y=- 1 2 x2 +bx+c过点C(0,2),点Q(2,2), ∴ 2 1 222 2 2 b c c ? -?++ ? ? ?= ? = ,

解得:1 2b c =??=? . ∴y=- 12 x 2 +x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2 由2 2122y kx y x x =+?? ?=-++?? 得 12 x 2 +(k-1)x=0, 解得:120,22x x k ==-, x p =22p x k =- 由2 1=22y mx y x x =???-++?? 得 12 x 2 +(m-1)x-2=0, ∴124b x x a ?=- =- 即x p?x m =-4, ∴x m =4p x -=21 k -. 由24y kx y x =+??=+? 得x N = 2 1 k -=x M , ∴MN ∥y 轴. (3)设G (0,m ),H (0,n ). 设直线QG 的解析式为y kx m =+, 将点()2,2Q 代入y kx m =+ 得22k m =+

九年级数学上册二次函数讲义

初三数学 二次函数讲义 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

专题63 构造圆与隐形圆在二次函数中的综合问题(解析版)

专题63 构造圆与隐形圆在二次函数中的综合问题 1、如图,在直角坐标系中,直线y=﹣1 3x ﹣1与x 轴,y 轴的交点分别为A 、B ,以x=﹣1为对称轴的抛物线 y=x 2+bx+c 与x 轴分别交于点A 、C ,直线x=﹣1与x 轴交于点D . (1)求抛物线的解析式; (2)在线段AB 上是否存在一点P ,使以A ,D ,P 为顶点的三角形与△AOB 相似?若存在,求出点P 的坐标;如果不存在,请说明理由; (3)若点Q 在第三象限内,且tan△AQD=2,线段CQ 是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由. 【答案】(1)y=x 2+2x ﹣3;(2)存在;点P 坐标为(﹣1,?23 )或(-65 ,-3 5 ); (3)存在,CQ 最小值为 √37?√5 2 . 【解析】(1)△直线y=﹣1 3x ﹣1与x 轴交于A 点, △点A 坐标为(﹣3,0), 又△直线x=﹣1为对称轴, △点C 坐标为(1,0), △抛物线解析式为:y=(x+3)(x ﹣1)=x 2+2x ﹣3; (2)存在;

由已知,点D 坐标为(﹣1,0),点B 坐标为(0,﹣1), 设点P 的坐标为(a ,﹣13 a ﹣1), △当△AOB△△ADP 时, AD AO = DP OB ,即23 = 1 3 a+11 , 解得:a=﹣1; 点P 坐标为(﹣1,?2 3); △当△AOB△△APD 时, 过点P 作PE△x 轴于点E , 则△APE△△PED , △PE 2=AE?ED , △(﹣1 3a ﹣1)2=(a+3)(﹣a ﹣1), 解得a 1=﹣3(舍去),a 2=﹣6 5, △点P 坐标为(﹣6 5 ,﹣3 5 ); (3)存在,CQ 最小值为 √37?√5 2 ; 如图,取点F (﹣1,﹣1),过点ADF 作圆,则点E (﹣2,﹣1 2)为圆心,

(完整)初三中考二次函数专题复习

第二十六章 二次函数 【知识梳理】 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数c bx ax y ++=2 用配方法可化成:()k h x a y +-=2 的形式,其中 a b a c k a b h 4422 -=-=,. 3.抛物线的三要素:开口方向、对称轴、顶点. ①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

新动力教育 数学杨老师 对称轴是直线a b x 2- =. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 6.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

人教版九年级上册数学九年级二次函数综合测试题及答案

二次函数单元测评 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在() A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 二、4. 抛物线的对称轴是() A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6.二次函数y=ax2+bx+c的图象如图所示,则点在第 ___象限() A. 一 B. 二 C. 三 D. 四 7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P 的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么 AB的长是() A. 4+m B. m C. 2m-8 D. 8-2m 8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx 的图象只可能是() 9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3, y3)是直线上的点,且-1

人教版九年级数学上册 二次函数专题练习(解析版)

人教版九年级数学上册二次函数专题练习(解析版) 一、初三数学二次函数易错题压轴题(难) 1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式: (2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由. 【答案】(1)2 y x2x3 =-++;3 y x =-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3) 【解析】 【分析】 (1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论; (2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论; (3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论. 【详解】 解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得 930 10 b c b c -++= ? ? --+= ? , ∴ 2 3 b c = ? ? = ? , ∴抛物线的解析式为y=﹣x2+2x+3, 当x=0时,y=3, ∴点C的坐标是(0,3), 把A(3,0)和C(0,3)代入y=kx+b1中,得1 1 30 3 k b b += ? ? = ? , ∴ 1 1 3 k b =- ? ? = ? ∴直线AC的解析式为y=﹣x+3;

