地脚螺栓合理锚固长度计算探讨

地脚螺栓合理锚固长度计算探讨
地脚螺栓合理锚固长度计算探讨

地脚螺栓锚固长度规范资料

地脚螺栓锚固长度规范 篇一:地脚螺栓锚固长度问题 请教地脚螺栓锚固长度问题 该帖被浏览了2652次| 回复了25次 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 请教各位前辈《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)是根据什么的出的锚固长度。 本人的计算方法上有何错误 以下是本人写的一个分析总结:锚栓锚固长度取值分析一、问题的提出 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 结合具体工程实例:山东富伦钢厂余热回收锅炉框架,抗震设防烈度7度0.1g。经过计算地脚螺栓选用M20 Q235B,锚栓类型采用直钩锚栓。基础混凝土等级C20。 根据《钢结构设计手册上册》(第三版)表10-6 锚栓锚固长

度为400mm。 根据《钢结构节点设计手册》(第二版)表9-75 锚栓锚固长度为520mm 根据《地脚螺栓(锚栓)通用图》HG/T21545-2006锚栓锚固长度为410×1.05=430mm 因此按哪本手册(图集)进行设计的问题就产生了。 二、分析计算 计算方法一: 地脚螺栓埋入基础中的的锚固长度属于混凝土结构范畴,地脚螺栓的有小直径面积及地脚螺栓的强度设计值属于钢结构范畴,因此地脚螺栓的锚固长度可根据《混凝土结构设计规范》GB50010-2002、与《钢结构设计规范》GB50017-2003进行分析计算, la=α×fy/ft×d (《混凝土结构设计规范》GB50010-2002 9.3.1-1) α取0.16 (《混凝土结构设计规范》GB50010-2002 表9.3.1) ft取1.1N/mm2(《混凝土结构设计规范》GB50010-2002 表4.14) fy取140 N/mm2(《钢结构设计规范》GB50017-2003 表3.4.1-4) la=0.16×140 N/mm2 / 1.1N/mm2×20mm=408mm 根据《建筑抗震设防分类标准》GB50223-95 7.04条余热

关于地脚螺栓设计的一些常用规定

关于地脚螺栓设计的一些常用规定 目录 第一章总则 第二章一般规定 第三章地脚螺栓尺寸的确定 第四章地脚螺栓的选用 第五章设计分工

第一章总则 第1.0.1条本规定适用于静止石油化工工艺设备地脚螺栓设计。 第1.0.2条机、泵等定型设备的地脚螺栓一般为随机附件,若需要配备时也可参照本规定选用。 第1.0.3条塔、容器、换热器等非定型设备可参照本规定配备地脚螺栓。 第二章一般规定 第2.0.1条地脚螺栓埋入混凝土基础内一般用两种方法,即预埋和预留孔二次灌浆埋入法。 第2.0.2条地脚螺栓直接埋入基础内的方法适用于塔类、较高的容器、球罐和振动较大的机械设备。 第2.0.3条直接埋入地脚螺栓时,地脚螺栓中心线距基础边的尺寸a≥100mm,见图2.0.8。当不能满足时必须提请土建专业对基础配筋加固。 图2.0.3 地脚螺栓直接埋入基础图 第2.0.4条预留地脚螺栓孔,放入地脚螺栓后灌浆固定。此法适用于卧式容器、换热器、小型的立式 容器等静置设备及振动较小的机、泵类。其特点是便于地脚螺栓定位尺寸的调整而不需要定位模板。 第2.0.5条预留孔的尺寸必须满足土建施工及设备安装的要球。参见图 2.0.5。 预留孔的尺寸A×A最小为100×100(mm)。螺栓钩距孔壁尺寸e≥20mm,孔壁距基础边的尺寸b≥100mm,当b不能满足100mm时,可采用预埋方式或请土建专业对基础配筋加固。螺栓钩距孔底 尺寸B取80mm。 孔深(c)=地脚螺栓埋入深度(L2)+B mm 图2.0.5 预留孔尺寸 第2.0.6条对于安装在混凝土梁上的设备,其地脚螺栓一般采用预埋方式。如设备基础有特殊要求, 也可由土建专业在混凝土梁上预埋套管,以便穿入地脚螺栓。套管尺寸应使地脚螺栓与套管之间净空至 少为10mm,以便设备安装时调整螺栓位置和灌沙、夯实。见图 2.0.6。此方式螺栓较长、缓冲性能好、又可更换螺栓,但稳定性较差。

设备地脚螺栓设计规定

设备地脚螺栓设计规定-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一设备地脚螺栓设计规定 1 专业分工 非定型设备地脚螺栓的型式、材料、尺寸和伸出长度(包括锚固长度)应由设备专业根据设备图和安装位置(见设备布置图)确定。 定型设备和转动设备的地脚螺栓一般应由设备制造厂配套供应,并由设备或机泵专业负责提供制造厂的资料。 对于平台、楼面上的设备、地脚螺栓的型式和尺寸,应由工艺、设备、土建三个专业共同协商确定。 根据设备相关专业提供的各类设备地脚螺栓资料,工艺专业完成设备地脚螺栓一览表。 设备布置时根据设备布置图和本规定要求,向土建专业提出“设备基础条件”和“楼面及平台上设备支承条件”,包括预埋地脚螺栓条件,按规定确定设备基础条件中二次灌浆(包括抹面)层厚度。 螺栓按HG/T21545-2006标准。直径大于M48的地脚螺栓见土建专业资料(TC60B2-82)。

