燃料电池气体扩散层设计与选型

燃料电池气体扩散层设计与选型
燃料电池气体扩散层设计与选型

燃料电池气体扩散层设计与选型

作为膜电极的重要组成部件,气体扩散层的设计与选型需根据电堆水管理特性、极板尺寸、单体目标厚度等因素因地制宜。

气体扩散层(GDL)是一类疏水多孔介质材料,位置介于流场板和催化层,担当水气输运、热量传递、电子传导的载体,并在装配和运行过程中提供结构支撑。GDL通常由大孔基底层(Macroporous substrate:MPS)和微孔层(Microporous layer:MPL)组成。其中,基底层通常由碳纤维各向异性堆叠组成,直接与流场板接触;微孔层由碳基粉末和憎水剂混合而成,直接与催化层接触。

气体扩散层关键特性

气体扩散层通常由多孔、非编织性和大孔结构的碳基材组成,基材经PTFE 疏水处理后,并涂覆有单层或多层微孔层(MPL)。一般,质子交换膜燃料电池用气体扩散层材料应具有反应气扩散、产物水扩散传输、导电、导热和机械支撑等关键特性。

反应气扩散气体扩散层的首要任务是传送反应气氢气和氧气,确保足够的反应物质快速和均匀扩散至催化层。因此,气体扩散层的孔径在一定范围内应足够大,且孔隙需具备足够的疏水特性以避免燃料电池的产物水阻塞孔道。产物水扩散与

传输

一方面,气体扩散层需有效将液态水自催化层移至流场板(或极板),以避免液态水阻塞反应物扩散通道引起传质极化增加。另一方面,排水特性需进行最佳设计。排水能力过强,将导致质子膜过度干燥产生“脱水”现象,质子传导率下降。

导电

气体扩散层材料导电能力高有助于降低电子传导过程中的欧姆损失。但调整气体扩散层的其他物理特性会影响到材料的导电特性,如:增加气体扩散层的孔隙率及PTFE含量时,通常导电率将下降。一般,碳基材料的导电特性可依据碳材料的热处理温度进行改善。导热

典型PEMFC单体温度分布

膜电极反应产生的热量需自气体扩散层传导至极板,同时需保持膜电极温度分布均匀。热量的局部累积将对电池的电极反应、质子膜欧姆损失、水挥发与冷凝产生直接影响。机械支撑

在膜电极组件中,气体扩散层扮演着支撑CCM角色,即保护催化层和质子膜作用。此外,气体扩散层的存在避免了流场板高强度面压对CCM的损伤、电池装配过程中CCM浸入流场板引起的干扰传质和强度破坏等问题。

微孔层微孔层是一层由碳粉和PTFE组成的微孔隙结构。微孔层厚度和孔隙度对燃料电池性能有着重要影响。微孔层厚度直接影响产物水的传输速率、气体扩散层导电特性(接触电阻)以及机械强度(如微孔层表面粗糙度)。以下提供了一些基本的比较实验,方便使用者对微孔层设计和选型有基本的认知。产物水传输速率

在微孔层载量比较实验中,保持碳颗粒大小和PTFE含量相同,在相同碳纸基材上涂覆载量分别为10、30和60g/m2微孔层。实验使用50cm2单电池夹具(阳极为双蛇形流道,阴极为三蛇形流道),电池温度70℃,反应气背压12psig,反应气化学计量比为2,分别测试干工况(<30%RH)和湿工况(>70%RH)电池性能。

实验数据可以看到,增加微孔层载量对电池干工况下性能提升有益。由于较厚微孔层可避免质子膜脱水干燥,且接触电阻较小,因此欧姆损失较小。但当微孔层厚度较厚,可以看到在大电密放电区域(1.2A/cm2)发现极化曲线开始出现了明显的传质限制现象。

不同载量微孔层干工况下性能对比

相反,湿工况下薄微孔层具有最优性能表现。因此,在设计和选型气体扩散层时,水管理的平衡是个重要课题,既需足够的水分保持质子膜湿润,也要避

免水分积聚阻碍气体传输。

不同载量微孔层湿工况下性能对比

接触电阻

实验中采用传输线法(Transmission Line Method)进行气体扩散层接触电阻研究,测试中将铜板放置在气体扩散层不同位置上测量其电阻。选用不同载量微孔层8、15、30、50g/m2进行测试,发现当微孔层载量为30g/m2,接触电阻已出现大幅下降。表示当微孔层载量提升时,气体扩散层表面较平坦。一般,当微孔层载量≤15g/m2时,接触电阻较大,欧姆阻抗较高。

MPL载量和接触电阻关系表面粗糙度改变微孔层载量从8至30g/m2,可发现微孔层表面粗糙度随之下降,这个结果和接触电阻相似。下图展示了不同载量微孔层对碳纤维基材的覆盖状态。在新一代车用电堆设计开发中,使用薄型化的气体扩散层是主流趋势,微孔层对碳纤维基材的覆盖状态也成为材料开发者关注的议题。如果微孔层载量减少至不足以完全覆盖基材纤维,则有可能发生纤维刺破质子膜现象。

MPL载量和表面粗糙度关系

AvCarb GDS MB-30

AvCarb GDS MB-30产品是专为车载电堆开发的气体扩散层材料。通常,燃料电池乘用车载电堆具备高功率(>80kW),大电密(>2.5A/cm2)等特性,因此MB-30产品从优化水热管理能力出发对结构进行专门设计和调整,精准控制微孔层的孔隙率与孔径大小,使其适用于大功率FCV车载应用。这款产品自2010年发布后,已成功应用于各类车型超过十年以上时间,产品寿命(耐久性)经过了实际长时间验证。

MB-30特别适用于阴极高加湿工况(>70%RH),并搭配使用车载电堆的窄型流道板(单流道槽宽<1.2mm)。MB-30也可被应用在阳极,但因排水功能较强,在某些工况条件下可能造成质子传导膜过度脱水现象。若发现此状况发生,建议可以使用GDS3260作为阳极气体扩散层。经实际测试,使用阳极GDS3260/阴极MB-30组合在2.5A/cm2电密下可输出超过0.5V电池性能。

极化曲线(阳AvCarb GDS3260/阴AvCarb MB-30)

