化学发光法EMSA检测试剂盒

化学发光法EMSA检测试剂盒
化学发光法EMSA检测试剂盒

化学发光法 EMSA 检测试剂盒
Chemiluminescent EMSA Detection Kit
说明书修订日期: 说明书修订日期:2015.12.01 货号:KGS133 保存温度:-20℃ For Research Use Only
一、产品简介 本产品是一种通过 Streptavidin-HRP 及 ECL 检测试剂来实现化学发光检测 Biotin 标记的 EMSA 探针 的检测试剂盒。 同时本试剂盒也提供 EMSA 检测所需的结合缓冲液和上样缓冲液, 及一些关键的相关试剂, 可以实现非同位素的 EMSA 检测。 本试剂盒采用了高质量的 Streptavidin-HRP Conjugate,HRP 和 Streptavidin 共价交联的比例大于 3, 这样比采用 Streptavidin 和 Biotin-HRP conjugate 两种试剂进行检测要更方便,并且灵敏度更高。 本试剂盒采用了非特异性结合比 avidin 更低的 strepatavidin,使检测结果背景更低灵敏度更高。 EMSA/Gel-Shift 结合缓冲液(5X)中含有 poly(dI-dC)等有效成分。其中 poly(dI-dC)的浓度经过优化, 可以很好的消除蛋白和标记探针间的非特异性结合,同时又不会减弱目的转录因子和标记探针间的结合。 本试剂盒可以用于 20 个蛋白和探针的结合反应, 并足够检测至少 2 块有生物素标记 EMSA 探针的膜。 二、组份列表 产品组份 EMSA/Gel-Shift 结合缓冲液(5X) EMSA/Gel-Shift 上样缓冲液(无色,10X) EMSA/Gel-Shift 上样缓冲液(蓝色,10X) ECL Reagent A ECL Reagent B Streptavidin-HRP Conjugate 封闭液 洗涤液(5X) 检测平衡液 规格( 规格(50T) 100μl 100μl 100μl 28ml 28ml 50μl 190ml 125ml 125ml 保存温度 -20℃ -20℃ -20℃ 4℃ 4℃ -20℃ 4℃ 4℃ 4℃
注:如果长期不用,整个试剂盒可-20℃保存,-20℃可以保存更长时间。
三、注意事项 1. 2. 3. 需自备带正电荷尼龙膜,以及凝胶电泳时所需的相关试剂。 如果需要使用更多的封闭液或洗涤液,可另外单独订购凯基封闭液或洗涤液。 为了您的安全和健康,请穿实验服并戴一次性手套操作。
四、使用说明 1. 探针的标记 探针的标记: : 可以直接选购凯基生物素标记 EMSA 探针,或其他合适的生物素标记 EMSA 探针。
胶的配制: 2. EMSA 胶的配制 :
A. 准备好倒胶的模具。 可以使用常规的制备蛋白电泳胶的模具(例如 BioRad 的常规用于蛋白电泳的制胶装

置),或其它适当的模具。最好选择可以灌制较薄胶的模具,以便于干胶等后续操作。为得到更好的结果, 可以选择可灌制较大 EMSA 胶模具。制胶前必须把制胶模具冲洗干净,需特别注意不能有 SDS 残留。 B. 按照如下配方配制 20ml 4%的聚丙烯酰胺凝胶: (注: 使用 29:1 等不同比例的 Acr/Bis 对结果影响不大)。
TBE buffer(10X) 重蒸水 39:1 acrylamide/bisacrylamide (40%,w/v) 80% 甘油 10% 过硫酸铵(ammonium persulfate) TEMED
1.0ml 16.2ml 2ml 625μl 150μl 10μl
C. 按照上述顺序依次加入各种试剂,加入 TEMED 前先混匀,加入后立即混匀,并马上加入到制胶的模具 中。避免产生气泡,加上梳齿。如果发现非常容易形成气泡,可以把一块制胶的玻璃板进行硅烷化处理。 3. EMSA 结合反应 结合反应: : A. 如下设置 EMSA 结合反应 阴性对照反应
Nuclease-Free Water EMSA/Gel-Shift 结合缓冲液(5X) 细胞核蛋白或纯化的转录因子 标记好的探针 总体积
探针冷竞争反应
7μl 2μl 0μl 1μl 10μl 4μl 2μl 2μl 1μl 1μl 10μl 4μl 2μl 2μl 1μl 1μl 10μl 5μl 2μl 2μl 1μl 10μl 4μl 2μl 2μl
Nuclease-Free Water EMSA/Gel-Shift 结合缓冲液(5X) 细胞核蛋白或纯化的转录因子 未标记的探针 标记好的探针 总体积
Super-shift 反应
Nuclease-Free Water EMSA/Gel-Shift 结合缓冲液(5X) 细胞核蛋白或纯化的转录因子 目的蛋白特异抗体 标记好的探针 总体积
样品反应
Nuclease-Free Water EMSA/Gel-Shift 结合缓冲液(5X) 细胞核蛋白或纯化的转录因子 标记好的探针 总体积
突变探针的冷竞争反应
Nuclease-Free Water EMSA/Gel-Shift 结合缓冲液(5X) 细胞核蛋白或纯化的转录因子

未标记的突变探针 标记好的探针 总体积
1μl 1μl 10μl
B. 按照上述顺序依次加入各种试剂,在加入标记好的探针前先混匀,并且室温(20-25℃)放置 10 分钟,从 而消除可能发生的探针和蛋白的非特异性结合,或让冷探针优先反应。然后加入标记好的探针,混匀,室 温(20-25℃)放置 20 分钟。 C. 加入 1μl EMSA/Gel-Shift 上样缓冲液(无色,10X),混匀后立即上样。注意:有时溴酚蓝会影响蛋白和 DNA 结合,建议尽量使用无色的 EMSA/Gel-Shift 上样缓冲液。如果对于使用无色上样缓冲液在上样时感 觉到无法上样,可以在无色上样缓冲液里面添加极少量的蓝色的上样缓冲液,至可观察到蓝色即可。 4. 电泳 电泳: : A. 用 0.5XTBE 作为电泳液。按照 10V/厘米的电压预电泳 10 分钟。预电泳的时候如果有空余的上样孔, 可以加入少量稀释好的 1X 的 EMSA 上样缓冲液(蓝色),以观察电压是否正常进行。 B. 把混合了上样缓冲液的样品加入到上样孔内。在多余的某个上样孔内加入 10μl 稀释好的 1X 的 EMSA/Gel-Shift 上样缓冲液(蓝色),用于观察电泳进行的情况。 C. 按照 10V/厘米的电压电泳。确保胶的温度不超过 30℃,如果温度升高,需要适当降低电压。电泳至 EMSA/Gel-Shift 上样缓冲液中的蓝色染料溴酚蓝至胶的下缘 1/4 处,停止电泳。
转膜: 5. 转膜 :
A. 取一和 EMSA 胶大小相近或略大的尼龙膜,剪角做好标记,用 0.5XTBE 浸泡至少 10 分钟。尼龙膜自 始至终仅能使用镊子夹取,并且仅可夹取不可能接触样品的边角处。 B. 取两片和尼龙膜大小相近或略大的滤纸,用 0.5XTBE 浸湿。 C. 把浸泡过的尼龙膜放置在一片浸湿的滤纸上,注意避免尼龙膜和滤纸间产生气泡。 D. 非常小心地取出 EMSA 胶放置到尼龙膜上,注意确保胶和膜之间没有气泡。 E. 再把另外一片浸湿的滤纸放置到 EMSA 胶上,注意确保滤纸和胶之间没有气泡。 F. 采用 Western 时所使用的湿法电转膜装置或其它类似的电转膜装置,以 0.5XTBE 为转膜液,把 EMSA 胶上的探针、蛋白以及探针和蛋白的复合物等转移到尼龙膜上。对于大小约为 10x8x0.1cm 的 EMSA 胶, 用 BioRad 的常用的 Western 转膜装置,电转时可以设置为 380mA(约 100V)转膜 30-60 分钟。如果胶较 厚,则需适当延长转膜时间。转膜时需保持转膜液的温度较低,通常可以把电转槽置于 4℃冷库或置于冰 浴或冰水浴中进行电转,这样可以确保低温。具体的电转膜方法请参考电转膜装置的使用说明。 G. 转膜完毕后,小心取出尼龙膜,样品面向上,放置在一干燥的滤纸上,轻轻吸掉下表面明显的液体。立 即进入下一步的交联步骤,不可使膜干掉。 6. DNA 交联 交联: : A. 用紫外交联仪(UV-light cross-linker)选择 254nm 紫外波长,120mJ/cm2,交联 45-60 秒。如果没有紫 外交联仪可以使用普通的手提式紫外灯,距离膜 5-10 厘米左右照射 3-10 分钟。也可以使用超净工作台内 的紫外灯,距离膜 5-10 厘米左右照射 3-15 分钟。最佳的交联时间可以使用标准品自行摸索。 B. 交联完毕后,可以直接进入下一步检测;也可以用保鲜膜包裹后在室温干燥处存放 3-5 天,然后再进入 下一步检测。 如果检测结果发现交联效果不佳,甚至连 free probe 的条带都非常微弱,可以考虑在膜干燥后参考步骤 A 的条件再交联一次,以进一步改善交联效果。 7. 化学发光法检测生物素标记的探针 化学发光法检测生物素标记的探针: : A. 37-50℃水浴溶解封闭液和洗涤液。 注意:封闭液和洗涤液必须完全溶解后方可使用,封闭液和洗涤液可以在室温至 50℃之间使用,但必须确 保这两种溶液中均无沉淀产生,在冬天需特别注意。 B. 取一合适的容器加入 15ml 封闭液,再放入交联过的含有样品的尼龙膜。在侧摆摇床或水平摇床上缓慢

