仿生超疏水性表面的研究进展

仿生超疏水性表面的研究进展
仿生超疏水性表面的研究进展

超疏水材料研究进展

超疏水材料的研究进展 2015年5月3日

超疏水材料的研究进展 摘要:超疏水性材料因为它独特的性质,而在很多方面得到了广泛的应用。近年来,许多具有特殊润湿性的动植物表面同样受到关注。通过研究这些表面微观结构,人们成功地仿生制备出各种功能化超疏水表面,从而更好地满足工业中实际应用的需要。该综述简单地介绍了表面润湿的基本原理和一些自然界中的超疏水表面现象,重点介绍近几年超疏水表面应用的最新研究进展。最后,对超疏水表面研究的未来发展进行了展望。 关键词:超疏水、仿生、润湿、功能化表面 自然界中,经亿万年的自然选择,许多生物的表面都表现出优良的超疏水性能,比如荷叶、花生叶、莲叶等植物表面和水黾、鲨鱼表皮、沙漠甲虫、蝴蝶翅膀等动物体表。一直以来,这类自然现象都启发着各领域的科学工作者们,尤其是近几十年,仿生超疏水表面以其优越的防腐蚀、自清洁、防覆冰、抗菌等性能,在防腐、自清洁、建筑防水、流体减阻、防污等领域都有广泛的应用[1]。因此,对超疏水材料进行总结和展望,对这种材料的发展有重要的意义。 1超疏水原理 超疏水表面的定义可以从字面意思上进行理解,即指难以湿润的表面,固体表面的湿润性作为固体表面重要的特性之一,不仅受到固体表面粗糙度的影响,还受固体表面化学成分的影响,我们可以用液体与固体的接触角θ来作为是否湿润的判断依据。接触角越大,表面的疏水效果越好,反之亦然[2]。当θ=0°时,所表现为完全湿润;当θ<90°时,表面为可湿润,也叫做亲液表面;当θ>90°时,表面则为不湿润的疏离表面;当θ=180°时,则为完全不湿润。一般θ>150°被称为超疏水表面[3]。 接触角是衡量表面疏水性涂层湿润性的主要指标,但并不是唯一指标,在实际应用中还可以根据前进角、后退角的大小来考虑其动态过程。前进角与后退角是液滴前进或后退时与固体表面所成的临界角度。但是如果不断增加或减小固体

中国在超疏水材料研究方面的进展

中国在超疏水材料研究方面的进展 分子一班 张雷 3013207391 Abstract : 摘要:具有超疏水性、超双疏性等的微纳复合材料在人们的日常生活和国民生产各个部门都有着广泛的应用前景,因而也引起科学界的广泛关注。由于固体表面的浸润性决定于其表面的化学组成和表面形貌,因此通过改变固体的表面自由能和表面形貌可以实现对固体材料表面浸润性控制。近些年来,这方面的研究吸引了许多科学家和课题组的注意。可以说,超疏水、超双疏材料的制备正成为一个研究的热点问题。本文在查阅有关文献的基础上,分析中国在超疏水、超双疏材料制备方面的进展。 关键词:超疏水、超双疏、表面改性、润湿性

1、背景: 表面润湿性是指液体(通常为水)在固体材料表面的铺展能力。它是固体表面的重要性质之一, 许多物理化学过程,如吸附、润滑、黏合、分散和摩擦等均与表面的润湿性密切相关1。研究表明, 固体表面的润湿性是由其化学组成和微观几何结构共同决的, 定外场如光、电、磁、热等对固体表面的润湿性也有很大的影响2。固体表面的润湿性通常用水滴在其表面上形成的接触角来衡量, 接触角小于9 0°的表面称为亲水表面,大于9 0°的表面称为疏水表面, 而超疏水固体表面是指与水的接触角为1 5 0°以上的表面。 自然界中存在很多超疏水表面, 最典型的如以荷叶为代表的多种植物叶子表面(荷叶效应Lotus-effect)、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等3。受这些自然界中现象的启发,许多课题组都开展了超疏水材料制备方面的研究。 2、超疏水材料制备方法分类: 2.1 模板法: 江雷课题组组报道了一种以多孔氧化铝为模板制备超疏水材料的方法2。具体是将一定孔径的氧化铝模板覆盖在聚碳酸酯(PC)膜上,然后加热PC膜将其溶化并将其压入模板的孔内,最后除去模板即可得到纳米棒状的阵列结构。将模板制备成圆筒状重复上述过程可以得到大面积的阵列PC纳米棒。