图2.4.0 地脚螺栓直接埋入混凝土基础内的深度一般为30d(d为螺栓直径)。对不重要的设备不考虑倾覆力矩时,可采用20d。对于塔类设备的地脚螺栓,要求埋入深度为L e≥30d。 为了考虑到直埋地脚螺栓间距的误差,以避免设备上地脚螺栓孔不能与地脚螺栓对准,可采取以下方法处理: 2.6.1 将设备底板、裙座或耳架上的螺栓孔适当予以放大,待地脚螺栓穿入后,加一块垫板,将垫板焊在设备底板上,再上螺母,如图所示。

图2.6.2 d—地脚螺栓直径; d1—套管内径≥; L—地脚螺栓长度; l—无套管处地脚螺栓长≥ 1/3 (L+l2); l1—套管长≥ 2/3 (L-l2); 在钢结构上的设备一般均采用普通的螺栓代替地脚螺栓,其长度按连接结构而定。 3 附录 附录设备地脚螺栓一览表

预埋地脚螺栓埋地深度计算规范及方法样本

桅式结构-桅式结构 桅式结构-正文 由一根下端为铰接或刚接的竖立细长杆身桅杆和若干层纤绳所组成的构筑物, 纤绳拉住杆身使其保持直立和稳定( 图1) 。 桅式结构 构造桅式结构由纤绳、杆身和基础组成。 纤绳纤绳层数一般随桅杆高度增大而加多, 纤绳结点间距以使杆身长细比等于80~100左右为宜,可等距或不等距布置。不等距布置时, 宜从下到上逐层加大间距, 使杆身各层应力大致相等, 结构较为经济。一般每层按等交角布置三根或四根纤绳, 其倾角为30°~60°, 以45°较好。同一立面内所有纤绳可相互平行, 每根纤绳有一地锚基础; 或交于一点, 共用一地锚基础。纤绳常见高强镀锌钢丝绳, 用花篮螺丝预加应力, 以增强桅杆的刚度和整体稳定性。

杆身按材料可分为钢、木和钢筋混凝土结构。钢结构杆身常采用单根钢管或组合构件, 单根钢管可用无缝钢管或卷板焊接钢管。组合构件为三边形或四边形空间桁架结构( 图2) 。其弦杆和腹杆由角钢、圆钢、钢管或薄壁型钢制成,其中圆形截面风阻较小,采用较多。对于四边形截面的桅杆要每隔一定高度布置横膈, 以防截面变形。组合构件之间常见焊接以简化构造。为了便于制造、运输和安装, 杆身可划分成若干等长度的标准节段, 节段两端用法兰盘或拼接板相互连接。节段长度根据所用材料、施工和经济条件确定。木结构杆身采用单根圆木或组合木构件, 用拼接钢板连接。钢筋混凝土结构采用离心式灌筑的预制管柱构件, 以法兰盘连接。 桅式结构 基础基础分杆身下面的中央基础和固定纤绳的地锚基础。中央基础为圆的或方的阶梯形基础, 承受杆身传来的力。地锚基础承受纤绳拉力, 有重力式、挡土墙式和板式。重力式地锚依靠结构自重抵抗纤绳拉力, 耗用材料较多。挡土墙式地锚埋入地下, 依靠自重、水平板上的土重, 以及竖向墙板上的被动土压抵抗纤绳

设备地脚螺栓设计规定

设备地脚螺栓设计规定 一设备地脚螺栓设计规定 1 专业分工 1.1 非定型设备地脚螺栓的型式、材料、尺寸和伸出长度(包括锚固长度)应由设备 专业根据设备图和安装位置(见设备布置图)确定。 1.2 定型设备和转动设备的地脚螺栓一般应由设备制造厂配套供应,并由设备或机泵 专业负责提供制造厂的资料。 1.3 对于平台、楼面上的设备、地脚螺栓的型式和尺寸,应由工艺、设备、土建三个 专业共同协商确定。 1.4 根据设备相关专业提供的各类设备地脚螺栓资料,工艺专业完成设备地脚螺栓一 览表。 1.5 设备布置时根据设备布置图和本规定要求,向土建专业提出“设备基础条件”和“楼面及平台上设备支承条件”,包括预埋地脚螺栓条件,按规定确定设备基础条件中 二次灌浆(包括抹面)层厚度。 2.4.0。地脚螺栓按HG/T21545-2019标准。直径大于M48的地脚螺栓见土建专业资料(TC60B2-82)。 图2.4.0 2.5 地脚螺栓直接埋入混凝土基础内的深度一般为30d(d为螺栓直径)。对不重要的 设备不考虑倾覆力矩时,可采用20d。对于塔类设备的地脚螺栓,要求埋入深度为 Le≥30d。 2.6 为了考虑到直埋地脚螺栓间距的误差,以避免设备上地脚螺栓孔不能与地脚螺栓 对准,可采取以下方法处理: 2.6.1 将设备底板、裙座或耳架上的螺栓孔适当予以放大,待地脚螺栓穿入后,加一 块垫板,将垫板焊在设备底板上,再上螺母,如图2.6.1所示。 图2.6.2 d—地脚螺栓直径; d1—套管内径≥2.5d; L—地脚螺栓长度; l—无套管处地脚螺栓长≥ 1/3 (L+l2); l1—套管长≥ 2/3 (L-l2); 2.8 在钢结构上的设备一般均采用普通的螺栓代替地脚螺栓,其长度按连接结构而定。 3 附录