摇动 15 分钟。 C. 取 7.5μl Streptavidin-HRP Conjugate 加入到 15ml 封闭液中(1:2000 稀释),混匀备用。 D. 去除用于尼龙膜封闭的封闭液, 加入上一步中配制的 15ml 含有 Streptavidin-HRP Conjugate 的封闭液。 在侧摆摇床或水平摇床上缓慢摇动 15 分钟。 E. 取 25ml 洗涤液(5X),加入 100ml 重蒸水或 Milli-Q 级纯水,混匀配制成 125ml 洗涤液。 F. 将尼龙膜转移至另一装有 15-20ml 洗涤液的容器内,漂洗 1 分钟。 G. 去除洗涤液,加入 15-20ml 洗涤液,在侧摆摇床或水平摇床缓慢上洗涤 5 分钟。 H. 重复步骤 G 三次(共洗涤四次,每次洗涤 5 分钟)。 I. 将尼龙膜转移至另一装有 20-25ml 检测平衡液的容器内,在侧摆摇床或水平摇床上缓慢摇动 5 分钟。 J. 取 5ml ECL Reagent A 和 5ml ECL Reagent B 混匀,配制 ECL Reagent 工作液。注意:ECL Reagent 工作液必须现配现用。说明:从本步骤起操作方法和注意事项同 Western 实验的荧光检测。 K. 取出尼龙膜,用吸水纸吸去过多液体。立即将膜的样品面向上,放置到处于水平桌面上的洁净容器内或 保鲜膜上。 L. 在尼龙膜的表面小心加上步骤 J 配制好的共 10ml ECL Reagent 工作液,使工作液完全覆盖尼龙膜。室 温放置 2-3 分钟。 M. 取出尼龙膜,用吸水纸吸去过多液体。将尼龙膜放在两片保鲜膜或其它适当的透光薄膜中间,并固定于 压片暗盒(也称片夹)内。 N. 用 X 光片压片 1-5 分钟。可以先压片 1 分钟,立即显影定影,然后根据结果再调整压片时间;也可以 直接分别压片 30 秒、1、3、5 分钟或更长时间,然后一起显影定影观察结果。

鲁米诺电化学发光用于生物分子分析的研究进展

鲁米诺电化学发光用于生物分子分析的研究进展 屠一锋 苏州大学化学化工学院分析化学研究所,215123 本课题组开展电化学发光分析研究工作的主要目标是应用于生物分子分析: 一、对鲁米诺电化学发光行为及机理的理解:文献报道鲁米诺的电化学发光原理类似于其化学发光原理,是基于鲁米诺的两步氧化反应,在第二步氧化开环时生成激发态而产生光辐射,是不可逆过程,我们的研究表明,鲁米诺的电化学发光可能更主要是涉及自由基的过程,其氧化还原过程中形成自由基并在相应的条件下可在未氧化开环的条件下辐射光信号,从而不需要氧化至第二步开环反应,因此鲁米诺分子可以提供可逆的电化学发光反应,从而为研制电化学发光传感器和检测器提供了重要的基础。多种纳米粒子可以促进鲁米诺在低电位下的可逆电化学发光反应。 二、中性介质中鲁米诺的电化学发光行为:绝大部分文献报道均强调鲁米诺的电化学发光必须在强碱性介质中实施,而我们的研究主要瞄准中性介质中鲁米诺的电化学发光,经过长期研究,我们发现完全可以在中性介质中实施其电化学发光分析,这对开展生物分子的分析是十分有利的。研究中采用的主要技术措施是多种增敏技术来提高中性介质中鲁米诺电化学发光的效率,如使用增敏剂和电极表面修饰等。实现中性介质中的电化学发光对生物分子的研究具有重要价值。 三、生物分子分析研究:已探讨了对多种类型生物分子进行分析测定的性能,其主要机理是基于自由基之间的能量转移及自由基湮灭作用等,表现在信号响应上为电化学发光的增强或猝灭,研究对象包括生物小分子如谷胱甘肽、黄酮、维生素、尿酸等,灵敏度高,检测下限可达皮摩尔以下,生物大分子如酶、DNA等,已研究了葡萄糖氧化酶、尿酸氧化酶、谷丙转氨酶等及其催化体系均有响应,对DNA的响应亦已实现,并可用于研究DNA与小分子之间的作用。 四、电化学发光检测与流动分析及分离技术的联用:生物样品大多组成复杂,电化学发光检测池的研制可实现电化学发光检测与分离技术的联用,我们目前已经构建了结构合理、性能优良的电化学发光检测池,与流动分析成功联用,目前正开展毛细管电泳、芯片电泳与电化学发光检测联用的研究。对与毛细管电泳联用的电化学发光检测,主要设计为柱端检测方式,与芯片电泳的联用,则主要设计为全通道检测模式,已完成检测所需的线阵CCD 微弱光检测器的研制。