在部分主机厂测试中看到,在使用MB-30气体扩散层条件下,电堆可在超过6A/cm2极限电流下操作,实际运行中也通过了超过35,000小时的连续运行验证,展现其高耐久性。

质子交换膜燃料电池的基本结构

质子交换膜燃料电池的基本结构(一) 如图1所示,质子交换膜燃料电池的基本结构主要由质子交换膜、催化剂层、扩散层、集流板(又称双极板)组成。聚合物电解质膜被碳基催化剂所覆盖,催化剂直接与扩散层和电解质两者接触以求达到最大的相互作用面。催化剂构成电极,在其之上直接为扩散层。电解质、催化剂层和气体扩散层的组合被称为膜片-电极组件。 ①质子交换膜质子交换膜(PEM)是质子交换膜燃料电池的核心部件,是一种厚度仅为50~180 um的薄膜片,其微观结构非常复杂。它为质子传递提供通道,同时作为隔膜将阳极的燃料与阴极的氧化剂隔开,其性能好坏直接影响电池的性能和寿命。它与一般化学电源中使用的隔膜有很大不同,它不只是一种隔离阴阳极反应气体的隔膜材料,还是电解质和电极活性物质(电催化剂)的基底,即兼有隔膜和电解质的作用;另外,PEM还是一种选择透过性膜,在一定的温度和湿度条件下具有可选择的透过性,在质子交换膜的高分子结构中,含有多种离子基团,它只容许氢离子(氢质子)透过,而不容许氢分子及其他离子透过。 (a) PEMFC的基本结构 (b)质子交换膜燃料电池组的外观 图1 质子交换膜燃料电池的基本结构 质子交换膜燃料电池对于质子交换膜的要求非常高,质子交换膜必须具有良好的质子电导率、良好的热和化学稳定性、较低的气体渗透率,还要有适度的含水率,对电池工作过程中的氧化、还原和水解具有稳定性,并同时具有足够高的机械强度和结构强度,以及膜表面适合与催化剂结合的性能。 质子交换膜的物理、化学性质对燃料电池的性能具有极大的影响,对性能造成影响的质子交换膜的物理性质主要有:膜的厚度和单位面积质量、膜的抗拉强度、膜的含水率和膜的溶胀度。质子交换膜的电化学性质主要表现在膜的导电性能(电阻率、面电阻,电导率)和选择通过性能(透过性参数P)上。 a.膜的厚度和单位面积质量。膜的厚度和单位面积质量越低,膜的电阻越小,电池的

质子交换膜燃料电池气体扩散层憎水性衰减机理研究

质子交换膜燃料电池气体扩散层憎水性衰减机理研究 于书淳,李晓锦*,李进,邵志刚,衣宝廉 (中国科学院大连化学物理研究所,大连,辽宁,116023,Email:xjli@dicp.ac)作为质子交换膜燃料电池的重要组件之一,典型的双层气体扩散层由基底层和微孔层构成。其中,基底层通常由憎水处理过的碳纸构成,微孔层通常由碳粉和憎水剂构成。具有良好化学稳定性的聚四氟乙烯(PTFE)是气体扩散层中最常用的憎水剂。在燃料电池中,气体扩散层必须具有合适的憎水性能以实现良好的导气和排水功能[1]。然而,电池在长时间运行后,尤其是在较为苛刻的工作环境下(频繁的启动/停车、动态工况等),气体扩散层的憎水性会逐步变得下降[2]。陈等人采用恒电位氧化法对气体扩散层进行耐久性研究,发现氧化后微孔层表面的接触角显著下降[3]。Lee等人在研究气体扩散层耐久性的实验中也观察到同样的现象[4]。但是,文献中并没有对憎水性下降的原因进行深入的研究。 鉴于气体扩散层憎水性的下降会引起电极水淹并最终降低电池性能,有必要对憎水性下降的原因进行深入的研究,但是目前有关这方面的报道很少[5]。因此,我们的主要工作是在模拟的电池环境下考察气体扩散层憎水性下降的原因。实验分为恒电位氧化及酸浸泡两部分。恒电位氧化实验是以N2饱和的0.5M H2SO4为电解液,采用相对于饱和甘汞电极为1.25V的恒电位对气体扩散层进行氧化处理,酸浸泡实验是将气体扩散层浸泡在70℃、air饱和的1M H2SO4溶液中1200h.通过扫描电镜、红外光谱、X射线光电子显微镜、热重仪等手段对氧化前后的扩散层的特性进行分析。恒电位氧化实验结果发现,无论是对基底层还是整平层,氧化之后表面的形貌发生了改变;此外,碳的氧化不但导致亲水性氧化物的生成而且导致了碳材料及PTFE的流失。这也正是恒电位氧化条件下气体扩散层憎水性下降的原因。在酸浸泡实验条件下观察到同样的现象。 图1XPS全谱(a)氧化前整平层(b)氧化后整平层(c)氧化前基底层(d)氧化后基底层

汽车新能源技术应用与发展毕业论文

汽车新能源技术应用与发展毕业论文 目录 第1章研究汽车新能源技术的目的与意义 (1) §1.1研究的目的 (1) §1.2研究意义 (1) 第2章国外汽车新能源技术研究现状 (2) §2.1国外的相关研究 (2) §2.1.1政府高度重视汽车新能源的开发利用 (2) §2.1.2政府推动电动汽车研发和推广 (2) §2.2国的相关研究 (3) §2.2.1政府大力支持新能源汽车产业 (3) §2.2.2国新能源汽车取得重大发展 (3) 第3章汽车新能源的类型 (5) §3.1纯电动汽车 (5) §3.1.1纯电动汽车的类型 (5) §3.1.2纯电动汽车的结构原理 (6) §3.2混合动力电动汽车 (6) §3.2.1混合动力电动汽车的结构类型 (6) §3.2.2不同类型的混合动力电动汽车的比较 (8) §3.3燃料电池电动汽车 (9) §3.3.1 燃料电池电动汽车的类型 (9) §3.3.2燃料电池电动汽车的结构原理 (10) §3.4气体燃料汽车 (11) §3.4.1天然气汽车 (11) §3.4.2液化石油气汽车 (11) §3.5生物燃料汽车 (12) §3.5.1甲醇燃料汽车 (12) §3.5.2乙醇燃料汽车 (12)