地脚螺栓长度及重量的计算方式

地脚螺栓长度和重量的计算方式 我公司在销售地脚螺栓的过程中,经常遇到客户询问地脚螺栓的长度和重量的计算方式,为此,我们特地整理一份资料,供客户参考。 地脚螺栓分为多种型式,有国标GB799、7字(直钩)、J型(弯钩)、单锚板、加劲锚板等地脚螺栓形式。 一、重量的通用计算公式: 圆钢的重量计算方式= (圆钢的直径)2x0.00617x用料长度 例:Ф25的圆钢(地脚螺栓用的钢材都为圆钢),用料长度为1000mm(1米):重量=252x0.00617x1 = 3.856kg/件 二、长度的计算方式: 1. GB799地脚螺栓 国标地脚螺栓的标注方式为M x L,而这里的L不是整个螺栓的实际用料的总长。从上图中看出,实际的长度应该为螺栓全部展开后的长度,即L+X。 对于X的定义,一般是有规定的。我公司一般采用的数据如下: 那么,总长就应该是L加上以上X数据。重量也就可以计算了。 2. 7字/L型/直钩式地脚螺栓

外包用料长度= h + b 中线用料长度= h + b 内包用料长度= h + b + 0.5d (注:d 为螺栓直径) 3. J型/弯钩式地脚螺栓 J型地脚螺栓栓料长= h + 3.1416R 4. 单头锚栓/单锚板地脚螺栓:螺杆的长度即为用料长度。 5. 加劲锚板式地脚螺栓:螺杆的长度即为用料长度。 三、其它事项: 由于地脚螺栓分为A型、B型或称为粗杆、细杆。不同的杆径会影响地脚螺栓的重量。在计算地脚螺栓重量时要注意杆径的选择。A、B型用料直径如下: 版权所有: 上海徐浦标准件有限公司 电话:021-******** 或4000-888-164(免费) 网址:https://www.360docs.net/doc/fe14808243.html, QQ: 875401259

设备地脚螺栓设计规定

一设备地脚螺栓设计规定 1 专业分工 1.1 非定型设备地脚螺栓的型式、材料、尺寸和伸出长度(包括锚固长度)应由设备专业根据设备图和安装位置(见设备布置图)确定。 1.2 定型设备和转动设备的地脚螺栓一般应由设备制造厂配套供应,并由设备或机泵专业负责提供制造厂的资料。 1.3 对于平台、楼面上的设备、地脚螺栓的型式和尺寸,应由工艺、设备、土建三个专业共同协商确定。 1.4 根据设备相关专业提供的各类设备地脚螺栓资料,工艺专业完成设备地脚螺栓一览表。 1.5 设备布置时根据设备布置图和本规定要求,向土建专业提出“设备基础条件”和“楼面及平台上设备支承条件”,包括预埋地脚螺栓条件,按规定确定设备基础条件中二次灌浆(包括抹面)层厚度。 2.4.0。地脚螺栓按HG/T21545-2006标准。直径大于M48的地脚螺栓见土建专业资料(TC60B2-82)。

图2.4.0 2.5 地脚螺栓直接埋入混凝土基础内的深度一般为30d(d为螺栓直径)。对不重要的设备不考虑倾覆力矩时,可采用20d。对于塔类设备的地脚螺栓,要求埋入≥30d。 深度为L e 2.6 为了考虑到直埋地脚螺栓间距的误差,以避免设备上地脚螺栓孔不能与地脚螺栓对准,可采取以下方法处理: 2.6.1 将设备底板、裙座或耳架上的螺栓孔适当予以放大,待地脚螺栓穿入后,加一块垫板,将垫板焊在设备底板上,再上螺母,如图2.6.1所示。

图2.6.2 d—地脚螺栓直径; d 1 —套管内径≥2.5d; L—地脚螺栓长度; l—无套管处地脚螺栓长≥ 1/3 (L+l 2 ); l 1—套管长≥ 2/3 (L-l 2 ); 2.8 在钢结构上的设备一般均采用普通的螺栓代替地脚螺栓,其长度按连接结构而定。 3 附录 附录设备地脚螺栓一览表

地脚螺栓标准化设计

江苏电网输变电工程标准化设计 杆塔地脚螺栓 江苏省电力公司 2008年12月

前言 为进一步推进基建标准化建设,贯彻“两型三新”(资源节约型、环境友好型、新技术、新材料、新工艺)输电线路建设要求,在国家电网公司输变电工程典型设计的基础上,在江苏省电力公司的组织领导下,编制了杆塔地脚螺栓标准化设计。 本次江苏电网地脚螺栓标准化设计适用于省内新建、改造110kV、220kV、500kV输电线路工程。 由于编者水平有限,时间较短,错误和遗漏在所难免,敬请批评指正。 编者 2008年11月30日

目录前言 第一篇总论 (1) 1.目的、意义和总体原则 (1) 1.1 标准化设计的目的和意义 (1) 1.2 标准化设计的总体原则 (1) 1.3 标准化设计的工作内容 (1) 2.设计依据 (1) 2.1 设计依据的主要规程规范 (1) 3.模块划分 (2) 4.设计原则和加工要求 (2) 4.1 设计原则 (2) 4.2 加工要求 (3) 5.标准化设计使用说明 (3) 5.1 标准化使用说明 (3) 5.2 注意事项 (3) 6.地脚螺栓制造图 (3)