化学发光免疫类体外诊断试剂(盒)产品技术审评要求规范(2017版)1204

化学发光免疫类体外诊断试剂(盒)产品技术审评规范(2017版) 本规范旨在指导注册申请人对化学发光免疫类体外诊断试剂(盒)产品注册申报资料的准备及撰写,同时也为技术审评部门对注册申报资料的技术审评提供参考。 本规范是对化学发光免疫类体外诊断试剂(盒)产品的一般要求,申请人应依据具体产品的特性对注册申报资料的内容进行充实和细化,并依据产品特性确定其中的具体内容是否适用。 本规范是对申请人和审查人员的指导性文件,但不包括注册审批所涉及的行政事项,亦不作为法规强制执行,如果有能够满足相关法规要求的其他方法,也可以采用,但需要提供详细的研究资料和验证资料。应在遵循相关法规的前提下使用本规范。 本规范是在现行法规和标准体系以及当前认知水平下制定的,随着法规和标准的不断完善,以及科学技术的不断发展,本规范相关内容也将进行适时调整。 一、适用范围 本规范适用于利用化学发光免疫分析技术对被测物质进行定量检测的第二类体外诊断试剂(包括以微孔板、管、磁颗粒、微珠和塑料珠等为载体的酶促及非酶促化学发光免疫分析测定试剂)的注册技术审查。 依据《体外诊断试剂注册管理办法》(国家食品药品监督管理总局令第5号,以下简称《办法》)、《食品药品监管总局关于印发体外诊断试剂分类子目录的通知》(食药监械管

〔2013〕242号)化学发光免疫类体外诊断试剂(盒)产品分类代号为6840。 二、注册申报资料要求 (一)综述资料 综述资料主要包括产品预期用途、临床意义、产品描述、有关生物安全性的说明、研究结果的总结评价以及同类产品上市情况介绍等内容,应符合《办法》和《关于公布体外诊断试剂注册申报资料要求和批准证明文件格式的公告》(国家食品药品监督管理总局公告2014年第44号)的相关要求。 (二)主要原材料研究资料(如需提供) 主要原材料(例如各种天然抗原、重组抗原、单克隆抗体、多克隆抗体以及多肽类、激素类等生物原科,辣根过氧化物酶、碱性磷酸酶等标记用酶、磁微粒及其他主要原料)的选择、制备、质量标准及实验验证研究资料;校准品、质控品的原料选择、制备、赋值过程及试验资料;校准品的溯源性文件,包括具体溯源链、实验方法、数据及统计分析等详细资料。 (三)主要生产工艺及反应体系的研究资料(如需提供) 1.主要生产工艺介绍,包括工作液的配制、分装和冻干,固相载体的包被和组装,发光系统等的描述及确定依据等,可以图表方式表示; 2.反应原理介绍; 3.确定反应所需物质及其用量(校准品、样本、试剂等)的研究资料; 4.确定反应最适条件研究(反应条件、校准方法、质控

电化学发光检测项目和临床应用

电化学发光(Elecsys)检测项目及其临床应用 一、甲状腺功能 甲腺原氨酸(T3, triiodothyronine) T3是甲状腺激素对各种靶器官作用的主要激素。T3(3、5、3’-三碘酪氨酸)主要在甲状腺以外,尤其是在肝脏由T4经酶解脱碘生成。因此,血清T3浓度反映出甲状腺对周边组织的功能甚于反映甲状腺分泌状态。T4转变成T3的减少会导致T3浓度的下降。见于药物的影响,如丙醇、糖皮质类固醇、胺碘酮等以及严重的非甲状腺疾病(N TI),称为“T3低下综合征”。与T4一样,99%以上的T3与运输蛋白质结合,但T3的亲和力要低10倍左右。T3测定可用于T3-甲亢的诊断,早期甲亢的查明和假性甲状腺毒症的诊断。 检测范围:0.300─10.00nmol/l或O.195-6.51ng/ml 正常参考值:1.3-3.1nmol/l或0.8-2.0ng/ml 甲状腺素(T4, thyroxine) T4是甲状腺分泌的主要产物,也是构成下丘脑-垂体前叶-甲状腺调节系统完整性不可缺少的成份。对合成代谢有影响作用。T4由二分子的二碘酪氨酸(DIT)在甲状腺内偶联生成。T4与甲状腺球蛋白结合贮存在甲状腺滤泡的残腔中,在TSH的调节下分泌释放。血清中99%以上的T4以与其它蛋白质结合的形式存在。由于血清中运输蛋白质的浓度易受外源性和内源性作用的影响,因此,在检测血清T4浓度的过程中需考虑到结合蛋白质的状况。如果忽略这一点,结合蛋白质浓度的变化(如怀孕期、服用雌激素或者患肾病综合征等),会导致反映甲状腺代谢状况检测的错误结果。T4测定可用于甲亢、原发性和继发性甲状腺功能减退的诊断以及TSH抑制治疗的监测。 检测范围:5.40─320.0nmol/l或O.420-24.86μg/dl 正常参考值: I. 66-181nmol/l或5.1-14.1μg/dl(标本取自德国和日本) II. 59-154nmol/l或4.6-12.0μg/dl, FT4指数57-147nmol/l或4.4-11.4ug/dl (标本取至美国) 游离T3(FT3- free triiodothyronine) 三碘甲腺原氨酸(T3)是血清中的甲状腺激素之一,起调节代谢作用。测定该激素的含量对鉴别诊断甲状腺功能是否正常、亢进或低下有重要意义。绝大多数的T3与其转运蛋白质(TBG、前白蛋白、白蛋白)结合,fT3是T3的生理活性形式。fT3测定的优点是不受其结合蛋白质浓度和结合特性变化的影响。因此不需另加测定结合参数(T -uptake,TBG)。 检测范围:0.400─50.00pmol/l或O.260-32.55pg/ml 正常参考值:2.8-7.1pmol/l或1.8-4.6pg/ml 游离T4(FT4- free thyroxine)

化学发光检测

第一章化学发光技术 一、免疫学检测发展阶段 免疫学检测主要是利用抗原和抗体的特异性反应进行检测的一种手段,由于其可以利用同位素、酶、化学发光物质等对检测信号进行放大和显示,因此常被用于检测蛋白质、激素等微量物质。我国免疫学的检测基本历经了以下几个过程,如图1.1所示。 20世纪60年代70年代90年代时间 图1.1免疫学检测发展阶段 尽管免疫诊断在临床诊断中占据着非常重要的地位,但是从我国临床免疫诊断现状来看,无论是临床应用方面,还是产业化角度,都处于相对比较落后的状态,亟待改进。下表1.1就此做一比较: 表1.1 中国免疫诊断现状 由以上分析不难看出,化学发光免疫检测是大势所趋;而取代进口,发展我国的化学发光检测事业,

正是临床检验界着手发展的方向。由此,我公司自1998年立项至今,致利于化学发光检测方案设计,自行开发了具有国内领先水平的化学发光底物,与国外知名检测仪器生产商联合开发了化学发光全自动、半自动检测仪,并自行设计开发了化学发光管理软件,而今形成了仪器、试剂、软件全面配套,为我国的临床检验界提供了一套完善的解决方案。 二、化学发光免疫分析技术 【概述】 本世纪70年代中期Arakawe首次报道用发光信号进行酶免疫分析,利用发光的化学反应分析超微量物质,特别是用于临床免疫分析中检验超微量活性物质。目前,这一技术已从实验室的稀有技术过渡到临床医学的常规检测手段。化学发光免疫分析(Chemiluminescence Immunoassay,CLIA)是将化学发光或生物发光体系与免疫反应相结合,用于检测微量抗原或抗体的一种新型标记免疫测定技术。其检测原理与放射免疫(RIA)和酶免疫(EIA)相似,不同这处是以发光物质代替放射性核素或酶作为标记物,并藉助其自身的发光强度直接进行测定。 化学发光免疫分析既具有放射免疫的高灵敏度,又具有酶联免疫的操作简便、快速的特点,易于标准化操作。且测试中不使用有害的试剂,试剂保持期长,应用于生物学、医学研究和临床实验诊断工作,成为非放射性免疫分析法中最有前途的方法之一。 【原理】 在化学发光免疫分析中包含两个部分,即免疫反应系统和化学发光系统。免疫反应系统,其基本原理同酶联免疫技术(ELISA),常采用双抗体夹心法、竞争法、间接法等反应模式,如图1.2,1.3,1.4所示。 如图1.2双抗体夹心法反应原理示意图