§3.5.3二甲醚燃料汽车 (12) §3.6氢燃料汽车 (12) §3.7太阳能汽车 (13) 第4章汽车新能源的主要比较与发展 (14) §4.1各种新能源汽车技术的特点分析与展望 (14) §4.1.1纯电动汽车 (14) §4.1.2混合动力电动汽车 (14) §4.1.3燃料电池电动汽车 (15) §4.1.4 气体燃料汽车 (15) §4.1.5生物燃料汽车 (16) §4.1.6氢燃料汽车 (16) §4.1.7太阳能汽车 (16) §4.2能量转换效率的比较 (17) §4.3减少耗油量的比较 (17) §4.4减少碳排放的比较 (18) §4.5各种能源方案优缺点中和分析 (18) §4.6电动汽车的应用缺陷和瓶颈 (19) 第5章电动汽车应用的解决方式 (20) §5.1整车充电模式 (20) §5.1.1常规充电 (20) §5.1.2快速充电 (20) §5.2更换电池模式 (21) §5.2.1电池租赁 (21) §5.2.2电池的快速更换 (21) §5.2.3电池的维护 (21) 第6章未来电动汽车充电技术的发展方向 (23) §6.1整车充电中的慢速充电方式可以充分利用 (23) §6.2换电池模式属于能源新物流模式 (23) §6.3无线快速充电将成为最理想充电方式 (23) §6.4快速充电大量发展将带来电网谐波污染 (23) 结论 (24)

燃料电池系统工厂设计规范

燃料电池系统工厂设计规范 1范围 本文件规定了燃料电池系统工厂设计的基本规定、总体规划、系统工艺、测试区、数字化工厂设计、车间供氢站、建筑结构、气体管路、暖通、给水排水、电气和消防与安全规范。 本规范适用于氢燃料质子交换膜燃料电池系统工厂的新建、改建、扩建工程设计,也适用于燃料电池系统研发、生产、测试的场所。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T24548燃料电池电动汽车术语 GB/T37244质子交换膜燃料电池汽车用燃料氢气 GB3836.14爆炸性环境第14部分:场所分类爆炸性气体环境 GB3095环境空气质量标准 GB50016建筑设计防火规范(2018年版) GB50177氢气站设计规范 GB/T31139移动式加氢设施技术规范 GB/T14976流体输送用不锈钢无缝钢管 GB/T12771流体输送用不锈钢焊接钢管 GB50028城镇燃气设计规范 GB50516加氢站技术规范 GB50029压缩空气站设计规范 GB50316工业金属管道设计规范 GB4962氢气使用安全技术规程 GB7231工业管道的基本识别色、识别符号和安全标识 GB50019工业建筑供暖通风与空气调节设计规范 GB50058爆炸危险环境电力装置设计规范 GB50116火灾自动报警系统设计规范 GB50222建筑内部装修设计防火规范

GB51245工业建筑节能设计统一标准 GB50011建筑抗震设计规范 GB51022门式刚架轻型房屋钢结构技术规范 GB/T50476混凝土结构耐久性设计规范 GB50223建筑工程抗震设防分类标准 GB50010混凝土结构设计规范 GB50017钢结构设计标准 GB50153工程结构可靠性设计统一标准 GB50009建筑结构荷载规范 GB50974消防给水及消火栓系统技术规范 GB50193二氧化碳气体灭火系统设计规范 GB50370气体灭火系统设计规范 GB50140建筑灭火器配置设计规范 GB51309消防应急照明和疏散指示系统技术标准 GB25972气体灭火系统及部件 GB50981建筑机电工程抗震设计规范 GB50013室外给水设计标准 GB50014室外排水设计规范 GB50015建筑给排水设计标准 GB50054低压配电设计规范 GB50034建筑照明设计标准 氢燃料电池汽车安全指南(2019版) 3.术语 3.1 燃料电池系统fuel cell system 指氢燃料电池发动机,主要部件包括电堆、发动机控制系统、氢气供给系统、水热管理系统、空气供给系统等,在外接氢源及物料(空气、水)的条件下可以正常工作。 3.2 氢燃料fuel hydrogen 满足燃料电池系统正常工作的气态氢气燃料,品质符合现行《质子交换膜燃料电池汽车用燃料氢气》GB/T37244。

燃料电池的双极板和燃料电池的制作方法

本公开提供了一种燃料电池的双极板和燃料电池,涉及燃料电池领域,该双极板包括第一极板和第二极板,第一极板和第二极板中的一个为阴极板,另一个为阳极板,第一极板和第二极板之间形成有长度不同的多条冷却流道,冷却流道的横截面积与冷却流道的长度正相关。因此,长度较长的冷却流道横截面积较大,长度较短的冷却流道横截面积较小。虽然长度较长的冷却流道阻力较大,流速较慢,但横截面积较大,虽然长度较短的冷却流道阻力较小,流速较快,但横截面积也较小,从而可以减小长度不同的冷却流道中冷却液的流量差异,这样双极板上不同区域受到的冷却效果也更接近,双极板上温度分布更均匀,有利于使燃料电池工作更稳定,延长燃料电池的寿命。 权利要求书 1.一种燃料电池的双极板,其特征在于,包括相互重叠的第一极板(11)和第二极板(12),所述第一极板(11)和所述第二极板(12)中的一个为阴极板,另一个为阳极板,所述第一极板(11)和所述第二极板(12)之间形成有长度不同的多条冷却流道(101),所述多条冷却流道(101)中,至少部分冷却流道(101)的横截面积与所述冷却流道(101)的长度正相关。