第一篇总论 1.目的、意义和总体原则 1.1标准化设计的目的和意义 推行电网工程标准化设计是江苏省电力公司全面贯彻落实科学发展观,建设“资源节约型、环境友好型”社会,履行社会责任,大力提高集成创新能力的重要体现;是实施集约化管理,标准化建设的重要手段。 为积极贯彻江苏省电力公司关于“转变观念、技术创新”、“三沿少跨,跨则加强”的思路建设江苏电网,根据江苏省电力公司的部署,为统一设计标准、提高工作效率、降低工程造价,体现“资源节约型、环境友好型”的社会需求,推进技术创新成果转化标准化设计,成立了“电网标准化设计工作组”,开展江苏电网工程标准化设计工作。 电网工程标准化设计广泛吸纳了以往输电线路工程的设计成果和建设经验,是对前人成果的总结和借鉴,是提高集成创新能力的具体体现。开展电网工程标准化设计工作的目的是:深入贯彻集约化管理思想,统一建设标准,统一材料规范;规范设计程序,加快设计、评审、材料加工的进度,提高工作效率和工作质量;减少设备型式、方便材料招标,方便运行维护;降低建设和运行成本。 1.2标准化设计的总体原则 电网工程标准化设计的总体原则是:安全可靠、技术先进、保护环境、控制成本、提高效率。在标准化设计中,着重要处理和解决好标准化设计方案的统一性、适应性、灵活性、先进性、可靠性和经济性及其相互之间的辩证统一关系。 统一性:建设标准统一,基建和生产的标准统一,体现江苏省电力公司的企业文化特征。 适应性:综合考虑江苏地区的实际情况,使得标准化设计在江苏省电力公司系统中具备有广泛的适用性,在一定的时间内对不同外部条件的工程均能基本适用。 灵活性:标准化设计的各模块接口方便,可进行组合使用。 先进性:标准化设计的方案在技术上具有先进性,注重环保,同时经济指标先进。 可靠性:适当提高设计标准,保证电网生产的安全可靠性。 经济性:按照企业利益最大化原则,综合考虑初期投资和长期费用,追求全寿命周期内企业的最优经济效益。 标准化设计坚持“集成创新”、“以人为本”和“可持续发展”的理念,综合考虑“设计内容的合理性”。 1.3标准化设计的工作内容 杆塔地脚螺栓标准化的主要工作是统计江苏省杆塔的荷载范围,调研地脚螺栓的材料供应、加工和使用情况,在标准化和简化的指导原则下统一地脚螺栓的材质和规格,根据现行规范设计出一套标准化、系列化的地脚螺栓,满足江苏省电力公司系统绝大多数地区线路工程建设的需要。 2.设计依据 2.1设计依据的主要规程规范 1)《110~750kV架空输电线路设计规范》(报批稿) 2)《架空送电线路杆塔结构设计技术规定》(DL 5154-2002) 3)《钢结构设计规范》(GB50017-2003) 4)《混凝土结构设计规范》(GB50010-2002)

地脚螺栓锚固长度

土木在线论坛? 结构? 钢结构? 请教地脚螺栓锚固长度问题 请教地脚螺栓锚固长度问题 土木在线论坛? 结构? 钢结构? 请教地脚螺栓锚固长度问题 该帖被浏览了8865次| 回复了32次 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 请教各位前辈《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第 二版)是根据什么的出的锚固长度。 本人的计算方法上有何错误 以下是本人写的一个分析总结:锚栓锚固长度取值分析 一、问题的提出 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 结合具体工程实例:山东富伦钢厂余热回收锅炉框架,抗震设防烈度7度0.1g。经过计算地脚螺栓选用M20 Q235B,锚栓类型采用直钩锚栓。基础混凝土等级C20。 根据《钢结构设计手册上册》(第三版)表10-6 锚栓锚固长度为400mm。 根据《钢结构节点设计手册》(第二版)表9-75 锚栓锚固长度为520mm 根据《地脚螺栓(锚栓)通用图》HG/T21545-2006锚栓锚固长度为 410×1.05=430mm 因此按哪本手册(图集)进行设计的问题就产生了。 二、分析计算 计算方法一: 地脚螺栓埋入基础中的的锚固长度属于混凝土结构范畴,地脚螺栓的有小直径面积及地脚螺栓的强度设计值属于钢结构范畴,因此地脚螺栓的锚固长度可根据《混凝土结构设计规范》GB50010-2002、与《钢结构设计规范》GB50017-2003 进行分析计算, la=α×fy/ft×d (《混凝土结构设计规范》GB50010-2002 9.3.1-1) α取0.16 (《混凝土结构设计规范》GB50010-2002 表9.3.1) ft取1.1N/mm2(《混凝土结构设计规范》GB50010-2002 表4.14) fy取140 N/mm2(《钢结构设计规范》GB50017-2003 表 3.4.1-4)la=0.16×140 N/mm2/ 1.1N/mm2×20mm=408mm 根据《建筑抗震设防分类标准》GB50223-95 7.04条余热锅炉框架为丙类建 筑。 抗震等级三级(《混凝土结构设计规范》GB50010-2002 表11.1.4)