化学发光试剂鲁米诺的一种特殊合成方法

鲁米诺的一种特殊合成方法 鲁米诺又叫发光氨,CSA号为521-31-3。化学名称为3-氨基-苯二甲酰肼。在常温状态下呈现出黄色粉末,是一种很稳定,研发生产多年人工合成的有机化合物。同时它也是刑侦的一种检测工具,可以在犯罪现场检测血迹,可以让肉眼没办法观察到的血液使其发光,呈现出血迹痕迹,方便于记录与侦查。 目前已公开的制备鲁米诺与异鲁米诺的工艺有多种,但是多种制备方法中要么存在废料污染,不符合绿色环保要求,要么就是工艺繁琐,设备要求高,要么原料成本高,要么存在不必要的人工成本,多多少少存在些问题,不能做到尽善尽美。为适应鲁米诺类试剂的广阔市场需求,一种工艺简洁、成本低、绿色环保的工业化生产方式十分重要。介绍一种最新报道的鲁米诺或异鲁米诺的合成方法。

这种利用一锅法合成鲁米诺或异鲁米诺的方法,具体步骤如下: 步骤一:以3-硝基邻苯二甲酸或4-硝基邻苯二甲酸为起始原料,与尿素在有机溶剂中回流3-10小时,3-硝基邻苯二甲酸或4-硝基邻苯二甲酸与尿素的摩尔比为1:1-3,得到含3-硝基邻苯二甲酰亚胺或4-硝基邻苯二甲酰亚胺的混合产物A; 步骤二:向混合产物A中加入水合肼水溶液,起始原料3-硝基邻苯二甲酸或4-硝基邻苯二甲酸与水合肼的摩尔比为1:1-3,加热回流1-5小时,得到含3-硝基邻苯二甲酰肼或4-硝基邻苯二甲酰肼的混合产物B; 步骤三:向混合产物B中加入催化剂和还原剂,起始原料3-硝基邻苯二甲酸或4-硝基邻苯二甲酸与还原剂的摩尔比为1:1.5-4,在温度为30-50℃下还原反应3-8小时,得到含鲁米诺或异鲁米诺的混合产物C,混合产物C经精制后,得到鲁米诺或异鲁米诺。 这种制备方法将三步反应在同一锅内完成,且中间产物无需进行任何纯化处理,直接得到产物,不仅具有操作方便、工艺简洁的优点,而且得到的鲁米诺以及异鲁米诺的收率和纯度高,能充分满足产品工业化生产的需求以及市场的需求。另外,这种合成方法所需的试剂均为常规试剂,制备过程中使用的设备也都是常规设备,原料成本和设备成本都较低,适合工业化化大生产。

化学发光技术综述

化学发光技术综述 化学发光免疫测定(CLIA)是将抗原与抗体特异性反应与敏感性的化学发光反应相结合而建立的一种免疫检测技术。 (一)原理 化学发光免疫测定(CLIA)属于标记抗体技术的一种,它以化学发光剂、催化发光酶或产物间接参与发光反应的物质等标记抗体或抗原,当标记抗体或标记抗原与相应抗原或抗体结合后,发光底物受发光剂、催化酶或参与产物作用,发生氧化还原反应,反应中释放可见光或者该反应激发荧光物质发光,最后用发光光度计进行检测。 (二)特点 特异性高、敏感性高、分离简便、快速、试剂无毒、安全稳定、可自动化。 (三)分类 1、从反应原理上,化学发光免疫技术主要分为直接化学发光和酶促反应化学发光。 直接化学发光

化学发光剂在发光免疫分析过程中不需酶的催化作用,直接参与发光反应,它们在化学结构上有产生发光的特有基团,可直接标记抗原或抗体。直接化学发光速度快、试剂稳定性好,但灵敏度略低于酶促发光。 代表性的发光剂有:吖啶酯、三联吡啶钌。 吖啶酯 在碱性条件下被H2O2氧化时,发出波长为470nm的光,具有很高的发光效率,其激发态产物N-甲基吖啶酮是该发光反应体系的发光体。 这类化合物的发光为闪光型,加入发光启动试剂后0. 4s 左右发射光强度达到最大,半衰期为左右。 特点: ①发光反应中在形成电子激发态中间体之前,联结于吖啶环上的不发光的取代基部分从吖啶环上脱离开来,即未发光部分与发光部分分离,因而其发光效率基本不受取代基结构的影响。 ②吖啶酯或吖啶磺酰胺类化合物化学发光不需要催化剂,在有H2O2 的稀碱性溶液中即能发光。因此应用于化学发光检测具有许多优越性。 优点主要有: ①背景发光低,信噪比高; ②发光反应干扰因素少;

化学发光免疫类体外诊断试剂(盒)产品技术审评规范(2017版)1204

化学发光免疫类体外诊断试剂(盒)产品技 术审评规范(2017版) 本规范旨在指导注册申请人对化学发光免疫类体外诊断试剂(盒)产品注册申报资料的准备及撰写,同时也为技术审评部门对注册申报资料的技术审评提供参考。 本规范是对化学发光免疫类体外诊断试剂(盒)产品的一般要求,申请人应依据具体产品的特性对注册申报资料的内容进行充实和细化,并依据产品特性确定其中的具体内容是否适用。 本规范是对申请人和审查人员的指导性文件,但不包括注册审批所涉及的行政事项,亦不作为法规强制执行,如果有能够满足相关法规要求的其他方法,也可以采用,但需要提供详细的研究资料和验证资料。应在遵循相关法规的前提下使用本规范。 本规范是在现行法规和标准体系以及当前认知水平下制定的,随着法规和标准的不断完善,以及科学技术的不断发展,本规范相关内容也将进行适时调整。 一、适用范围 本规范适用于利用化学发光免疫分析技术对被测物质进行定量检测的第二类体外诊断试剂(包括以微孔板、管、磁颗粒、微珠和塑料珠等为载体的酶促及非酶促化学发光免疫分析测定试剂)的注册技术审查。 依据《体外诊断试剂注册管理办法》(国家食品药品监督管理总局令第5号,以下简称《办法》)、《食品药品监管总局关于印发体外诊断试剂分类子目录的通知》(食药监械管〔2013〕

242号)化学发光免疫类体外诊断试剂(盒)产品分类代号为6840。 二、注册申报资料要求 (一)综述资料 综述资料主要包括产品预期用途、临床意义、产品描述、有关生物安全性的说明、研究结果的总结评价以及同类产品上市情况介绍等内容,应符合《办法》和《关于公布体外诊断试剂注册申报资料要求和批准证明文件格式的公告》(国家食品药品监督管理总局公告2014年第44号)的相关要求。 (二)主要原材料研究资料(如需提供) 主要原材料(例如各种天然抗原、重组抗原、单克隆抗体、多克隆抗体以及多肽类、激素类等生物原科,辣根过氧化物酶、碱性磷酸酶等标记用酶、磁微粒及其他主要原料)的选择、制备、质量标准及实验验证研究资料;校准品、质控品的原料选择、制备、赋值过程及试验资料;校准品的溯源性文件,包括具体溯源链、实验方法、数据及统计分析等详细资料。 (三)主要生产工艺及反应体系的研究资料(如需提供) 1.主要生产工艺介绍,包括工作液的配制、分装和冻干,固相载体的包被和组装,发光系统等的描述及确定依据等,可以图表方式表示; 2.反应原理介绍; 3.确定反应所需物质及其用量(校准品、样本、试剂等)的研究资料; 4.确定反应最适条件研究(反应条件、校准方法、质控方法);