圆与二次函数综合练习

圆与二次函数综合题 1.已知圆P 的圆心在反比例函数k y x =(1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1). (1) 求经过A 、B 、C 三点的二次 函数图象的解析式; (2) 若二次函数图象的顶点为 D ,问当k 为何值时,四边形ADBP 为菱形. 2.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线32 y x =-+ 与坐标轴交于D 、E 。设M 是AB 的中点,P 是线段DE 上的动点. (1)求M 、D 两点的坐标; (2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标; (3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的 面积. (3) (2) 3.如图,已知抛物线y = ax 2 + bx -3与x 轴交于A 、B 两点,与y 轴交于C 点,经过A 、B 、 C 三点的圆的圆心M (1,m )恰好在此抛物线的对称轴上,⊙M 的半径为5.设⊙M 与y 轴 交于D ,抛物线的顶点为E . (1)求m 的值及抛物线的解析式; (2)设∠DBC = α,∠CBE = β,求sin (α-β)的值;

(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. 4.如图,点P在y轴上,半径为3的⊙P分别交x轴于A、B两点,AB=4,交y轴负半轴于点C,连接AP并延长交⊙P于点D,过D作⊙P的切线分别交x轴、y轴于点F、G; (1)求直线FG的解析式; (2)连接CD交AB于点E,求PCD ∠ tan的值; (3)设M是劣弧BC上的一个动点,连接DM交x轴于点N,问:是否存在这样的一个常数k,始终满足AN·AB+DN·DM=K,如果存在,请求出K的值,如果不存在,请说明理由; (图1) (图2) 5.已知:如图, 抛物线2 33 y x x =--x轴分别交于A B ,两点,与y轴交于C点,M经过原点O及点A C ,,点D是劣弧OA上一动点(D点与A O ,不重合).(1)求抛物线的顶点E的坐标;(2)求M的面积; (3)连CD交AO于点F,延长CD至G,使2 FG=,试探究当点D运动到何处时,直线GA与M相切,并请说明理由. 6.(0) A m,(0) m<,以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连结BE与AD相交于点F. (1)求证:BF DO =; (2)设直线l是BDO △的边BO的垂直平分线,且与BE相交于点G.若G是BDO △的

人教版九年级数学上册二次函数

初中数学试卷 二次函数 ——二次函数的定义、图像及性质 一、二次函数的定义 形如y=a x2+bx+c(a, b, c是常数,a≠0),那么,y叫做x的二次函数。 【例题1】 (1)下列函数中,是二次函数的为() A. B.y= C. D. (2)函数是二次函数,则m的值为()A.1或—6 B.1 C.—2或3 D.3 二、二次函数的图像——抓住a、b、c 【例2】

(1)在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2(m是常数,且m≠ 0)的图象可能是() (2)函数与(k≠0)在同一坐标系中图像大致是图中的 () (3)已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的() (4)设a、b是常数,且b>0,抛物线为下图中四个图像之一,则a的值为()

(5)二次函数的图像的一部分如图所示,求a的取值范围 三、二次函数的图像性质 1.点的坐标 【例3】 (1)已知抛物线的顶点在坐标轴上,则k的值共有()A.1个 B.2个 C.3个 D.4个 (2)若抛物线的顶点的纵坐标为n,则k-n的值为_______. 2.二次函数的单调性 【例4】 (1)若点A(2,y 1),B(3,y 2 )是二次函数图像上的两点, 则y 1与y 2 的大小关系是() A.y1<y2B.y1=y2C.y1>y2D.不能确定

(2)已知a<—1,点(a-1, y1),(a, y2)(a+1,y3)都在二次函数 的图像上,则y1、y2、y3 的大小关系为_______. 四、二次函数的最值问题——配方法、顶点法 【例5】 (1)二次函数的最小值是_______. (2)已知实数x,y满足,则x+y的最大值为______. (3)当二次函数的最小值为() A.—4 B.— C.— D. (4)当—1≤x≤1时,二次函数y= x2-mx+3有最小值—3,求m的值。

相关文档
最新文档