设备地脚螺栓设计规定讲课教案

设备地脚螺栓设计规定 1专业分工 1.1非定型设备地脚螺栓的型式、材料、尺寸和伸出长度(包括锚固长度)应由设备专业根 据设备图和安装位置(见设备布置图)确定。 1.2定型设备和转动设备的地脚螺栓一般应由设备制造厂配套供应,并由设备或机泵专业负 责提供制造厂的资料。 1.3对于平台、楼面上的设备、地脚螺栓的型式和尺寸,应由工艺、设备、土建三个专业共同协商确定。 1.4根据设备相关专业提供的各类设备地脚螺栓资料,工艺专业完成设备地脚螺栓一览表。 1.5设备布置时根据设备布置图和本规定要求,向土建专业提出“设备基础条件”和“楼面 及平台上设备支承条件”,包括预埋地脚螺栓条件,按规定确定设备基础条件中二次灌浆(包括抹面)层厚度。 2设计要求 2.1所有塔类设备应按具体要求尽量采用带模板的直埋地脚螺栓,模板应由设备制造厂提供。若采用无模板和直埋地脚螺栓时,则底板上应留有比螺栓直径足够大的孔及分离的盖板,该螺栓孔的盖板应在安装就位后现场焊接。此结构也适用于其它非定型设备,以免施工偏差, 造成安装困难。 2.2地脚螺栓的方位对于在地面基础上的设备,按一般设备布置图的设计北向(方位角度为0°中心线跨中设置,螺栓数量取“4”的倍数。 设备支腿为三个时,支腿的方位应按下述规定或根据配管需要而定。 图2.2 图2.2管廊两侧的设备I、H支腿方位相差1800,在管廊转角处的设备川按A、B尺寸大小 决定,图中为A v B时布置方法。若B v A时,则设备川应改为设备H支腿方位,设备W与设备川对称。 2.3对有振动的设备和塔类,地脚螺栓应采用双螺母。 2.4设备基础安装弯钩式地脚螺栓时,地脚螺栓直径和基础预留孔尺寸见图 2.4.0和表 2.4.0。地脚螺栓按HG/T21545-2006标准。直径大于M48的地脚螺栓见土建专业资料 (TC60B2-82)。

预埋地脚螺栓设计的总结

预埋地脚螺栓设计的总结 发表时间:2016-10-14T15:12:04.743Z 来源:《电力设备》2016年第14期作者:葛前进[导读] 根据美国标准ACI318-05 APPENDIX D混凝土锚固的普通预埋式地脚螺栓的计算。 (山东电力建设第三工程公司山东青岛邮编266100) 摘要:根据美国标准ACI318-05 APPENDIX D混凝土锚固的普通预埋式地脚螺栓的计算关键词:混凝土锚固,预埋式地脚螺栓 一、简述: 锚固在混凝土上的地脚螺栓其整体的抗力水平不仅仅取决于地脚螺栓本身的材料强度,而且也取决于螺栓与混凝土之间的锚固强度,包括拔出、破碎和侧向劈裂等,目前国内设计普遍缺失的计算就是螺栓与混凝土的锚固强度计算。从这一点来看,设计院钢结构设计专业提供固定钢结构的地脚螺栓设计是值得商榷的,因为其仅仅考虑地脚螺栓的材料强度,也就是说其仅仅能计算出螺栓的材质和最大应力,进而确定螺栓的材质,但无法科学计算出其需要螺栓的准确的锚固长度,因为其不负责基础钢筋混凝土的设计,而正是这一块决定了锚栓的长度。从这一点来看,锚固在混凝土上的地脚螺栓设计应该由混凝土结构设计专业承担才更为科学和严谨,并以此类推,设备厂家提供的地脚螺栓设计应该由设计院对其锚固长度进行审核和确认,之后才能作为正式工程用的设计。 美国的ACI318-11混凝土规范中就专门针对锚固在混凝土中的地脚螺栓设计在其附录D中做了完整的表述,系统的分析了不同种类地脚螺栓的各种破坏模式,并基于大量试验的基础上针对每种破坏模式进行了深入阐述,提供了工程设计用的计算公式和要求,且通过ACI3553-11对计算及配筋设计进行了详细的举例说明,科学地解决了笔者上述的在国内地脚螺栓设计中存在的漏洞。在这里,作者仅仅对电厂项目上普遍采用的预埋式地脚螺栓进行针对性的介绍,定义为:预埋式cast-in type + 带六角头螺母及垫板的锚栓headed bolt+ 锚栓直径不大于2-in(50mm). 对于后置式和其他形式,作者将在其余技术总结中进行专门分析。 另外需要说明的是,针对地脚螺栓的设计,国内一般只考虑其在弯矩作用下受拉力作用,不考虑其抗剪抗力,美国规范钢结构规范中也有类似的规定,剪力一般通过抗剪键来实现,但是美国ACI混凝土规范中是允许锚栓抗剪的,而且对抗剪和抗拉组合受力的锚栓进行了专门的规定。 ACI318规范中该类别地脚螺栓的破坏模式分为两大类,即拉力破环和剪力破坏。拉力破坏又分为:钢件抗拉破坏Steel Strength Failure in Tension,混凝土锚固区崩裂破坏Breakout in Tension, 拔出破坏Pullout in Tension,边缘混凝土侧向劈裂破坏Side-face Blowout in Tension。剪力破坏则分为:钢件抗剪破坏Steel Strength Failure in Shear, 混凝土锚固区崩裂破坏Breakout in Shear,混凝土撬出破坏Pryout in Shear。 二、计算原理介绍: (1)锚栓受力的计算:轴力Pu(拉为正,压为负),弯矩Mu(柱底板宽度方向),锚栓拉力Tu,锚栓中心距板边Bedge, 柱底板宽度B,长度N,H型柱的高H,翼缘宽W,常规中心布置,拉力计算假设:在设计柱底板厚底时,保守考虑可以看作整个柱底板为刚性(rigid body),但这此理论对于锚栓拉力计算是偏于不安全的,因为其力臂变长了,所以基于保守考虑,需要考虑柱底板的柔性(Flexible),则与柱底板连接的柱边缘为作用点,对其取弯矩并不考虑混凝土受压,则锚栓总拉力Tu=M/(jd)+2*Pu/(N-H), 其中jd=(N/2-Bedge+H/2)。注意此处的锚栓拉力计算不同于钢结构规范设计柱底板计算原理,原因在上述已经论述。 (2)拉力极限状态承载力的计算: a) 钢件抗拉承载力计算Steel Strength in Tension:Nsa=Ase,N*futa,其中futa<=Min{1.9*fya,125,000psi} b) 混凝土锚固区崩裂承载力Concrete Breakout Strength in Tension:单个锚栓:Ncb=(ANc/ANco)*Ψed,N*Ψc,N*Ψcp,N*Nb 多个锚栓组:Ncbg=(ANc/ANco)*Ψec,N*Ψed,N*Ψc,N*Ψcp,N*Nb 其中:Ψec,N为拉力偏心修正系数=1/[1+2*eN’/(3*hef)]<=1 Ψed,N为边界效应修正系数={if Ca,min>=1.5*hef,Ψed,N=1.0;Otherwise Ψed,N=0.7+0.3*Ca,min/(1.5*hef)} Ψc,N为裂缝效应修正系数={在长期荷载下Service Load下开裂的钢筋混凝土取1.0;否则对预埋螺栓取1.25后置式取1.40} Ψcp,N为后置式螺栓在无裂缝混凝土上的修正系数={一般1.0} ANco=9*hef2-基于35度崩裂角度理论得出的单个锚栓锚固区面积 ANc为在四个方向上每个螺栓最大延伸1.5*hef得出的螺栓组锚固区总面积Nb=kc*√fc’*hef1.5*λa 其中kc=24对预埋式螺栓;或者对headed stud 和headed bolt且11-in<=hef<=25-in时,可以以下式计算Nb=16*√fc’*hef5/3*λa hef为锚栓有效锚固深度,如果锚栓三面及以上的边缘距离均小于1.5*hef,则应该用Ca,max>S/3(锚栓间距)代替hef c) 混凝土抗拔承载力Pullout Strength in Tension Npn=Ψc,p*Np 对headed stud 和headed bolt,Np=8*Abrg*fc’ d) 边缘混凝土侧向劈裂承载力Side-face Blowout in Tension 如果Ca1