罗氏电化学发光免疫分析

罗氏电化学发光免疫分 析 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

罗氏电化学发光免疫分析 技术是罗氏公司开发的,但全自动机械制造却由日本的日立公司承担,所以仪器上还有Hitachi的标志。这个仪器让大家吃惊的一大原因就在于一直在实验室研究的电致化学发光居然已经真正地产业化了,其中我们一直无法解决的诸多问题(尤其是重现性)均已得到解答,看来罗氏的确花了不少心血开发这款仪器。 罗氏电化学发光免疫分析技术的性能特点——创新的技术,与众不同 一、最先进的检测原理 电化学发光免疫测定,是目前最先进的标记免疫测定技术,是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,具有敏感、快速和稳定的特点,在固相标记免疫测定中技术上居领先地位。 电化学发光(ECL)是一种在电极表面由电化学引发的特异性化学发光反应,实际上是电化学和化学发光两个过程的完美结合。电化学发光与普通化学发光的主要差异在于前者是电启动发光反应,循环及多次发光,后者是通过化合物混合启动发光反应,是单次瞬间发光。因此ECL反应易精确控制,重复性极好。 电化学发光免疫测定是电化学发光(ECL)和免疫测定相结合的产物,直接以[Ru(bpy)3]2+标记抗体,反应时标记物直接发光。且[Ru(bpy)3]2+在电极表面的反应过程可以周而复始进行,产生许多光子,使光信号得以增强。 二、专利的包被技术 链霉亲和素(streptoavidin,SA)和生物素(biotin,B)是具有很强的非共价相互作用的一对化合物,特异性强且结合紧密。一分子SA可与四分子B 相结合,增大了抗体结合量,达到放大效果。在ECL的试剂中,SA通过特殊的蛋白结合物均匀牢固地包被在磁性微粒上,形成通用的能与B结合的固相载体,另一试剂为活化的B衍生物化合的抗原或抗体。两种试剂混合时,抗原或抗体即包被在磁性微粒上。

嗜血神探浅谈鲁米诺(发光氨)在法医血痕检验技术中的

嗜血神探—浅谈鲁米诺(发光氨)在法医血痕检验技术中的应用 北京大学药学院 陶鹏宇 关键词:法医学,法医物证学,血痕检验技术,鲁米诺,荧光反应 题记:狱事莫重于大辟,大辟莫重于初情,初情莫重于检验。—世界法医学鼻祖:宋慈【南宋】 法医科学的发展历史是一个漫长,复杂而又令人神往的过程。它是一个成功的故事,是人类在弥补法网中的漏洞,防止犯罪分子逃脱惩罚这一永无止境的斗争中所取得的一个又一个的胜利—这些胜利有的非常重大,而有些则小到几乎无法察觉。但是在现代社会,随着大规模战争的消失,犯罪也成为社会不安定的首要因素。因此,谁也无法否认法医学对现代犯罪案件的侦破工作乃至于整个人类社会的安定与发展的不朽贡献。如果没有法医学,如今关在监狱中的无数恶棍就会逍遥法外。电子显微镜,光谱,气体彩色成像,DNA鉴定等高科技手段为法医学的发展描绘了无限光明的蓝图;而在法医学的众多分支学科,如法医病理学,法医物证学..,法医毒理学,法医毒物分析,临床法医学,法医精神病学等高科技手段也有着广泛的应用和渗透,而且高超的科技技术手段也使法医学各学科界限不再明显,学科的交叉和双赢更加繁荣。 提到法医学的重要分支法医物证学,就不得不提到证据。Evidence,means the facts,signs or the subjects that makes you believe something is true.而法医物证学作为法医学一个独立分支学科,则是运用医学,生物学,免疫学,遗传学和其他自然科学的知识和技术研究并解决涉及法律问题的物质证据的检验和鉴定的一门科学。法医物证检验的主要对象是人体的组织器官,分泌物或排泄物。常见的有血液(痕),精液(斑),唾液(斑),尿液(斑),毛发,骨骼,牙齿,呕吐物,粪便,汗液,泪斑等。与痕迹证据等其他物质证据一样,这种生物物证具有一般物证所共有的特征,即客观存在性和与案件的关联性。但这些重要的证据也同时具有另一个特点,即它们是极细小而分布范围不固定的物质和痕迹。有别于其他物证的是,法医物证属于生物性物证,具有生物物证的特殊属性。法医物证中多含蛋白质及核酸等有机大分子成分。保持活性时往往可以反映出一些生理规律,然而法医们常常要面临的问题是这些活性成分会受到各种物理,化学及生物因素的影响,这些不可避免的影响导致的直接结果就是使检验的时机和条件丢失。。正因为要面对工作中特殊复杂的环境和严峻的挑战,科学技术在法医物证学中才更显其神通广大。法医需要高超的技术层面上的支持,才能准确快速的完成取证检验。 在简要介绍了法医学及法医物证学的概论之后,我们要走近这位传说中的嗜血神探鲁米诺。顾名思义,鲁米诺用于取证检验中的血痕检验。首先先介绍一下化学药品鲁米诺。鲁米诺, 化学式C8H7N3O2。(图一为鲁米诺的结构简式)在常 温下是一种黄色晶体或米黄色粉末。是一种比较稳定 的化学试剂。熔点约280摄氏度。碱性条件下可以被 氧化剂氧化,发出蓝绿色荧光,最大波长可达425nm。 据实验测定,多种金属离子,阳离子,和有机物能增 强或抑制鲁米诺化学发光体系的发光。或直接氧化鲁 米诺而发光。这种性质在化学分析中被广泛应用于酸 碱滴定,氧化还原滴定和络合滴定中,鲁米诺已作为 化学发光指示剂,在颜色较深或浑浊的溶液体系中, 具有分辨率好的特点。在生物学中,这种性质已被用于30多种金属离子,氧,卤素,硫化物,氰化物的痕量分析。再有机和临床分析中,已广泛应用于氨基酸,氨基醇类,胆甾醇,有机磷化合物,葡萄糖,血红素,酶等的测定。。由

罗氏电化学发光免疫分析(精)

罗氏电化学发光免疫分析 技术是罗氏公司开发的,但全自动机械制造却由日本的日立公司承担,所以仪器上还有Hitachi的标志。这个仪器让大家吃惊的一大原因就在于一直在实验室研究的电致化学发光居然已经真正地产业化了,其中我们一直无法解决的诸多问题(尤其是重现性均已得到解答,看来罗氏的确花了不少心血开发这款仪器。 罗氏电化学发光免疫分析技术的性能特点——创新的技术,与众不同 一、最先进的检测原理 电化学发光免疫测定,是目前最先进的标记免疫测定技术,是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,具有敏感、快速和稳定的特点,在固相标记免疫测定中技术上居领先地位。 电化学发光(ECL是一种在电极表面由电化学引发的特异性化学发光反应,实际上是电化学和化学发光两个过程的完美结合。电化学发光与普通化学发光的主要差异在于前者是电启动发光反应,循环及多次发光,后者是通过化合物混合启动发光反应,是单次瞬间发光。因此ECL反应易精确控制,重复性极好。 电化学发光免疫测定是电化学发光(ECL和免疫测定相结合的产物,直接以[Ru(bpy3]2+标记抗体,反应时标记物直接发光。且[Ru(bpy3]2+在电极表面的反应过程可以周而复始进行,产生许多光子,使光信号得以增强。 二、专利的包被技术 链霉亲和素(streptoavidin,SA和生物素(biotin,B是具有很强的非共价相互作用的一对化合物,特异性强且结合紧密。一分子SA可与四分子B 相结合,增大了抗体结合量,达到放大效果。在ECL的试剂中,SA通过特殊的蛋白结合物均匀牢固地包被在磁性微粒上,形成通用的能与B结合的固相载体,另一试剂为活化的B衍生物化合的抗原或抗体。两种试剂混合时,抗原或抗体即包被在磁性微粒上。 三、独特的载体