2.根据权利要求1所述的双极板,其特征在于,所述第一极板(11)上具有第一流道槽 (11a),所述第二极板(12)上具有第二流道槽(12a),所述第一流道槽(11a)和所述第二流道槽(12a)围成所述冷却流道(101)。 3.根据权利要求2所述的双极板,其特征在于,所述第一流道槽(11a)的横截面和所述第二流道槽(12a)的横截面均为梯形,且在同一所述冷却流道(101)中,所述第一流道槽(11a)的横截面和所述第二流道槽(12a)的横截面全等。 4.根据权利要求3所述的双极板,其特征在于,所述第一极板(11)上的各个所述第一流道槽(11a)的深度均相等,所述第二极板(12)上的各个所述第二流道槽(12a)的深度均相等。 5.根据权利要求1~4任一项所述的双极板,其特征在于,所述多条冷却流道(101)分布于所述双极板上的一矩形区域(B)内,同一所述冷却流道(101)的两端开口位于所述矩形区域(B)的同一侧边。 6.根据权利要求5所述的双极板,其特征在于,所述矩形区域(B)具有平行相对的第一侧边(B1)和第二侧边(B2),所述多条冷却流道(101)包括位于对称轴(m)和所述第一侧边(B1)之间的多条第一冷却流道(1011)、位于所述对称轴(m)和所述第二侧边(B2)之间的多条第二冷却流道(1012),所述对称轴(m)为所述矩形区域(B)的平行于所述第一侧边(B1)的对称轴。 7.根据权利要求6所述的双极板,其特征在于,所述多条冷却流道(101)中,最靠近所述对称轴(m)的n条冷却流道(101)的横截面积与所述冷却流道(101)的长度正相关,所述多条冷却流道(101)中除所述n条冷却流道(101)之外的冷却流道(101)横截面积相等,2≤n <N,且n为整数,N为所述冷却流道(101)的总条数。 8.根据权利要求6所述的双极板,其特征在于,在所述第一侧边(B1)向所述对称轴(m)靠近的方向上,相邻的所述第一冷却流道(1011)的间距逐渐减小。 9.根据权利要求6所述的双极板,其特征在于,所述多条第一冷却流道(1011)和所述多条第二冷却流道(1012)关于所述对称轴(m)对称。

气体扩散层 文档

一个基于碳纸和碳布的气体扩散层对质子交换膜燃料电池 性能的影响 Sehkyu Park ?, Branko N. Popov电化学工程中心,化学工程系,南卡罗来纳大学,哥伦比亚,SC29208,USA 关键字:质子交换膜燃料电池;气体扩散层;复写纸;碳布;微孔层。 摘要:一个市售的基于碳纸和碳布的气体扩散层就如一个可以通过各种物理和电化学测量方法的大孔基板;压汞法,表面形态分析法,接触角测量法,水渗透测量法,偏振技术,和交流阻抗谱。和基于碳布的ELAT-LT-1400W相比,基于碳纸的SGL 10BB的双孔径分布和高水流动阻力是因为大孔基板不太透水,多疏水性和紧密的微孔层。当空气作为氧化剂时,用SGL10BB制作的膜-电极-组件表现出一种优越的燃料电池性能。交流阻抗响应表明一个具有大量的微孔和疏水性的微孔层更容易允许氧朝催化剂层扩散因为可以有效的除去水在催化剂层的气体流路。 1.序言 在质子交换膜燃料电池中,气体扩散层被嵌入催化剂层和气体流路之间。气体扩散层的主要功能:1,气体扩散;2,一个电流收集器;3,一个物理支持,从而确定催化剂的利用率和整体性能。它也允许水蒸气到膜和液态水从催化剂层出来。一个气体扩散层防湿透过可防止水倒流和提高反应物到催化活性位点。 一个气体扩散层包括一个大孔基板和一个有炭黑的微孔层。编制碳布或非编制碳纸由于其较高的透气性和电子导电性被广泛的运做大孔基板。一个微孔层可以减少催化剂层和大孔基板之间的欧姆电阻,在催化沉寂中提供非渗透性支持和管理液态水流动。 一个单层气体扩散层(如:碳纸和碳布)在燃料电池性能上的效果已经被几个研究人员研究,他们表明碳布可导致更高的性能主要由于较高的孔隙率和较低的水饱和度。此外,丰富的工作已经在进行研究这种微孔层的性能如何能像1,碳粉类型;2,碳载量(或微孔层厚度)和3,疏水剂的浓度在质子交换膜燃料电池中控制水的管理。然而,在大量文献中,大孔基板在气体扩散层关于孔隙特征的反应和产物运输中的作用还没有解决。我们在此项工作中的目标就是表征用碳纸或碳布制备的市售气体扩散层的物理属性和研究气体扩散层属性如何影响水的管理和氧气在质子交换膜燃料电池中流动的途径。 2.实验 2.1.气体扩散层的物理特性 多孔结构的气体扩散层被用一个压汞仪分析。为了进行分析,一小片的气体扩散层被称重并被加载上一个覆盖着金属箔的玻璃毛细管制成的样品杯,然后,在真空中从气体扩散层出气。之后,自动灌满水银。孔径分布曲线(PSD)从水银进入开始测定即水银的体积与贯穿孔所施加的压力。在所有的毛孔都是圆柱形的假设下,孔直径dp用一个众所周知的毛细管公式从P的值开始算:dp=4γcosθ/p (1)其中,γ和θ分别表示水银的表面张力和与样本中水银的接触角度

新型燃料电池的研究毕业论文

毕业设计(论文)题目名称:新型燃料电池的研究

新型燃料电池的研究Research on new type fuel cells

摘要 能源是经济的的基础。人类为了更有效的的利用能源,一直进行着不懈的努力。利用能源的方式历史上有过多次革命性的变革,每一次变革都极大的推进了社会文明的发展。二次能源中,蒸汽由于传输距离短,难以存储而应用受限;电能虽然传输快、传输距离远,但存在传输过程中存在能量损耗大,难于存储的缺点;而氢能既能远距离传输、又能方便存储,因而成为二十一世纪的理想能源,二十一世纪也被称为氢世纪。多年来人们一直努力寻找既有较高能源效率又不污染环境的能源方式,因而引导出燃料电池发电技术。燃料电池是不经燃烧过程直接把燃料的化学能转化为电能的装置,具有能量转换效率高、污染物排放量少的独特优点。燃料电池凭借着它独特的优势应用在各个领域,加速了社社会的发展,推进了社会的文明。本文简述了燃料电池技术,各类燃料电池的原理以及它们各自的特点,并介绍目前燃料电池在国内外的应用现状,同时指出目前影响燃料电池商品化的主要因素。 关键词:新能源;燃料电池;高效率;环境保护。