超疏水表面的制备方法及应用的研究进展

超疏水表面的制备方法及应用的研究进展 摘要:在材料科学发展日新月异的今天,超疏水表面一直是材料研究的重点, 并在军事、工业、民用方面具有极高的应用前景。而润湿性是决定材料疏水性的 关键所在,如何降低润湿性是提高材料疏水性的主要手段。本文简单介绍了表面 润湿性的基本理论,综述了超疏水表面的制备方法,及其相关应用的研究进展。 关键词:超疏水表面;润湿性;微/纳米结构 1.引言 在自然界中,许多生物都有着特殊的表面结构,而其中植物叶片的表面结构 因其特殊的性质引起了人们极高的兴趣。而在植物叶片中,荷叶叶片上表面的特 殊性质又极为明显,荷叶的表面不均匀且大量地分布着平均直径在5~9微米的乳突,而乳突又是由许多的平均直径在121.1~127.5纳米的纳米分支结构组成。除 此之外,我们还可以发现在荷叶的下一层表面中还存在着纳米级的蜡晶。通过蜡 晶结构与乳突组成的微纳结构,成功地减少了叶面与液体的接触面积。与此同时,通过微纳结构,荷叶也减少了与脏污的接触,便于脏污被带走,这就是荷叶叶片 所表现出的自清洁性。而溯其根本,自清洁性又是超疏水性的一个表现。自然界 中还有很多动植物的表面有超疏水的性质,例如在水面自由移动的水蛭。为了这 些动植物的研究,是人们对于超疏水表面的认识更加深入,这对于制备功能材料 具有很好的意义。 润湿性是影响超疏水性质的关键,是指某种液体在一个平面上的延展,覆盖 的能力。假设有一液面铺展在一平面上,气、液、固三种物质接触于同一点处。 气-液界面的切线与固-液接触面的夹角为θ,称θ为接触角。为了方便判定,通 常以水与固体表面的接触角θ的大小来判断润湿性,并区分亲疏水表面。当θ大 于150?时,该表面被称为超疏水表面;当θ大于90°时,被称为疏水表面;当θ 小于90°时,被称为亲水表面;当θ小于10°时,被称为超亲水表面。其中,90° 作为亲水与疏水的分界。 假设有一理想的平滑均匀平面,没有任何粗糙介质,则表面接触角θ满足杨 氏方程: 图1两种粗糙表面的润湿模型:Wenzel模型和Cassie模型 近年来,由于超疏水表面在日常生活中及工业生产等方面有极高的价值,超 疏水表面的制备及相关应用研究日益增多,本文主要综述超疏水表面的制备方法 与其相关应用。 2超疏水表面的制备方法 固体表面的润湿性主要由两个因素决定:表面的粗糙程度和表面能。目前常 见的制备方法有刻蚀法、模版法、气相沉积法、电纺法、溶胶-凝胶法、机械拉伸、相分离法等等。但以这种方法分类并不能准确而直观的表明其制备方法的本质依据。根据润湿性的影响因素,制备方法可大致分三类:赋予低表面能物质表面适 当的粗糙结构,对粗糙表面进行表面改性以降低表面能和降低表面能同时增加粗 糙程度。 2.1赋予低表面能物质粗糙结构 赋予低表面能物质粗糙结构大致而言,就是在低表面能物质表面构造微观结构,这种方法制备的超疏水表面具有可控性强、稳定性好的性质。