鲁米诺化学发光体系的应用

鲁米诺化学发光体系的应用 鲁米诺(5-氨基-2,3-二氢-1,4-二杂氮萘二酮,也称3-氨基邻苯二甲酰肼)俗名发光氨luminol,因其结构简单、易合成、水溶性好,以及发光量子效率高等特点,常温下是一种黄色晶体或者米黄色粉末,是一种比较稳定的化学试剂,化学式C8H7N3O2 。鲁米诺是最常用的液相化学发光试剂之一。自从1928年albrecht首次报道了鲁米诺与氧化剂在碱性溶液中的化学发光反应以来,人们对该化学发光体系的研究就一直十分活跃,使得该化学发光体系被应用于许多领域之中。通常用于酶促化学发光实验以及刑侦上的微量血迹检测。由于其结构简单、易合成、发光量子效率高的特点,现也被用于蛋白质印迹试验western blot 中。 鲁米诺化学发光体系的分析应用主要基于以下几个方面。 一、鲁米诺-过氧化氢化学发光体系应用最为广泛。许多过渡金属离子对鲁米诺-过氧化氢化学发光反应具有很好的催化作用。李正平等发现铁蛋白催化,产生很强的化学发光信号,建立简便灵敏的检测铁蛋白的化学发光方法。方法的线性范围为0.5~10μg/l,检出限为0.36μg/l,为铁蛋白作为纳米粒子标记物及直接检测提供一种新的途径。戴路等报道了一种新的测定雌性激素的流动注射化学发光方法。在碱性条件下,金银复合纳米粒子能显著地增强鲁米诺-过氧化氢化学发光,而雌性激素能明显地抑制该体系的化学发光强度,建立了测定天然雌激素(雌酮、雌二醇和雌三醇)的化学发光方法。该方法已用于孕妇尿样中雌激素总量的测定。刘振波等基于人的血清白蛋白对鲁米诺-过氧化氢-叶绿素铜钠化学发光体系的抑制作用,采用流动注射技术建立了一种简单、快速、可连续测定人的血清白蛋白的新方法。 二、

甲胎蛋白(化学发光法)检测操作规程

甲胎蛋白检测操作规程 【检验原理】 产品采用双抗体来心法定量测定人血清中的甲胎蛋白(AFP)的含量。在微孔版的孔内先包被了识别抗AFP的单克隆抗体,用辣根过氧化酶标记另一株与之配对的单克隆抗体。待测孕妇血清样本中的AFP与包被的和酶标记的两株单克隆抗体形成夹心抗原抗体反应。再加上发光底物,用微孔板发光分析仪读取发光数值,发光值与待测血清中AFP含量成正比。 【储存条件及有效期】 试剂盒于2-8℃避光贮存,不得冻存,有效为12个月。 开封有效期:板条开封后2-8C存放效期为3个月,其他液体组份同成品试剂盒效期。 【检测仪器及试剂】 仪器:重庆科斯迈全自动化学发光免疫分析仪 试剂:潍坊康华甲胎蛋白检测试剂盒(化学发光法) 【样本要求】 抽取静脉血3mL,置一次性采血管内,充分离心,吸取血清,不应有溶血及细胞颗粒:血清标本4℃存放最好不要超过3天,若不能及时检测,应-20℃冻存,检测时应将标本融化后混合均匀,并避免反复冻融。 【检验方法】 手工操作步骤: 1、将在冷藏环境中贮存的试剂室温平衡30分钟 2、,将浓缩洗涤液按1:40的比例稀释,摇匀备用,作为应用洗涤液 3、根据AFP参考品、质控品及待测标本确定所需孔数。 4、直接取AFP参考品、质控品及标本各25微升加入相应孔内,再每孔加入50 微升AFP酶结合物,用振荡器振荡30秒钟(此步非常重要),盖上封板膜,置37℃温浴1小时。 5、取出,用应用洗涤液洗涤5次,洗涤时每孔注满洗涤液,停留10秒后吸尽拍干。 6、根据使用量,将底物液A、B按1:1混匀,现用现配。每孔加入50微升,用振荡器振荡20秒钟,设定每孔测量时间为1秒,于10-20分钟内测定结果。 仪器操作步骤: 按照重庆科斯迈全自动化学发光免疫分析仪操作规程检测。 【参考区间】 测定正常人血清样本并结合参考文献的报道,建议正常参考值范围如下: 正常人血清中AFP浓度<20ng/mL 若用于产前筛查,应结合相应的风险分析评估软件使用。 由于地区及人群的差异,以上范围仅供参考,各实验室在长期实践中应建立本实验室自己的正常参考值范围。 【检验结果的解释】 AFP质控品Q1浓度应为2.5-7.5ng/mL,质控品Q2应为105~195ng/mL 【检验方法的局限性】 1、每次检测必须做AFP标准曲线,不能使用以前做过的标准曲线。 2、含大量脂质、严重黄及溶血或加热灭活之标本均可能影响检测结果。 3、建议按《产前诊断技术管理办法》的有关规定使用本品 4、本品仅用于人血清的测定,不得使用抗凝血浆。 5、用其他方法得出的AFP浓度值与本品测定结果不具有直接的可比性,应结合其他有关的临床诊断结果作

总甲状腺素(TT4)测定试剂盒(电化学发光免疫分析法)产品技术要求lztk

总甲状腺素(TT4)测定试剂盒(电化学发光免疫分析法) 适用范围:本试剂盒用于体外定量测定人体血清样本中总甲状腺素(TT4)的含量。 1.1产品型号/规格:100人份/盒、200人份/盒。 1.2主要组成 试剂盒由磁分离试剂(M)、试剂a(Ra)、试剂b(Rb)和定标品(TT4-Cal)(选配)组成。组成及含量如下: 2.1 外观 2.1.1 试剂盒各组分应齐全、完整、液体无渗漏; 2.1.2 磁分离试剂摇匀后应为棕色含固体微粒的均匀悬浊液,无明显凝集、无絮状物; 2.1.3 其它液体组分应澄清,无异物,沉淀物或絮状物; 2.1.4 包装标签应清晰、无磨损、易识别。 2.2 空白限 应不大于0.420μg/dL 。 2.3 准确度 用T4国家标准品(150551)进行检测,实测值与理论值之比应在0.850-1.150之间。 2.4 线性 在[1.0,24.86]μg/dL范围内,线性相关系数的绝对值(|r|)应不小于0.9900。 2.5 精密度 2.5.1 分析内精密度

在试剂盒的线性范围内,浓度为(5.0±1.0μg/dL)和(20.0±4.0μg/dL)的样品检测结果的变异系数(CV)应不大于8%。 2.5.2 批间精密度 在试剂盒的线性范围内,用3个批号试剂盒分别检测浓度为(5.0±1.0μg/dL)和(20.0±4.0μg/dL)的样品,检测结果的变异系数(CV)应不大于15%。 2.6 特异性 2.6.1与三碘甲状腺原氨酸(T3) 测定浓度不低于500ng/mL的T3样品,其测定结果应不高于1.5μg/dL; 2.6.2 与反三碘甲状腺原氨酸(rT3) 测定浓度不低于50ng/mL的rT3样品,其测定结果应不高于1.5μg/dL。 2.7 效期末稳定性 本产品效期为15个月,试剂盒在2~8℃下保存至有效期末进行检测,检测结果应符合2.1、2.2、2.3、2.4、2.5.1的要求。 2.8 溯源性 依据GB/T21415-2008《体外诊断医疗器械生物样品中量的测量校准品和控制物质赋值的计量学溯源性》的要求,校准品溯源至国家标准品(编号150551)。