Abstract Energy is the basis of the economy. Human beings in order to make more effective use of energy, has been making unremitting efforts. The history of the use of energy, there have been several revolutionary changes each time changes are greatly promoted the development of our society. Secondary energy in the steam due to short transmission distance, it is difficult to store and the application is limited; electricity transmission faster, the transmission distance, but there is energy loss in the transmission process, difficult to store shortcomings; hydrogen both long-distance transmission. can facilitate the storage, and thus become the ideal energy of the twenty-first century, the twenty-first century is also known as a hydrogen century. Over the years people have been trying to find the energy efficiency of higher energy without polluting the environment, and thus lead to a fuel cell power generation technology. The fuel cell is not directly by the combustion process the fuel chemical energy converted into electrical energy, with the unique advantages of high energy conversion efficiency of the discharge of pollutants. The fuel cell by virtue of its unique advantages of application in various fields to accelerate the social development of society, and promote the social civilization. In this paper, the fuel cell technology, the principle of various types of fuel cells and their respective characteristics, and describes the application of fuel cells at home and abroad, noting that the main factors affecting the commercialization of fuel cell. Keywords: new energy; fuel cell; high efficiency; environmental protection.

《氢燃料电池安全指南》(2019版)燃料电池堆及系统安全

3燃料电池堆及系统安全 3.1燃料电池堆安全 3.1.1燃料电池堆设计 3.1.1.1燃料电池堆分类 目前车用的燃料电池主要是质子交换膜燃料电池堆(PEMFC),质子交换膜燃料电池堆根据极板使用的材料不同,分为金属极板燃料电池堆和石墨极板燃料电池堆等。 3.1.1.2燃料电池堆功率 燃料电池堆体积比功率决定了后期电堆和系统的组合方式以及电堆的热管理设计。较小体积比功率电池堆有利于热的扩散,对整体电堆和系统热管理设计有益。较大体积比功率电池堆有利于系统设计和制造过程简单化和电池堆体积的减小。 不断 升燃料电池堆体积比功率是长期、系统的工作,建议要在确保安全性、可靠性和关键电性能指标的前 下, 升燃料电池堆的比功率和功率。 3.1.1.3燃料电池堆关键材料 燃料电池堆使用的材料对工作环境应有耐受性,燃料电池堆的工作环境包括振动、冲击、多变的温湿度、电势以及腐蚀环境;在易发生腐蚀、摩擦的部位应采取必要的防护措施。 (1)质子交换膜 质子交换膜是质子交换膜燃料电池的核心部件,其主要作用是分隔阳极和阴极,阻止燃料和空气直接混合发生化学反应,并传导质子、阻止电子在膜内传导;质子交换膜的质子传导率越高,膜的内阻越小,燃料电池的效率越高。质子交换膜材料要具有足够的化学、电化学、热稳定性和一定的机械稳定性,保证燃料电池在工作过程中能够耐受气流冲击、电流冲击和自由基攻击而不发生降解,保证燃料电池内部不会发生气体窗口窜漏、短路等危险。 对于全氟磺酸膜类质子交换膜,要有较好的热稳定性、化学稳定性和良好的机械稳定性,避免其在高温时发生化学降解,防止燃料电池在高温和高电位时出现化学降解导致气体窜漏引发氢氧混合。气体串漏对燃料电池的安全性有较大影响,要优先选用机械强度高的质子交换膜。质子交换膜厚度和燃料电池安全性密切相关,燃料电池质子交换膜厚度的选择建议充分考虑由于降低隔膜厚度带来的安全风险。 (2)气体扩散层 21/53

国内氢燃料电池气体扩散层GDL研究进展

国内氢燃料电池气体扩散层GDL研究进展实现国家燃料电池技术规模化的生产,就需要解决燃料电池里面核心材料国产化。气体扩散层GDL就是燃料电池电堆里面的一个核心材料,目前还是主要依靠进口来解决气体扩散层这样一个材料问题。气体扩散层总体来说,也是我们燃料电池技术发展里面一个卡脖子技术。国内南方科技大学氢能与燃料电池研究团队在过去两年多的发展里面,优化了燃料电池气体扩散层的结构,开发了气体扩散层的生产工艺,也实现了气体扩散层小批量生产。 首先从燃料电池单电池的结构开始,燃料电池电堆是由很多单电池串联组成的。对燃料电池的单电池有一个七层的结构,中间是质子交换膜,质子交换膜的两侧是催化层,催化层的两侧是有两片气体扩散层,再加上双极板就构成了燃料电池单电池这样一个结构。一个燃料电池单电池需要两片气体扩散层,虽然目前市场上气体扩散层的价格比质子交换膜要便宜一些,但是它的用量比较大,需要两片,所以它对燃料电池的价格有非常大的影响。美国能源部DOE按照现有的燃料电池技术所进行测算,气体扩散层在燃料电池电堆里面价格的分布,在小批量的时候,基本上价格占到21%,比质子交换膜还要贵一些。随着量的增加,气体扩散层的价格占比会减少一些,但即使到批量化的生产,它也占有一定的比例。当规模达到50万辆的时候,它还有6%的价格比例,所以气体扩散层对燃料电池的价格

有非常大的影响。气体扩散层影响到燃料电池里面的传质、传热以及欧姆电阻,因为它对水管理有非常大的作用,它间接的影响到燃料电池里面的动力学。因为它影响燃料电池的性能,所以间接影响到燃料电池的成本。尤其是我们现在燃料电池技术发展是朝着高电流操作这样一个方向来发展,高电流操作的时候,传质就非常重要。 如何有一个好的气体扩散层的材料?首先要分析一下它在燃料电池里面所起的作用。首先第一个作用是传质的作用,它要把气体均匀的扩散到催化剂上进行反应,同时要把这个产物这个水能够带出来,这是它的第一个作用。同时,燃料电池里面反应产生的热量也要通过气体扩散层带出去。另外所产生的电流也要通过气体扩散层导到外面的电路,传质、传热、导电是气体扩散层在燃料电池里面主要的功能。同时它需要有一定的机械强度来支撑我们膜电极,膜电极比如是CCM机械强度不够,需要有一个支撑,这个是气体扩散层四个功能。因为有这样一个功能的要求,所以我们对气体扩散层的材料选择也是有一定的要求。首先它必须是多孔的介质,需要良好的导热性,有良好的导电性,同时有一定的机械强度。另外因为它在燃料电池里面工作,所以它需要有良好的化学稳定性。正因为有这样一个要求,所以气体扩散层的选择并不是很多。早期的时候有些人用金属网或者金属泡沫来做气体扩散层,因为它的化学稳定性不高,所以后来基本上气体扩散层材料的选择只有两