地脚螺栓计算

柱脚锚栓设计 -----------------------------------工程名称:工程一锚栓编号:M1 2016/9/26 13:59:19 一、基础设计参数: 弯矩 M: 590 KN.M 轴力 N: 560 KN 底板长 L: 920 mm 底板宽 B: 920 mm 锚栓至边距离 d: 50 mm 混凝土等级: C20 二、选用锚栓: 锚栓大小: M24 单侧锚栓颗数: 3 颗 锚栓材质: Q235 三、计算结果: 最大压应力σmax=N/(B*L)+6*M/(B*L^2)= 5.2 N/mm2 最小压应力σmin=N/(B*L)-6*M/(B*L^2)=-3.89 N/mm2 压应力分布长度e=σmax/(σmax+|σmin|)*L= 526.29 mm 压应力合力至锚栓距离 x=d-e/3=-125.43 mm 压应力合力至轴心压力距离 a=L/2-e/3= 284.57 mm 锚栓所受最大拉力 Nt=(M-N*a)/x=-3433.31 KN 四、验算结果: 锚栓所受最大拉力 Nt = -3433.31KN < 3Ntk= 3* 49.4= 148.2 KN Ok! 满足要求! 工程名称:工程一锚栓编号:M1 2016/9/26 14:00:09 一、基础设计参数: 弯矩 M: 1320 KN.M 轴力 N: 665 KN 底板长 L: 920 mm 底板宽 B: 920 mm 锚栓至边距离 d: 50 mm 混凝土等级: C20 二、选用锚栓: 锚栓大小: M24 单侧锚栓颗数: 3 颗 锚栓材质: Q235

三、计算结果: 最大压应力σmax=N/(B*L)+6*M/(B*L^2)= 10.95 N/mm2 最小压应力σmin=N/(B*L)-6*M/(B*L^2)=-9.39 N/mm2 压应力分布长度e=σmax/(σmax+|σmin|)*L= 495.28 mm 压应力合力至锚栓距离 x=d-e/3=-115.1 mm 压应力合力至轴心压力距离 a=L/2-e/3= 294.9 mm 锚栓所受最大拉力 Nt=(M-N*a)/x=-9764.47 KN 四、验算结果: 锚栓所受最大拉力 Nt = -9764.47KN < 3Ntk= 3* 49.4= 148.2 KN Ok! 满足要求!