污染土壤的淋洗法修复研究进展

污染土壤的淋洗法修复研究进展 Ξ 巩宗强 李培军 台培东 蔺 昕 陈素华 耿春女 (中国科学院沈阳应用生态研究所,沈阳110016) 摘 要 污染土壤淋洗技术是修复污染土壤的一种新方法,是对污染土壤生物修复的一种补充,使污染土壤修复的系 统化成为可能。淋洗法主要使用淋洗剂清洗土壤,使土壤中污染物随淋洗剂流出,然后对淋洗剂及土壤进行后续处理,从而达到修复污染土壤的目的。因为淋洗剂的种类和淋洗方式的不同,土壤淋洗法可分为许多种类。土壤淋洗法主要受土壤条件、污染物类型、淋洗剂的种类和运行方式等因素影响。综合考虑多方面因素,就有潜力设计出经济高效的土壤淋洗系统。土壤淋洗法有很多优点,尽管也存在一些问题,但其技术上的优势也是其他方法难以取代的,所以有良好的应用前景。 关键词 污染土壤 土壤淋洗法 修复 Advancement of soil w ashing process for contaminated soil G ong Z ongqiang Li Peijun Tai Peidong Lin Xin Chen Suhua G eng Chunn ü (Institute of Applied Ecology ,Chinese Academy of Sciences ,Shenyang 110016) Abstract Soil washing process is a newly developed method for the remediation of contaminated soil ,and it is an important complement to the bioremediation of contaminated soil and makes remediation of con 2taminated soil more systematic.Washing liquid is majorly used in the soil washing process to have contaminat 2ed soil cleaned ,the comtaminants are flushed out by washing liquid ,and the spent washing liquid and washed soils must be further treated ,then could the aims of contaminated soils remediation be achieved.Soil washing could be classified into many types as different kinds of washing liquids are employed and different styles are operated.Soil washing process is affected by factors such as soil conditions ,contaminant characters ,washing liquid types and operation styles.After a systematic consideration ,it might be possible to come up with an e 2conomical ,practical and efficient soil washing system.The advantages of soil washing are so obvious that even with some problems ,developing trend of this technique can ’t be substituted by other methods and bright fu 2ture of this method can ’t be neglected. K ey w ords contaminated soil ;soil washing ;remediation 由于人类经济活动产生的污染的不断增加,目前世界上许多地区土壤污染面积不断扩大。中国受污染的耕地面积近2000万hm 2,约占耕地总面积的1/5[1—4]。随着人类对环境认识的逐步加深,污染土壤的修复在国内国际都受到了高度重视,也逐渐成为国际环境科学界的热点问题之一。人们已经开 发了很多处理方法,而且一些行之有效的污染土壤修复的新成果和新技术还在不断出现。污染土壤的修复有多种分类方法,有人将其分为物理修复、化学修复和生物修复[5]。本文侧重于介绍污染土壤的淋洗法修复,因此,把污染土壤的处理方法分为淋洗法和污染物的破坏法(通常指有机物的降解、矿化)和污染物的固定法,各种方法均有广泛研究报道,方法间具有互补性。在某些条件下,由于土壤污染物的成分、理化性质、毒性特征及土壤条件的限制,单纯采用化学固定法或生物修复法都不能完全达到效果,因此,有必要考虑采用土壤淋洗法或多种方法联合修复污染土壤。 1 土壤淋洗法的定义 武晓峰曾介绍过土壤淋洗法(soil flushing )的概念,认为淋洗法就是通过注水的办法,冲洗土壤孔隙介质中残留的污染物,使冲洗水流流入地下水,然后回收冲洗水流以达到修复污染土壤的目的[6]。周加祥认为土壤淋洗法(soil washing )是利用水力压头推动淋洗液通过土壤,而将污染物从土壤中清洗出 Ξ中国科学院知识创新项目(KZCX22401) 第3卷第7期环境污染治理技术与设备 Vol .3,No .72002年7月Techniques and Equipment for Environmental Pollution Control J ul . 2002

超疏水性材料

揭秘超疏水性表面 哈工大报讯(潘钦敏)[编者的话] 宋代周敦颐在《爱莲说》中写道“予独爱莲之出淤泥而不染”。一千年后的今天,人们已经可以从科学的角度解释莲这种“出淤泥而不染”的特性。与之相关的“仿生超疏水性表面”的研究已成为化学模拟生物体系研究中的一个新领域。本期,化工学院副教授潘钦敏为我们揭开“超疏水性表面”的神秘面纱。 浸润性是固体表面的重要特征之一,它由表面的化学组成和微观形貌共同决定。超亲水和超疏水特性是表面浸润性研究的主要内容。所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。人们对超疏水表面的认识,主要来自植物叶——荷叶表面的“自清洁”现象。比如,水珠可以在荷叶的表面滚来滚去,即使在上面浇一些污水,也不会在叶子上留下污痕。荷叶这种出污泥而不染的特性被称作“自清洁”效应。 荷叶效应——超疏水性原理 尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。 为什么这样的“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。 自然界里具有“自清洁”能力的植物除了荷叶之外,还有水稻、芋头之类的植物以及鸟类的羽毛。这种“自清洁”效应除了保持表面的清洁外,对于防止病原体的入侵还有特别的意义。因为即使有病原体到了叶面上,一沾水也就被冲走了。所以象荷花这样的植物即使生长在很“脏”的环境中也不容易生病,很重要的原因就是这种自清洁能力。 超疏水表面制备方法 人们知道荷叶自清洁效应已经很多年了,但是很长的时间内却无法做出荷叶那样的表面来。通过对自然界中典型的超疏水性表面——荷叶的研究发现,在低表面能的固体表面构建具有特殊几何形状的粗糙结构对超疏水性起重要的作用。基于这些原理,科学家们就开始模仿这种表面。现在,关于超疏水粗糙表面的研制已有相当多的报道。一般来说, 超疏水性表面可以通过两种方法来制备:一种是在疏水材料表面上构建粗糙结构;另一种是在粗糙表面上修饰低表面能的物质。比如材料学家们可以通过表面处理仿生制备了碳纳米管阵列、碳纳米纤维、聚合物纳米纤维等多种超疏水性表面。关于超疏水表面的研制方法总结起来主要有:熔融物的固化、刻蚀、化学气相沉积法、阳极氧化法、乳液聚合、相分离法以及模板法等。但是这些方法涉及复杂的化学物质和晶体生长,实验条件比较苛刻,成本高,还不能进行工