风能-氢燃料电池一体化联用系统设计 物理学毕业论文

分类号:TM911.4 U D C:D10621-408-(2012)1985-0 密级:公开编号: 成都信息工程学院 学位论文 风能-氢燃料电池一体化联用系统设计 论文作者姓名: 申请学位专业:材料物理 申请学位类别: 指导教师姓名(职称): 论文提交日期:

风能-氢燃料电池一体化联用系统设计 摘要 风能为可再生的清洁能源,但储能和上网等环节存在不少问题。氢燃料电池具有绿色环保,效率高,低噪音等特点,还是一种非常好的储能手段。将风能与氢燃料电池联用,是近年来新能源研究和推广的热点。本文研究了氢燃料电池和风力发电机的原理,设计出了一套风电-氢燃料电池一体化联用系统,并配置了电解槽和贮氢装置,使风能和氢燃料电池发挥各自的优势,以达到系统最大的利用。在研究系统运行参数的基础上,本文还对系统进行了进一步优化。本文所设计的风电-氢燃料电池一体化联用系统具有寿命长,易于维护,运行简单等特点。本文的研究将促进风能的利用,进一步推动我国的新能源建设。 关键词:风能;氢燃料电池;一体化;设计

Integration Design of Wind Energy - Hydrogen Fuel Cell Abstract Wind energy is a new renewable energy. But there are some problems for energy storage and energy grid. Hydrogen fuel cell has the characteristics of environment friendly, high efficiency, low noise. And also is a very good energy storage method. In recent years, integrating the hydrogen fuel cell and wind turbines is popular in new energy researching and extension field.The principle of hydrogen fuel cell and wind turbines have discussed in this article. The hydrogen fuel cell and wind turbines have been integrated. An electrolyzer and a hydrogen storage system have been added. The integrating of wind and hydrogen fuel cell can achieve maximum utilization value. The system parameters have been designed for operation. The system optimization measures were discussed. The designed system has a long life, ease maintenance, simple operation. This study is of significance for the further application of wind energy and the construction of new energy Key words: hydrogen fuel cell; wind energy;design; integration

燃料电池汽车加氢站设计与工程建设实践

燃料电池汽车加氢站设计与工程建设实践 加氢站对于燃料电池汽车的发展有着积极的推动作用。燃料电池(Fuel Cell)是氢能使用最重要的技术之一,作为一种电化学反应装置,其不经过燃烧,直接将化学能转化成电能。燃料电池技术广泛应用于汽车工业领域,与传统的内燃机相比,燃料电池具有更高的能源转换效率,而且由于其反应的产物是水,不产生任何的污染物和温室气体,实现了真正的零排放。我国燃料电池汽车事业的发展基本与世界同步,在政府的能源、环保战略,发展速度仍在不断加快。 2.1 加氢站储氢量 根据对世博期间燃料电池公交车、燃料电池轿车和燃料电池观光车3类共196辆氢燃料电池汽车在世博园区内外进行示范运行。燃料电池汽车每日行驶里程和单位里程耗氢量进行估算,所有燃料电池汽车的日最大氢气需求量约600kg。考虑供氢安全系数和工程实际情况,站内设置两辆长管拖车,其储氢量约560kg,储存压力不大于20MPa。站内固定储氢瓶组储氢量约500kg,储存压力不大于45MPa。站内总储氢量约1060kg,属于三级站。 该站选择离站制氢(Off-site)的模式,采用氢气长管拖车将小于20MPa的压缩氢气从生产单位运送进站后再通过站内压缩机将氢气增压卸载至站内高压储氢瓶组,以不大于45MPa的压力储存。车辆加氢时,从储氢瓶组中输出氢气,通过加氢机充装到燃料电池汽车的车载储氢瓶中。加氢站是对高压氢气的储存、输配、加注等技术的综合应用,世博加氢站系统主要包括:氢气源(站外供氢)、氢气压缩系统(氢气压缩机)、氢气储存系统(高压储氢瓶组)、氢气加注系统(加氢机).

此外还有高压氢气管线、阀门组件和安全、控制系统等[6],加氢站的工艺流程由图所示。氢气长管拖车将小于20MPa的压缩氢气从氢气生产单位运送进加氢站,氢气经卸气柱卸载后通过氢气压缩机增压至4 3.8MPa储存到站内固定储氢瓶组中,氢气长管拖车也可作为站内的一级储氢装置,当对车辆加氢时,通过多级取气的模式从储氢瓶组中输出氢气,通过加氢机充装到燃料电池汽车的车载储氢瓶中。 2.4 加氢站总平面布局 加氢站是甲类火灾危险眭设施,必须在设计上保证其安全可靠。在加氢站进行站址选择和站内建、构筑物及设备平面布局设计时,必须符合上海市城市规划和站区防火安全的要求,参照上海市地方规范《燃 料电池汽车加氢站技术规程》,确保加氢站与站外重要公共建筑物、 明火或散发火花地点、民用建筑和厂房、库房、储罐、铁道、铁路、架空通信线、架空电力线路等保持足够的防火距离满足表1的要求。 在进行加氢站内部平面布局设计时,应当考虑站内氢气压缩机间、储氢装置、加氢机、站房、变配电间等建构筑物的安全距离满足表2的要求,同时合理安排站内车辆行走路线,避免加氢车辆之间、加氢车辆与站内的氢气拖车之间行驶路线互相干扰。 2.5 加氢站的氨安全工艺 氢气的安全性问题一直是讨论的焦点。氢气属于甲类易燃气体,与天然气相比,氢气与空气混合形成的爆炸混合物具有更宽的爆炸极限范围(4.1%~74.1%),更低的着火能