三种典型地脚螺栓锚固能力探讨

三种典型地脚螺栓锚固能力探讨 摘要:本文对三种典型地脚螺栓端头形式的抗拉承载力进行了计算,重点考虑 了不同端头形式与埋置深度的关系;并在埋置深度一定时,计算抗拉承载力大小;在抗拉承载力一定的情况下,计算埋置深度的大小。分析了端头形式对抗拉承载 力的影响,认为对于锚板式地脚螺栓,在相同的抗拉承载力作用下,其埋置深度 要小于其余两种形式的地脚螺栓,并通过实际算例,证明了锚板式地脚螺栓布置 更加灵活,对地脚螺栓的设计与施工有一定的指导意义。 关键词:地脚螺栓;端部形式;抗拉强度;埋置深度 1.概述 地脚螺栓的作用是将设备牢固地连接起来,防止设备工作时发生移动或倾覆,并使设备在运行时所产生的不平衡力和振动传递到基础上去,保证设备的正常运转。 在美国核安全相关混凝土结构规范即ACI 349-06中对于锚板式地脚螺栓,参 考附录D 混凝土锚固中的计算方法和过程,可以设计出符合要求的锚板式地脚螺栓。对于弯钩式地脚螺栓和直勾式地脚螺栓,大多依靠设计经验或者直接从相应 的国标GB 799《地脚螺栓》中选取。在核电站的应用过程中,仅依靠设计经验等 方式选择的以上两种地脚螺栓过于保守,地脚螺栓需要埋入混凝土中的部分深度 很深;而现在核电站的设计需要考虑其建造的经济性,往往设备的布置空间紧凑,设备的混凝土基础的深度可能无法满足地脚螺栓所需埋深,需要在计算地脚螺栓 实际所需埋置深度的基础上适当调整便于布置。本文采用GB 50696-2011《钢铁 企业冶金设备基础设计规范》中对地脚螺栓锚固设计的方法,应用到弯钩式地脚 螺栓、直钩式地脚螺栓和锚板式地脚螺栓计算当中,对三种地脚螺栓的抗拉承载力、埋置深度进行对比分析;根据GB 50010中相关的条文说明,对三种地脚螺 栓端头形式的锚固能力进行了理论分析,得出结论。 三种典型的埋置式地脚螺栓示意图见图1。 图1 2.地脚螺栓抗拉承载力计算公式 在GB 50696-2011附录D D.0.3,地脚螺栓抗拉承载力设计值,应取按螺栓本 身受拉破坏、混凝土锥体破坏及螺栓与混凝土粘结破坏三种破坏模式计算得出的 承载力设计值中的最小值。根据GB 50696-2011附录D D.0.6的条文说明,当地脚 螺栓为非直杆螺栓时,则不考虑螺杆与混凝土之间的粘结力的作用。 针对本文中三种形式的地脚螺栓,假设三种地脚螺栓表面光滑,即混凝土对 螺栓没有粘结力作用。则地脚螺栓抗拉承载力设计值,应取按螺栓本身受拉破坏、混凝土锥体破坏得出的抗拉承载力设计值中的最小值。 2.1 地脚螺栓受拉破坏承载力设计值计算公式 地脚螺栓本身受拉承载力设计值计算公式: ——单个地脚螺栓抗拉承载力设计值,; ——地脚螺栓的抗拉强度设计值,; ——地脚螺栓的公称直径,。 对于钢材材质一定,地脚螺栓公称直径一定的条件下,对应地脚螺栓的受拉 承载力设计值是确定的,故不作展开分析。

地脚螺栓锚固长度问题

1.一般来说锚栓锚固长度取25d,弯头4d,另加外露丝扣长度150---200mm 2.地脚螺栓锚固长度根据锚固方式不同,取值不同,当螺栓采用1、2类锚固时时,取25d;当当螺栓采用3类锚固时时,取15d,具体取值可参见《建筑结构构造资料集》(下册)P145. 3.地脚螺栓锚固长度的计算可根据《混凝土结构设计规范》GB50010-2002 提供的公式(第114页): la=α*fy /ft *d 式中:la――锚栓的锚固长度; fy――锚栓的抗拉强度设计值 ft――混凝土轴心抗拉强度设计值 d――钢筋的公称直径 α――锚栓的的外形系数 锚栓直径大于25mm时,锚固长度应乘以修正系数1.1 钢筋的外形系数 钢筋类型光面钢筋带肋钢筋刻痕钢丝螺旋肋钢丝三股钢绞线七股钢绞线 α0.160.140.190.130.160.17 混凝土强度设计值 强度总类混凝土强度等级 C15C20C25C30C35C40 ft0.91 1.1 1.27 1.43 1.57 1.71

根据《钢结构设计规范》GB50017-2003所列数据显示,Q235的锚栓抗拉强度设计值为140N/mm2,Q345的锚栓抗拉强度设计值为180N/mm2。《架空送电线路杆塔结构设计技术规定》DL/T5154-2002所列数据显示,35#优质碳素钢锚栓抗拉强度设计值为190N/mm2,45#优质碳素钢锚栓抗拉强度设计值为215N/mm2。 经计算得地脚螺栓锚固长度(混凝土强度C20): Q235为22.4d(故实际取25d)Q345为28.8d(故实际取30d) 35#为30.4d(故实际取35d)45#为34.4d(故实际取35d)

地脚螺栓锚固长度问题

请教地脚螺栓锚固长度问题 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 以下是本人写的一个分析总结:锚栓锚固长度取值分析 一、问题的提出 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 结合具体工程实例:山东富伦钢厂余热回收锅炉框架,抗震设防烈度7度0.1g。经过计算地脚螺栓选用M20 Q235B,锚栓类型采用直钩锚栓。基础混凝土等级C20。 根据《钢结构设计手册上册》(第三版)表10-6 锚栓锚固长度为400mm。 根据《钢结构节点设计手册》(第二版)表9-75 锚栓锚固长度为520mm 根据《地脚螺栓(锚栓)通用图》HG/T21545-2006锚栓锚固长度为410×1.05=430mm 因此按哪本手册(图集)进行设计的问题就产生了。 二、分析计算 计算方法一: 地脚螺栓埋入基础中的的锚固长度属于混凝土结构范畴,地脚螺栓的有小直径面积及地脚螺栓的强度设计值属于钢结构范畴,因此地脚螺栓的锚固长度可根据《混凝土结构设计规范》GB50010-2002、与《钢结构设计规范》GB50017-2003进行分析计算, la=α×fy/ft×d (《混凝土结构设计规范》GB50010-2002 9.3.1-1) α取0.16 (《混凝土结构设计规范》GB50010-2002 表9.3.1) ft取1.1N/mm2(《混凝土结构设计规范》GB50010-2002 表4.14) fy取140 N/mm2(《钢结构设计规范》GB50017-2003 表3.4.1-4) la=0.16×140 N/mm2 / 1.1N/mm2×20mm=408mm 根据《建筑抗震设防分类标准》GB50223-95 7.04条余热锅炉框架为丙类建筑。 抗震等级三级(《混凝土结构设计规范》GB50010-2002 表11.1.4) laE=1.05 la=408×1.05=429mm 计算方法二: 根据二力平衡原理得出 理论公式: 根据上述计算方法可得出下表: 抗震设防等级6度基础混凝土等C20 地脚螺栓型号材质方法一计算结果节点手册结构手册图集理论公式M20 Q235B(Q345B) 408mm(525mm) 520mm(700mm) 400m m(500mm) 410mm(530mm) 496mm(638mm) M22 Q235B(Q345B) 448mm(576mm) 570mm(770mm) 440m m(550mm) 450mm(580mm) 559mm(719mm) M24 Q235B(Q345B) 489mm(629mm) 620mm(840mm) 480m m(600mm) 490mm(630mm) 596mm(766mm) 抗震设防等级7度基础混凝土等C20 地脚螺栓型号材质方法一计算结果节点手