超疏水表面的制备方法_石璞

功 能 高 分 子 学 报Journal of Fu nctional Polym ers Vol.21No.22008年6月 收稿日期:2008-03-10 基金项目:国家自然科学基金(10672197) 作者简介:石 璞(1976-),男,安徽安庆人,讲师,在读博士,研究方向:生物医学材料。E -m ail:s hipu1976@https://www.360docs.net/doc/fd363660.html, 通讯联系人:陈 洪,E -mail:ch enh ong cs@https://www.360docs.net/doc/fd363660.html, 综 述 超疏水表面的制备方法 石 璞1,3, 陈 洪2, 龚惠青3, 袁志庆1, 李福枝3, 刘跃军3 (1.中南大学粉末冶金研究所,长沙410083; 2.中南林业科技大学,长沙410004; 3.湖南工业大学包装新材料与技术重点实验室,湖南株洲412008) 摘 要: 超疏水表面材料具有防水、防污、可减少流体的粘滞等优良特性,是目前功能材料研究 的热点之一。其中超疏水表面的制备方法是研究的关键点。介绍和评述超疏水表面的制备方法, 对该领域的发展方向进行了展望。 关键词: 超疏水;表面;制备方法 中图分类号: O647 文献标识码: A 文章编号: 1008-9357(2008)02-0230-07 Methods to Prepare Superhydrophobic Surface SH I Pu 1,3, CH EN H ong 2, GONG H u-i qing 3, YUAN Zh-i qing 1, LI Fu -zhi 3, LIU Yue -jun 3 (1.Institute o f Pow der M etallurgy ,Central South U niv ersity ,Chang sha 410083,China; 2.Central South University of Forestry and Technology ,Changsha 410004,China; 3.Key Laboratory of New Material and Technology for Package,Hunan University of Technology ,Zhuzhou 412008,Hunan,China)Abstract: Superhydr ophobic m aterials have received tremendous attention in recent year s because of its special proper ties such as w ater -proof,ant-i po llution,reduction resistance o f flow ing liquid,etc.It beco mes ho tspo t research in functional m aterial field,and the preparation m ethods to acquir e excellent superhydropho bic surface are key to the r esearch.Repr esentative articles in r ecent years about prepar ation methods are review ed in this article.T he prospect of dev elo pments is proposed. Key words: super hy drophobic;surface;preparation methods 自从Onda 等[1]1996年首次报道在实验室合成出人造超疏水表面以来,超疏水表面引起了研究人员的广泛兴趣。总体说来,目前的研究主要集中在以下几个领域:(1)研究自然界中具有超疏水表面的植物和动物,为开发具有新型表面结构的材料提供灵感。高雪峰和江雷[2]、冯琳[3]、郭志光[4~5]等的论文中有详细的描述和精美的电镜照片。(2)使用无机物[6]或在金属表面制备具有超疏水性表面的材料。(3)使用高分子材料制备具有超疏水性的表面。(4)理论研究[7~11],主要是通过构建模型以探讨表面结构状况与接触角或滚 动角的关系。关于超疏水表面的基本理论,金美华的博士论文[38]有详细论述。 超疏水表面一般可以通过两类技术路线来制备:一类是在低表面能的疏水材料表面上构建微米-纳米级粗糙结构;另外一类是用低表面能物质在微米-纳米级粗糙结构上进行修饰处理。其中,制备合适微米-纳米级粗糙结构的方法是相关研究的关键。从制备方法来说,主要有蒸汽诱导相分离法、模板印刷法、电纺法、溶胶-凝胶法、模板挤压法、激光和等离子体刻蚀法、拉伸法、腐蚀法以及其他方法。在此对各种制备方法进行分类评述。 230