化学发光剂鲁米诺的合成

化学发光剂─鲁米诺的合成 一、实验目的 学习芳烃硝化反应的基本理论和硝化方法,加深对芳烃亲电取代反应的理解,进一步掌握重结晶操作技术; 了解鲁米诺化学发光原理。 二、实验原理 米诺的原料,经脱水后得到的3-硝基-邻苯二甲酸酐可用于有机合成和醇 类测定。邻苯二甲酸酐经直接硝化,既可获得3-硝基-邻苯二甲酸,同时 也会得到4-硝基-邻苯二甲酸。在3-硝基-邻苯二甲酸分子中,硝基对邻 位羧基影响很大,它和羧酸会形成分子内氢键,加上相邻二羧基之间存在 的分子内氢键,对整个羧酸分子的离解产生显著的抑制作用,从而导致其 水溶性下降。在4-硝基-邻苯二甲酸中,硝基与羧酸之间难形成分子内氢 键,因而,它在水中的离解度相对要大一些,水溶性也好一些。邻苯二甲 酸酐硝化后产生的异构体的分离正是利用它们在水溶性上的差异加以解 决的。 反应式:

许多化学反应都是以热的形式释放能量,也有一些化学反应主要是以光的形式释放能量,鲁米诺(Luminol)在碱性条件下与氧分子的作用就是一个典型的化学发光例子。一般认为,鲁米诺在碱性溶液中转变为二价负离子,后者与氧分子反应生成一种过氧化物,过氧化物不稳定而发生分解,导致形成一种具有发光性能的电子激发态中间体。其过程如下: 现已证实,发光体是3-氨基-邻苯二甲酸盐二价负离子的激发单线态。当激发单线态返回至基态,就会产生荧光。激发态中间体也可将能量传递至激发态能量较低的受体分子,受激发的受体分子再通过发出荧光释放能量恢复到基态。不同受体分子的激发态能量的差异使其发出的荧光各不相同,这些现象在本实验中可观察得到。 三、药品 邻苯二甲酸酐、二缩三乙二醇、10%水合肼、二水合连二亚硫酸钠、二甲亚砜、浓硫酸、发烟硝酸、冰醋酸、10%氢氧化钠、氢氧化钾 四、实验操作 1、3-硝基-邻苯二甲酸的合成 在100mL三口烧瓶上,配置磁力搅拌器、温度计、冷凝管和滴液漏斗,分别加入12ml 浓硫酸和12g邻苯二甲酸酐。加热并开动搅拌器,当反应混合物温度升至80℃停止加热。将10mL发烟硝酸自滴液漏斗慢慢滴入烧瓶中,滴加速度以维持反应混合物温度在100~110℃[1]。 加完硝酸后,继续加热并搅拌1h,温度控制在100℃。然后,让反应液冷却。在通风橱

UltraECL底物化学发光检测试剂盒说明书

◆UltraECL底物化学发光检测试剂盒◆目录号1924 ◆使用手册 ◆实验室使用,仅用于体外

UltraECL底物化学发光检测试剂盒目录号:1924 目录编号包装单位 192401 50ml (A液B液各25ml) 192402 100ml (A液B液各50ml) 192403 500ml (A液B液各250ml) 试剂盒组成、储存、稳定性: 试剂盒组成保存50ml 100ml 500ml 溶液A 4℃避光25 ml 50 ml 250 ml 溶液B 4℃避光25 ml 50 ml 250 ml 本产品收到后按照上面指示温度存放,至少6个月内有效。

产品介绍: Western blot底物发光检测试剂可由标记于二抗上的辣根过氧化酶催化,产生化学发光反应,可以灵敏地检测出目的蛋白的存在。UltraECL底物化学发光检测试剂盒基于新一代增强型化学发光底物研制而成,并对成份做了优化。产品背景低,稳定性好,比普通ECL试剂敏感度高数十倍。它由辣根过氧化物酶(HRP)催化发生化学反应,发出荧光,可对X光胶片曝光,也可直接进行luminometer检测或者荧光CCD扫描。 操作步骤: 1.按常规Western blot操作,二抗孵育后,进行最后一次洗涤时,根据膜的大小,按 每10cm2膜混合0.5ml溶液A和0.5ml溶液B,混匀,配制成发光检测工作液。 2.用平头镊子将膜取出,膜的下缘轻轻接触吸水纸,以去除膜上多余的液体。膜的 蛋白面朝上,置于洁净保鲜膜(某些市售保鲜膜包裹印迹膜时可能会淬灭荧光,应选择高质量保鲜膜)上。用吸管将配制的发光检测液转移到蛋白膜上,使其均匀覆盖,室温孵育1-2分钟。 3.用平头镊夹持蛋白膜,膜的下缘轻轻接触吸水纸,以去除膜上多余的液体。膜的 蛋白面朝上,包裹于洁净保鲜膜内。轻轻赶出其间的气泡,固定在X片暗盒内。 4.在暗室中取一张X片置于包裹的膜上,合上暗盒,曝光30秒至1分钟。立即显影定 影,根据其曝光强度,缩短或延长下一张X片的曝光时间(对微弱信号,曝光时间可延长至数小时),或者曝光0.5,1,2,4,6分钟一系列后再显影定影挑选一张满意的。也可用合适的照相器材直接记录蛋白膜的化学发光图像。 注意:如果储存使用时间过长,溶液B中过氧化氢可能随时间分解降低曝光敏感度,可取普通纯水按照每10ml纯水加入40μl 30%H202(商品化的H202一般为30%)比例配成新鲜H202溶液替代溶液B使用,可以完全恢复发光工作液最大发光敏感度,效果和新鲜的溶液B完全一样。

电化学发光原理介绍

、概念 电化学发光免疫测定Electrochemiluminescence immunoassay,ECLI。 ECLI 是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术。电化学发光法源于电化学法和化学发光法,而ECLI 是电化学发光ECL和免疫测定相结合的产物,是一种在电极表面由电化学引发的特异性化学发光反应,包括了电化学和化学发光二个过程。 ECL 不仅可以应用于所有的免疫测定,而且还可用于DNA/RNA探针检测。 二、反应底物 ECL 反应底物有两种: ·三氯联吡啶钌[Rubpy3]2+络合物: 钌Ruthenium, Ru,原子序数44,原子量101.07。元素名来自拉丁文,原意是"俄罗斯"。1827年俄国化学家奥赞在铂矿中发现钌;1844年俄国化学家克劳斯肯定它是一种新元素。钌在地壳中的含量约为十亿分之一,是铂系元素中含量最少的一个。钌常与其它铂系元素一起分散于冲积矿床和砂积矿床中。钌有7种天然稳定同位素:钌96、98、99、100、101、102、104。 钌为银白色金属,熔点2310℃,沸点3900℃,密度12.37×103/m3。 钌的化学性质不活泼,在空气和潮湿环境中稳定;不溶于酸和王水,溶于熔融的强碱、碳酸盐、氰化物等;加热到900℃,时能与氧反应;加热时能与氟、氯、溴反应;钌有形成配位化合物的强烈倾向,还有良好的催化性能。 钌是铂和钯的有效硬化剂;金属钛中加入0.1%的钌就可大大提高耐腐蚀性;钌钼合金是一种超导体;含钌的催化剂多用于石油化工。 ·三丙胺Tripropylamine,TPA: 结构式: 点击浏览/下载该文件 三、电化学发光反应原理 电化学反应过程:在工作电极上阳极加一定的电压能量作用下,二价的三氯联吡啶钌 [Rubpy3]2+ 释放电子发生氧化反应而成为三价的三氯联吡啶 钌 [Rubpy3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+ ,并迅速自发脱去一个质子而形成三丙胺自由基 TPA·,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌 [Rubpy3]3+ 和具有强还原性的三丙胺自由基 TPA·。 化学发光过程:具有强氧化性的三价的三氯联吡啶钌 [Rubpy3]3+ 和具有强还原性的三丙胺自由基 TPA·发生氧化还原反应,结果使三价的三氯联吡啶