燃料电池气体扩散层设计与选型

燃料电池气体扩散层设计与选型 作为膜电极的重要组成部件,气体扩散层的设计与选型需根据电堆水管理特性、极板尺寸、单体目标厚度等因素因地制宜。 气体扩散层(GDL)是一类疏水多孔介质材料,位置介于流场板和催化层,担当水气输运、热量传递、电子传导的载体,并在装配和运行过程中提供结构支撑。GDL通常由大孔基底层(Macroporous substrate:MPS)和微孔层(Microporous layer:MPL)组成。其中,基底层通常由碳纤维各向异性堆叠组成,直接与流场板接触;微孔层由碳基粉末和憎水剂混合而成,直接与催化层接触。 气体扩散层关键特性

气体扩散层通常由多孔、非编织性和大孔结构的碳基材组成,基材经PTFE 疏水处理后,并涂覆有单层或多层微孔层(MPL)。一般,质子交换膜燃料电池用气体扩散层材料应具有反应气扩散、产物水扩散传输、导电、导热和机械支撑等关键特性。 反应气扩散气体扩散层的首要任务是传送反应气氢气和氧气,确保足够的反应物质快速和均匀扩散至催化层。因此,气体扩散层的孔径在一定范围内应足够大,且孔隙需具备足够的疏水特性以避免燃料电池的产物水阻塞孔道。产物水扩散与 传输 一方面,气体扩散层需有效将液态水自催化层移至流场板(或极板),以避免液态水阻塞反应物扩散通道引起传质极化增加。另一方面,排水特性需进行最佳设计。排水能力过强,将导致质子膜过度干燥产生“脱水”现象,质子传导率下降。 导电 气体扩散层材料导电能力高有助于降低电子传导过程中的欧姆损失。但调整气体扩散层的其他物理特性会影响到材料的导电特性,如:增加气体扩散层的孔隙率及PTFE含量时,通常导电率将下降。一般,碳基材料的导电特性可依据碳材料的热处理温度进行改善。导热

微生物燃料电池毕业设计论文

微生物燃料电池毕业论文 目录 A BSTRACT .................................................. 错误!未定义书签。第一章.文献综述 (1) 1.1能源发展与环境问题 (1) 1.2微生物燃料电池 (1) 1.2.1 微生物燃料电池的工作原理 (1) 1.3微藻型微生物燃料电池 (2) 1.3.1 微藻阳极底物型MFC (3) 1.3.2微藻生物阳极型MFC (3) 1.3.3微藻生物阴极型MFC (5) 1.4微生物燃料电池的应用前景 (5) 1.5本课题研究容,目的及意义 (6) 1.5.1本课题研究目的及意义 (6) 1.5.2 本课题的主要研究容 (6) 第二章实验材料与方法 (7) 2.1实验材料 (7) 2.1.1主要试剂及仪器 (7) 2.1.2实验装置 (8) 2.2实验方法 (9) 2.2.1 MFC的接种及启动运行 (9) 2.2.2 MFC运行条件 (11) 2.2.3 测定指标及方法 (12) 2.2.4 实验材料处理方法 (12) 2.2.5实验容 (12) 第三章结果与讨论 (14)

3.1各周期输出电压的情况 (14) 3.2各周期阴极藻的生长情况 (15) 3.3各周期阳极人工废水的COD处理情况 (16) 3.4各周期阴极溶氧的变化情况 (17) 第四章结论与展望 (20) 4.1结论 (20) 4.2展望 (21) 参考文献 (22)

第一章.文献综述 1.1能源发展与环境问题 能源是人类赖以生存的物质基础,它与社会经济的发展和人类的生活息息相关,开发和利用能源资源始终贯穿于社会文明发展的整个过程。20世纪50年代以后石油危机的爆发,对世界经济造成了巨大影响,国际舆论开始关注起世界“能源危机”问题。世界能源危机是人为造成的能源短缺。联合国环境署的报告表明,整个地球的环境正在全面恶化,环境问题是一个全球性问题。社会发展至今天,人类己经强烈地意识到和感受到生存环境所受的威胁,也热切地期盼着生活空间质量的改善。目前国际社会关注的全球性环境问题主要包括:臭氧层破坏、温室效应和气候变暖、大气污染和酸雨、生物多样性减少、放射性物质污染、海洋污染和海洋生态系统的破坏等,尤其是全球气候变化、酸雨和大气污染、海洋污染和海洋生态系统的破坏等重大环境问题,日益受到世界各国的普遍关注。而这些问题的产生,均与能源的开采、加工或利用有着密切的关系[1]。随着经济的不断发展,能源和环境问题日益突出。如果能源和环境问题得不到有效解决,不仅人类社会可持续发展的目标难以实现,而且人类的生存环境和生活质量也会受到严重影响。因此,世界各国在能源的战略和政策上更加强调能源与环境的关系,更加注意环境保护的重要性[2]。 1.2 微生物燃料电池 微生物燃料电池(MFC)是利用酶或者微生物作为阳极催化剂,通过其代谢作用将有机物氧化产生电能的装置,它属于生物质能利用技术中的生物化学转化技术,将生物质转化为电能。将微生物燃料电池应用到废水处理领域,在处理有机废水的同时获得电能,是缓解当前能源危机和解决环境问题的有效途径,也是环境能源领域的热点研究课题之一。 1.2.1 微生物燃料电池的工作原理 微生物燃料电池利用微生物作为反应主体,利用微生物的代谢产物作为物理电极的活性物质,引起物理电极的电位偏移,增加了电位差,从而获得电能,即将燃料的化学能直接转变为电能。以有质子交换膜的双室微生物燃料电池为例(如图1),它的工作原理[3,4]是:在阳极区,微生物将有机底物氧化,这个过程要伴随电子和质子(NADH)的释放;释放的电子在微生物作用下通过电子传递介质转移到电极上;电子通过导线转移到阴极区,释放出来的质子透过质子交换膜也到达阴极区;在阴极区,电子、质子和氧气反应生成水。随着阳极区有机物的不断氧化和阴极反应的持续进行,在外电路获得持续的电流。以葡萄糖为例,其反应式如下:

燃料电池极板的设备制作方法与设计方案

图片简介: 本技术介绍了一种燃料电池极板的制备方法,该制备方法包括如下步骤:(1)将热固性树脂和石墨粉按重量比1:1混合,搅拌均匀,得到混合涂料;(2)将步骤(1)的混合涂料涂布至碳纤维片材上,得到涂布碳纤维片材;所述碳纤维片材的厚度为0.10mm~0.30mm,所述混合浆料的涂布量为5~20g/m2;(3)将步骤(2)的涂布碳纤维片材置于125~150℃真空,预固化 30min后进行模压,得到一面具有蛇形气体流场面、一面具有平板面的极板;(4)将步骤(3)的极板进行裁切,得到燃料电池极板。本技术通过在碳纤维片材上采用湿法涂布混合涂料、且一次性模压成型,实现了燃料电池极板的连续化生产,同时减轻了极板的重量,提高了生产效率。 技术要求 1.一种燃料电池极板的制备方法,其特征在于,包括如下步骤: (1)将热固性树脂和石墨粉按重量比1:1混合,搅拌均匀,得到混合涂料; (2)将步骤(1)的混合涂料涂布至碳纤维片材上,得到涂布碳纤维片材;所述碳纤维片材的厚度为0.10mm~0.30mm,所述混合浆料的涂布量为5g/m2~20g/m2; (3)将步骤(2)的涂布碳纤维片材置于100℃真空,预固化30min后进行模压,得到一面具有 蛇形气体流场面、一面具有平板面的极板; (4)将步骤(3)的极板进行裁切,得到燃料电池极板。

2.根据权利要求1所述的燃料电池极板的制备方法,其特征在于,步骤(1)中,所述热固性树脂为酚醛树脂、环氧树脂、丙烯酸类树脂或聚醋树脂中的一种或至少两种的混合物。 3.根据权利要求1所述的燃料电池极板的制备方法,其特征在于,步骤(1)中,所述石墨粉的含碳量大于99%,所述石墨粉的膨胀倍数为100~300。 4.根据权利要求1所述的燃料电池极板的制备方法,其特征在于,步骤(2)中,所述碳纤维片材为碳纤维毛毡、或碳纤维编织布、或碳纤维预浸布。 5.根据权利要求1所述的燃料电池极板的制备方法,其特征在于,步骤(3)中,所述气体流场包括阴极极板流场和阳极极板流场。 6.根据权利要求5所述的燃料电池极板的制备方法,其特征在于,所述阴极极板流场的流道的宽度为0.3mm~0.8mm;所述阳极极板流场的流道的宽度为0.3mm~0.8mm。 7.根据权利要求6所述的燃料电池极板的制备方法,其特征在于,所述流道包括气道、水道、密封槽和定位孔。 8.根据权利要求1所述的燃料电池极板的制备方法,其特征在于,步骤(3)中,所述极板的厚度为0.3mm~0.5mm。 9.根据权利要求1所述的燃料电池极板的制备方法,其特征在于,步骤(4)中,所述燃料电池极板的弯曲强度为35MPa~40MPa,拉伸强度为25MPa~26MPa,抗压强度为1.5GPa~1.6GPa。 技术说明书 一种燃料电池极板的制备方法 技术领域 本申请属于燃料电池技术领域,特别是涉及一种燃料电池极板的制备方法。 背景技术

本科大学生毕业设计开题报告

本科大学生毕业设计开题报告 本科大学生毕业设计开题报告 1、依据:时尚是有艺术品位的生活,时知务也,尚在品质!时尚一族的生活是艺术化的,所追求的生活随着时间的变化也会不断的提高的,但不变的是一直在追求高品质的生活。为了满足这一人群的需要,时尚产品也在不断的更新,向更高的品质发展。 概念车可以理解为未来汽车,汽车设计师利用概念车向人们展示新颖、独特、超前的构思,反映着人类对先进汽车的梦想与追求。概念车往往只是处在创意、试验阶段,也许永不投产。与大批量生产的商品车不同,每一辆概念车都可以摆脱生产制造工艺的束缚,尽情地夸张地展示自己的独特魅力。时尚一族这个人群在未来的社会中,随着生活水平和精神追求的提高将会愈来愈庞大。为了满足这一人群的旅游出行进行交通设计是又必要性的。 概念车的最大功能就是发现与引导这些变化的方向。肯奥库亚马说过世界在变,汽车在变,在今后的10年到20年内会变得很剧烈。交通工具也要随着这种变化不管更新、改变。未来概念车的设计可以推动我们的交通发展,解决很多我们生活中现有的一些问题,使我们未来的出行、旅游更加方便。 天马行空、随心所欲在设计中不再是不切实际,对于概

念车的设计天马行空的创意和随心所欲的想象已经成为一种珍贵财富。舞动的概念、迸发的理念塑造了经典概念车的楷模。概念车体现了汽车设计师的灵感和风格,概念车甚至不受量产车的条件限制,可任意采用未经充分验证的新工艺、新材料和新设计,充分发挥想象力和创造力。 针对时尚一族的概念车设计需要打造出时尚、艺术、高品位的产品,因为品质与美是要艺术的手法去塑造,艺术提高品位,艺术是脱俗的,出类拔萃的;时尚是高尚的,时尚离不开艺术,艺术可以创造时尚。 2、意义:时尚赋予人们不同的内涵和神韵,带给人的是一种愉悦的心情和优雅、纯粹与不凡感受,能体现不凡的生活品味,精致、展露个性。人类对时尚的追求,在精神上的或是物质上的追求都促进了人类生活。 概念车是汽车中内容最丰富、最深刻、最前卫、最能代表世界汽车科技发展和设计水平的汽车。概念车是时代的最新汽车科技成果,代表着未来汽车的发展方向,因此它展示的作用和意义很大,能够给人以启发并促进相互借鉴学习。因为概念车有超前的构思,体现了独特的创意,并应用了最新科技成果,所以它的鉴赏价值极高。概念车也是艺术性最强、最具吸引力的汽车。 针对时尚一族未来型概念车的设计,将会改变未来生活的方式,改变时尚潮流的走向,引领未来生活中交通方式的

相关文档
最新文档