植物叶表面超疏水性研究进展

※农业科学2018, V ol.38, No.1729 农业与技术 润湿性是固体表面的重要特征之一,其影响因素主要包括表面化学组成(表面自由能)和表面微观结构(粗糙度)。表面润湿性的强弱通常用接触角来表征。超疏水表面在防腐蚀、防雨雪、抗氧化、自清洁功能、微流体系统等方面具有广阔的应用前景,因而引起人们极大关注。自然界中很多生物的体表(如昆虫的翅表面、植物的花瓣和叶片表面)表现出超疏水性,可用作特殊润湿性功能表面的仿生制备。 1 荷叶 荷叶的接触角高达161.0±2.5,具有超疏水性[1]。德国生物学家Barthlott等发现,荷叶表面粗糙的微米结构(乳突)及蜡状物质是导致自清洁效应的关键因素[2]。江雷课题组使用超高分辨率显微镜观察荷叶表面微观结构,发现微米级乳突(直径约5~9μm)上还存在一些纳米级结构(直径约200nm),即二级微纳米结构[3]。这种微纳二级粗糙结构上覆盖有机蜡质。双层的微纳米结构可以有效地阻止荷叶下层被润湿,有机蜡状物可以提供较低的表面能,二者的共同作用能够有效降低液体与固体之间的接触程度,改变三相接触线的长度、形状及连续性,从而使液滴在荷叶表面易于滚动,呈现特殊的复合浸润性。 2 花生叶 邱宇辰等研究发现,水滴在花生叶片表面呈球状,接触角为151.0±2.0,具有超疏水性[4]。在新鲜的花生叶表面上,丘陵状微米结构上面无规则排列着纳米薄片结构,形成微尺度下无序排列的空隙。花生叶表面微纳米多尺度结构显著增加了其表面的粗糙程度,表现出超疏水特性。 3 美人蕉叶 杨晓华对美人蕉叶表面进行超疏水测试,接触角大于160[5]。美人蕉叶表面均匀分布着30~100μm的四边形凸起。微米级结构表面及间隙密布纳米级片状结构。纳米结构为蜡质晶体,主要成分为富含C-H链的低表面能脂肪族化合物。微纳米级复合结构和蜡质层共同决定了美人蕉叶表面优异的超疏水性。Guo等研究发现,美人蕉叶表面为微纳米双层结构,从而将更多的空气滞留在水滴与叶表面之间,降低了表面能,使叶表面表现出良好的超疏水特性[6]。 4 霸王鞭叶和麒麟掌叶 霸王鞭叶和麒麟掌叶背面接触角分别为153和154,叶正面接触角分别为84和88[7]。霸王鞭叶和麒麟掌叶正面不疏水,背面超疏水。霸王鞭叶正面有微米级圆状或棱状凸起,叶背面有成簇的层片状凸起。麒麟掌叶表面具有与霸王鞭叶表面相似的微观结构,为不规则棱状和圆圈状凸起。2种叶的主要化学成分均为蜡质,进一步增强了叶表面的疏水性。 5 芦苇叶 根据冯晓娟等的研究结果,芦苇叶表面接触角为152.7°,具有良好的超疏水性[8]。芦苇叶表面有许 植物叶表面超疏水性研究进展 王万兴房岩*蓝蓝纪丁琪关琳卢浩华郭宝琪孙刚 (长春师范大学生命科学学院,吉林长春 130032) 摘 要:超疏水表面因其广阔的应用前景而成为国内外研究热点。本文综述了植物叶表面的超疏水性,分析了引起超疏水性的主要原因(微观结构、化学组成等),对超疏水自清洁材料的研究趋势进行了展望,旨在为仿生多功能表面的设计和制备提供参考。 关键词:植物叶;超疏水;接触角;微观结构;仿生 中图分类号:S-03 文献标识码:A DOI:10.11974/nyyjs.20180931010 基金项目:国家自然科学基金面上项目(项目编号:31671010),吉林省自然科学基金项目(项目编号:20180101280JC),吉林省教育厅科技计划项目(项目编号:JJKH20181167KJ),长春师范大学研究生教育创新计划项目(项目编号:cscxy2017006/ cscxy2018044/cscxy2018007/cscxy2018009) *为本文通讯作者