促肾上腺皮质激素(ACTH)测定试剂盒(电化学发光免疫分析法)产品技术要求北京联众泰克

促肾上腺皮质激素(ACTH)测定试剂盒(电化学发光免疫分析法) 适用范围:本试剂盒用于体外定量测定人体血清样本中促肾上腺皮质激素(ACTH)的含量。 1.1包装规格:50人份/盒、100人份/盒。 1.2主要组成成分 试剂盒由磁分离试剂(M)、试剂a(Ra)、试剂b(Rb)和定标品(ACTH-Cal)(选配)组成。组成及含量见下表: 注:1、定标品靶值批特异,详见靶值单。 2、试剂盒条码卡内含主校准曲线。 2.1 外观 2.1.1 试剂盒各组分应齐全、完整、液体无渗漏; 2.1.2 磁分离试剂摇匀后应为棕色含固体微粒的均匀悬浊液,无明显凝集、无絮状物; 2.1.3 其它液体组分应澄清,无异物,沉淀物或絮状物; 2.1.4 包装标签应清晰、无磨损、易识别。 2.2 空白限

应不大于1.0pg/mL。 2.3 准确度 将已知浓度的ACTH标准溶液加入到血清中,其回收率应在(85%~115%)范围内。 2.4 线性 在[3.00,2000.0]pg/mL范围内,线性相关系数(r)应不小于0.9900。 2.5 精密度 2.5.1 重复性 在试剂盒的线性范围内,测定高、低两个水平的样品,检测结果的变异系数(CV)应不大于8%。 2.5.2 批间差 在试剂盒的线性范围内,用3个批号试剂盒分别测定高、低两个水平的样品,检测结果的变异系数(CV)应不大于15%。 2.6 效期末稳定性 本产品效期为15个月,试剂盒在2~8℃下保存至有效期末进行检测,检测结果应符合2.1、2.2、2.3、2.4、2.5.1的要求。 2.7 溯源性 依据GB/T 21415-2008《体外诊断医疗器械生物样品中量的测量校准品和控制物质赋值的计量学溯源性》的要求提供促肾上腺皮质激素(ACTH)定标品的来源、赋值过程以及测量不确定度等内容,定标品溯源至企业工作校准品。

化学发光法检测肝炎病毒结果解读

化学发光法检测肝炎病毒的结果解读 肝炎病毒感染是一个全球性的健康问题,根据美国疾病控制中心的报告,全球有将近20亿的感染人群。其中3.5亿人为慢性持续性感染。另外,全球有近3/4的人居住高流行区域,其中也包括中国。因此,有效的肝炎病毒检测和筛查显得十分重要。 化学发光法检测肝炎病毒,在方法上提高了病毒检测的灵敏度和特异性,而且流量检测,快速、方便,并逐渐替代ELISA,成为肝炎病毒的常规检测方法。 目前,发光法检测肝炎病毒的项目包括 甲型肝炎病毒HA V-IgM、HA V-IgG 乙型肝炎病毒HBsAg、anti-HBs、HBeAg、anti-HBe、anti-HBc-IgM、anti-HBc 丙型肝炎病毒anti-HCV 肝炎病毒的感染是一个动态的变化过程,应结合病史资料全面综合分析和判断不同项目、不同时期的检测结果。以下关于肝炎病毒检验结果的解释,供临床医生参考、应用。 1. 甲型肝炎病毒中的HA V-IgM抗体在发病早期出现在血液中,半年后恢复正常,可以用于早期诊断急性甲型肝炎;HA V-IgG抗体是一种保护性抗体,其升高表示既往感染HA V,可用于流行病学调查。 2. 乙型肝炎病毒表面抗原(HBsAg):常伴随HBV同时存在,可以作为传染性的标志之一。其升高常见于乙型肝炎的潜伏期和急性期;慢性迁延性肝炎、慢性活动性肝炎、或者乙肝的携带者。(参考值0-0.05 IU/ml) 3. 乙型肝炎病毒表面抗体(anti-HBs):一般在HBsAg转阴后出现,是保护性抗体,可以持续多年,其保护性与该抗体的浓度高低有关。其升高表示既往感染,现已恢复,或者是乙肝疫苗接种成功。(参考值0-10 mIU/ml) 4. 乙型肝炎病毒e抗原(HBeAg):升高为阳性,表明患者已感染乙肝病毒,并且病毒复制活跃,传染性强;如持续升高易转为慢性肝炎。(参考值0-1 s/co) 5. 乙型肝炎病毒e抗体(anti-HBe):降低为阳性,阳性见于HBeAg转阴的病人,表明HBV 部分被清除或抑制,病毒复制减少,传染性降低。(参考值>1 s/co) 6. 乙型肝炎病毒核心抗体(anti-HBc):升高为阳性,anti-HBc升高且高水平,表明乙型肝炎正在感染;低水平则是既往感染,具有流行病学意义。anti-HBc-IgM是机体感染HBV后在血液中最早出现的特异性抗体,在肝炎的急性期水平升高,是诊断乙型肝炎和病毒复制活跃的指标。(参考值0-1 s/co) 7. 丙型肝炎病毒抗体(anti-HCV):升高表示既往或现症感染HCV,是一种非保护性抗体,可用于流行病学调查感染消退;还见于假抗HCV反应性结果。(参考值0-1 s/co)

化学发光剂鲁米诺的合成

化学发光剂鲁米诺的合成 化学发光剂?鲁米诺的合成 一、实验目的 学习芳烃硝化反应的基本理论和硝化方法,加深对芳烃亲电取代反应的理解,进一步掌 握重结晶操作技术; 了解鲁米诺化学发光原理。 二、实验原理 3-硝基-邻苯二甲酸(3-Nitrophthalic Acid)是制备化学发光剂鲁米诺的原料,经脱水后得到的3-硝基-邻苯二甲酸酐可用于有机合成和醇类测定。邻苯二甲酸酐经直接硝化,既可获得3-硝基-邻苯二甲酸,同时也会得到4-硝基-邻苯二甲酸。在3-硝基-邻苯二甲酸分子中,硝基对邻位羧基影响很大,它和羧酸会形成分子内氢键,加上相邻二羧基之间存在的分子内氢键,对整个羧酸分子的离解产生显著的抑制作用,从而导致其水溶性下降。在4-硝基-邻苯二甲酸中,硝基与羧酸之间难形成分子内氢键,因而,它在水中的离解度相对要大一些,水溶性也好一些。邻苯二甲酸酐硝化后产生的异构体的分离正是利用它们在水溶性上的差异加以解决的。

反应式: 许多化学反应都是以热的形式释放能量,也有一些化学反应主要是以光的形式释放能量,鲁米诺(Luminol)在碱性条件下与氧分子的作用就是一个典型的化学发光例子。一般认为,鲁米诺在碱性溶液中转变为二价负离子,后者与氧分子反应生成一种过氧化物,过氧化物不稳定而发生分解,导致形成一种具有发光性能的电子激发态中间体。其过程如下: 现已证实,发光体是3-氨基-邻苯二甲酸盐二价负离子的激发单线态。当激发单线态返回至基态,就会产生荧光。激发态中间体也可将能量传递至激发态能量较低的受体分子,受激发的受体分子再通过发出荧光释放能量恢复到基态。不同受体分子的激发态能量的差异使其发出的荧光各不相同,这些现象在本实验中可观察得到。 三、药品

相关文档
最新文档