表面微细结构制备超疏水表面

评 述 第49卷 第17期 2004年9月 表面微细结构制备超疏水表面 郑黎俊 乌学东* 楼 增 吴 旦 (上海交通大学化学化工学院, 上海 200240. * 联系人, E-mail: xdwu@https://www.360docs.net/doc/fd363660.html, ) 摘要 超疏水是指固体表面上水的表观接触角超过150?的一种特殊表面现象, 本文从热力学角度评述了导致超疏水状态的两种理论模型: Wenzel 模型和Cassie 模型, 讨论了表面微细结构对超疏水状态的影响以及Wenzel 和Cassie 两种状态之间的内在联系. Wenzel 和Cassie 是两种可以同时共存的超疏水状态, 在一定条件下可以实现从Cassie 到Wenzel 状态的不可逆转变, 而这两者在接触角滞后中表现出截然不同的性质. 概括和总结了通过设计表面微细结构来达到超疏水表面的制备策略, 并对超疏水表面在现代工程领域内的应用前景作了展望. 关键词 微细结构表面 自洁表面 接触角 超疏水性 粗糙度 表面润湿是固体表面的重要特征之一, 也是最为常见的一类界面现象, 它不仅直接影响自然界中动、植物的种种生命活动, 而且在人类的日常生活与工农业生产中也起着重要的作用. 润湿性可以用表面上水的接触角来衡量, 通常将接触角小于90?时的固体表面称亲水表面(hydrophilic surface), 大于90?称疏水表面(hydrophobic surface). 近年来, 随着微纳米科学技术的不断发展, 以及越来越多的行业对特殊表面性能材料的迫切需求, 人们对微观结构在生命科学和材料科学中的应用有了更多的认识, 对于固体表面微细结构与润湿性之间的关系也有了更深入的理解[1,2]. 对润湿性可控表面研究的重大进步, 使得制备无污染、自清洁表面的梦想成为了现实[3]. 自洁表面一般可通过制备超亲水或超疏水表面两种途径制得: Wang 等[4]利用紫外光诱导产生的接触角接近0?的超亲水TiO 2表面, 这种表面材料已经成功地被用作防雾及自洁的透明涂层[5], 其机理为液滴在高能表面上铺展开形成液膜, 然后通过液膜流动, 夹带表面污物运动而起到自洁的功能; 而科学家在对动植物表面 的研究中发现[6], 自然界中通过形成超疏水表面来达到自洁功能的现象更为普遍, 最典型的如以莲叶为代表的多种植物叶子的表面[7](莲叶效应 Lotus- ef-fect)、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等等, 这是大自然对我们的暗示. 通过观察和研究发现, 此类表面上除了具有疏水的化学组分外, 更重要的是在微观尺度上具有微细的粗糙结构. 如图1所示, 电子显微镜下, 荷叶表面具有双层微观结构, 即由微米尺度的细胞和其上的纳米尺度蜡状晶体两部分组成; 蝶类翅膀上的粉末由100 μm 左右的扁平囊状物组成, 囊状物由无数对称的几丁质(chitin)组成的角质层构成, 其表面并不光洁, 这就是蝴蝶常具有色彩斑斓的结构色以及较好的疏水性的原因[8]; 水鸟类羽毛也具有微米或亚微米尺度的致密排列, 同时具有较好的 透气性和疏水性. 固体表面的润湿性由其化学组成和微观几何结构共同决定. 众所周知, 润湿性能主要受固体表面化学组成的影响, 固体表面自由能σSG 越大, 就越容易被一些液体所润湿, 反之亦然. 所以寻求和制备高表面自由能或低表面自由能的固体表面是制备超亲水 图1 (a) 荷叶表面的双层结构; (b) 蝴蝶鳞片的排列以及鳞片表面的微观结构; (c) 羽毛的微观结构 https://www.360docs.net/doc/fd363660.html, 1691

超疏水材料制备及其在油水分离中的应用研究进展

超疏水材料制备及其在油水分离中的应用研究进展 摘要随着世界机械化以及工业化的发展,全球的水资源污染逐渐严重,人民群众对于水资源的供应以及淡水资源的处理越发关注,且为水资源处理技术的发展做出了较大贡献。作为水资源净化技术的重要组成部分,油水分离净化技术水平不仅关系着淡水资源的提供质量,而且对于人民群众的身体健康也具有重要影响。基于此,本文将超疏水材料制备及其在油水分离中的应用作为主要研究内容,通过对超疏水材料进行简单阐述,进而对超疏水材料的应用以及其在油水分离中的应用进行详细的研究与分析。本文旨在为超疏水材料在油水分离中的应用研究提供几点参考性建议,并为水资源的净化处理技术发展提供积极的推动作用。 关键词超疏水材料制备;油水分离;应用研究 前言 由于工业化的发展导致海洋中的水资源污染情况越加恶劣,有大量的油产品以及机溶剂污染流入海洋中,对海洋中的水资源产生了严重破坏,进而为水资源净化技术提出了更高的要求,对人类生存与发展也产生了威胁。基于此种宏观环境,本文对超疏水材料在油水分离中的应用进行详细的研究与分析。 1 超疏水材料概述 超疏水材料主要是利用其中较为独特的化学结构以及其本身的润湿性能来作为水资源净化技术中的一种使用材料。由于该种材料在材质表面上具有润湿性的特殊原理,并能够作为超疏水材料而应用至油水分离的水资源净化中,其还具有两方面的特征。第一方面,表面为微纳米结构。第二方面,表面具有低表面能的特色。同时,在该种材料的制备过程中还具有成本较低以及制备材料环保的优势。因此,在油水分离的水资源净化中被广泛使用。但在超疏水材料的具体制备中还有耗时周期长的缺点,而该种缺点与实际制备中的优势相比并不对超疏水材料的实际应用构成威胁[1]。 2 超疏水材料的应用 由于超疏水材料在近几年的广泛使用中其本身的特殊性能受到各领域研究人员的关注,进而推动着超疏水材料在多个研究领域以及生活领域被应用。本文将超疏水材料的应用特性总结为以下五个方面。第一方面,自清洁的特性应用。由于超疏水材料本身具有良好的润湿性,在其进行使用的过程中能够对自身的灰尘与脏污进行自行清理。在具体的应用中,将超疏水材料的特性应用在城市高楼的建设中,利用超疏水材料的自清洁特性减少建筑玻璃清洁的次數,降低楼房玻璃清洁的成本,并在一定程度上节约水资源[2]。第二方面,抗冰雪的特性应用。由于在冰天雪地的寒冷地区,电线、航行等方面均会有风雪粘粘,进而导致电力能源的传输问题,并对正常的航行产生困扰。而应用超疏水材料的抗冰雪特性将

超疏水材料研究报告进展

超疏水材料研究进展 摘要:本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于90o时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90o时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150o那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b)

超疏水材料的应用及进展

超疏水材料的应用及进展 在仿生研究领域,许多奇特的微/纳生物表面现象给予人们大量的启示。比如荷叶效应、水黾在水面上奔跑以及蝴蝶翅膀的自洁,引发了人们对超疏水材料的研究兴趣。本文综述了仿生超疏水表面的润湿性原理、主要制备方法和应用。 关键词:仿生超疏水;润湿性;制备方法;应用 在时间的长河中,大自然不断地孕育生命,每一个生命体都具有其独特的艺术性、科学性。人类在不断适应自然、认识自然的同时,逐渐开始研究自然。仿生研究是人们学习自然,提高现有技术的有效手段。在仿生研究领域,许多奇特的微纳生物表面现象给予了人们大量的启示与想象空间[1]。比如荷叶效应[2] 、水黾在水面上奔跑以及蝴蝶翅膀的自洁[3],引发了人们对仿生超疏水材料的研究兴趣。 1 润湿性原理 固体表面的润湿性[4]对揭示表面亲、疏水性,强化表面疏水性能和制备疏水表面具有重要意义。描述润湿性的指标为与水的接触角,接触角小于9O°,为亲水表面,接触角大于90°,为疏水表面,接触角大于150°,则称为超疏水表面。 Wenzel[5]假设液体始终填满固体表面上的凹槽结构,粗糙

表面的表观接触角θ?与光滑平坦表面本征接触角θ存在以下关系:r (γs-g-γl-s)/γl-g=cosθ?=rI cosθ,式中r是材料表面的粗糙度因子,为固液界面实际接触面积与表观接触面积之比。而Cassie[6]认为疏水表面上的液滴不能填满粗糙表面上的凹槽,凹槽中液滴下存留空气,从而表观上的固液接触实际上是固液、固气接触共同组成,提出cosθ?=fs(1+c cosθ)-1,式中:fs是复合接触面中凸起固体面积与表观接触面积之比,其值小于1。而Cassie和Baxter[7]从热力学角度得到适合任何复合表面接触的Cassie-Baxter方程cosθ?=f1cosθ1+: f2cosθ2,式中θ?是复合表面的表观接触角,f1、f2分别是两种介质在固体表面上所占面积的比例,θ1、θ2分别是2种介质界面间(固液、气液)的本征接触角。研究发现[8],固体表面随着微孔深度的增加,液体的浸润性增大,润湿性减小;随着孔间距的增大,液体的润湿深度先减小后增大。超 2 制备方法 由材料表面润湿性原理可知,材料表面能和表面微纳米结构是影响材料表面疏水、亲水性能的主要因素。制备仿生超疏水表面主要从两方面入手,一方面是使用具有低表面能材料,另一方面是改变材料表面粗糙度和微纳米结构。。 2.1、自然界物质中表面能最低的两种材料是硅氧烷、含氟

污染土壤植物修复效率影响因素研究进展_苗欣宇

污染土壤植物修复效率影响因素研究进展 * 苗欣宇 周启星 ** (南开大学环境科学与工程学院,环境污染过程与基准教育部重点实验室/天津市城市生态环境修复与污染防治重点实验室, 天津300071) 摘要为提高植物修复技术对污染土壤的修复效率,根据当今植物修复技术在污染土壤 修复中的应用现状及发展趋势,对近年来国内外植物修复技术的各种影响因素进行分析。首先从污染物的理化性质及其交互作用、土壤与气象因子、植物种类及其根际效应以及栽培措施等方面,系统论述影响土壤中重金属污染物及有机污染物植物修复效率的主要因素,阐述植物添加剂对植物修复效率的影响。最后指出植物修复今后研究的重点:营造促进植物生长发育的环境,针对影响植物修复效率的各个因素对植物修复技术进行改良及强化,并合理应用植物添加剂,提高植物修复效率。关键词 污染土壤;植物修复;修复效率;影响因素;植物添加剂 中图分类号X53文献标识码A 文章编号1000-4890(2015)3-0870-08 Some research progresses in influencing factors for the efficiency of contaminated soil phy-toremediation.MIAO Xin-yu ,ZHOU Qi-xing **(Ministry of Education Key Laboratory of Pollu-tion Processes and Environmental Criteria ,College of Environmental Science and Engineering ,Nan-kai University ,Tianjin 300071,China ).Chinese Journal of Ecology ,2015,34(3):870-877.Abstract :Based on recent results of phytoremediation techniques applied in curbing environmen-tal contamination ,various factors influencing the efficiency of phytoremediation of contaminated soils were analyzed and summarized.First of all ,three aspects of the main factors of phytoremedi-ation efficiency of heavy metal pollutants and organic pollutants in soil were analyzed.That is ,the physical and chemical properties of pollutants and their interaction effects ,soil and climate con-ditions ,and plant species ,rhizosphere effects and cultivation measures.And then ,the influence of additives on the phytoremediation efficiency was elaborated.Finally ,issues for further research on phytoremediation of contaminated soil were discussed ,including :providing good environment to promote plant growth and development ,improving and strengthening the phytoremediation ac-cording to the factors that influence the efficiency of phytoremediation ,and applying plant addi-tives reasonably to improve the efficiency of phytoremediation.Key words :contaminated soil ;phytoremediation ;remediation efficiency ;affecting factors ;plant additives. *NSFC-广东联合基金项目(U1133006)、国家自然科学基金面上项 目(31170473)和国家高技术研究发展计划项目(2012AA101403-2)资助。 **通讯作者E-mail :zhouqx523@126.com 收稿日期:2014-07-30接受日期:2014- 11-13植物修复技术是利用超富集植物提取受污染环境中污染物的一项新兴技术,其基本原理是利用植物及其根际微生物体系对环境中的污染物进行吸收、降解、挥发及转化,进而实现对污染环境的修复(Channy et al .,1997;Brooks et al .,1998;周启星,2002;Eleni et al .,2011;Dmuchowski et al .,2014)。 植物修复以其费用低、不破坏场地土壤结构及无二 次污染等显著优势逐步被采用,并取得良好修复效果(Mackova et al ., 1997;Benoit et al .,2010;周启星等, 2011;周启星等,2014;Bell et al .,2014)。但是,相对其物理、化学等环境治理技术,由于该项技术存在植物生长缓慢,生物量小,修复效率较低,修复深度不佳等问题,使其难以推广应用,大部分仅停留在实验阶段。因此,解决限制植物修复技术应用的瓶颈问题,对于植物修复技术的健康发展和大规模应 用具有重要的实践意义(Passatore et al ., 2014)。考生态学杂志Chinese Journal of Ecology 2015,34(3):870-877 DOI:10.13292/j.1000-4890.2015.0117

超疏水高分子薄膜的研究进展 (1)

超疏水高分子材料的研究进展 摘要:近十年来,由于超疏水表面在自清洁、防冰冻、油水分离等方面的广泛应用前景,超疏水高分子薄膜的研究受到了极大的关注。本文综述了超疏水高分子材料的制备方法,并对超疏水高分子材料研究的未来发展进行了展望。 关键词:超疏水,高分子材料,自清洁 Developments of super-hydrophobic Ploymeric material Abstract: In the last decades, super-hydrophobic surface has aroused great interest in both academic and industrial fields owing to their potential application in self-cleaning, anti-icing/fogging, water/oil separation, et al. In this paper, the recent development in super-hydrophobic polymeric membrane is reviewed from both preparation and technique, and the future development direction of the superhydrophobic polymeric surface is also proposed in the end. Key Words: super-hydrophobic, polymeric membrane, self-cleaning. 引言 自然界是功能性表面的不竭源泉。植物叶表面的自清洁效果引起了人们的很大的兴趣,在以荷叶为典型代表的自然超疏水表面上充分体现了这种自清洁性质,因此称之为“荷叶效应”[1]。图 1.1中展示的是水滴和汞在荷叶表面的宏观与微观的照片[2]。植物叶表面的微观结构产生自清洁性这一发现不仅为人工构筑超疏水表面提供的灵感,而且植物叶本身也是一个优异的模板,通过对其结构的复制,可望得到具有类似于植物叶表面微结构及自清洁性能的表面。通过对生物体表面结构仿生可以实现结构和性能的完美统一[3-12]。 随着高分子材料在日常生活中的广泛应用,针对高聚物材料存在的表面问题,例如表面的防污性、湿润性,防冰冻,抗菌性等的研究变得越来越重要,特别是智能高分子材料的性能研究尤为引人注目。由于超疏水材料在自清洁、

相关文档
最新文档