地脚螺栓计算书2011.10.30

锚栓计算书: 1、锚栓一计算书(施工图结施-02) 说明:柱脚加抗剪件。计算柱脚锚栓受力: 1.锚栓排列信息 锚栓排列方式:矩形排列 长边边长:650.0(mm) 短边边长:300.0(mm) 长边锚栓数量:2(个) 短边锚栓数量:3(个) 2.锚栓物理力学信息 锚栓类型:第一种标准锚栓 锚栓材料:Q235 垫板厚度:30.0(mm) 锚栓直径:33.0(mm) 混凝土等级:C30 有效锚固长度:800.0(mm) 锚栓抗拉承载力设计值:119.681(kN) 3.荷载信息 (选取柱脚弯矩最大组合内力) 对应组合号: 219 M= -274.21 N = 106.17 V = -60.22 轴力设计值:106.170(kN) 剪力Fx设计值:0.000(kN) 剪力Fy设计值:0.000(kN) 弯矩Mx设计值:0.000(kN-m) 弯矩My设计值:-274.21(kN-m) 扭矩T 设计值:0.000(kN-m) 4. 计算结果: 各位置锚栓轴力计算结果 22.638 68.718 92.237 22.638 68.718 92.237 92.237 kN <119.681kN 5. 结论:锚栓轴力计算结果小于锚栓承载力。满足规范要求。

2、锚栓二计算书(施工图结施-02) 说明:柱脚加抗剪件。计算柱脚锚栓受力: 1.锚栓排列信息 锚栓排列方式:矩形排列 长边边长:650.0(mm) 短边边长:300.0(mm) 长边锚栓数量:2(个) 短边锚栓数量:3(个) 2.锚栓物理力学信息 锚栓类型:第一种标准锚栓 锚栓材料:Q235 垫板厚度:28.0(mm) 锚栓直径:30.0(mm) 混凝土等级:C30 有效锚固长度:750.0(mm) 锚栓抗拉承载力设计值:98.910(kN) 3.荷载信息 (选取柱脚弯矩最大组合内力): Mmax 对应组合号: 219 Mmax= 215.64 N = 145.91 V = 43.35 轴力设计值:141.91(kN) 剪力Fx设计值:0.000(kN) 剪力Fy设计值:0.000(kN) 弯矩Mx设计值:0.000(kN-m) 弯矩My设计值:215.64(kN-m) 扭矩T 设计值:0.000(kN-m) 4. 计算结果 各位置锚栓轴力计算结果(单位:kN) 76.964 68.718 22.683 76.964 68.718 22.683 76.964 kN <98.910 kN 5. 结论:锚栓轴力计算结果小于锚栓承载力。满足规范要求。

锚栓锚固长度取值分析

《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 请教各位前辈《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)是根据什么的出的锚固长度。 本人的计算方法上有何错误 以下是本人写的一个分析总结:锚栓锚固长度取值分析 一、问题的提出 《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。 结合具体工程实例:山东富伦钢厂余热回收锅炉框架,抗震设防烈度7度0.1g。经过计算地脚螺栓选用M20 Q235B,锚栓类型采用直钩锚栓。基础混凝土等级C20。 根据《钢结构设计手册上册》(第三版)表10-6 锚栓锚固长度为400mm。 根据《钢结构节点设计手册》(第二版)表9-75 锚栓锚固长度为520mm 根据《地脚螺栓(锚栓)通用图》HG/T21545-2006锚栓锚固长度为410×1.05=430mm 因此按哪本手册(图集)进行设计的问题就产生了。 二、分析计算 计算方法一: 地脚螺栓埋入基础中的的锚固长度属于混凝土结构范畴,地脚螺栓的有小直径面积及地脚螺栓的强度设计值属于钢结构范畴,因此地脚螺栓的锚固长度可根据《混凝土结构设计规范》GB50010-2002、与《钢结构设计规范》GB50017-2003进行分析计算, la=α×fy/ft×d (《混凝土结构设计规范》GB50010-2002 9.3.1-1) α取0.16 (《混凝土结构设计规范》GB50010-2002 表9.3.1) ft取1.1N/mm2(《混凝土结构设计规范》GB50010-2002 表4.14) fy取140 N/mm2(《钢结构设计规范》GB50017-2003 表3.4.1-4) la=0.16×140 N/mm2 / 1.1N/mm2×20mm=408mm 根据《建筑抗震设防分类标准》GB50223-95 7.04条余热锅炉框架为丙类建筑。 抗震等级三级(《混凝土结构设计规范》GB50010-2002 表11.1.4) laE=1.05 la=408×1.05=429mm 计算方法二: 根据二力平衡原理得出 理论公式:fy·Ae=2πr·la·ft 根据上述计算方法可得出下表: 抗震设防等级6度基础混凝土等C20 地脚螺栓型号材质方法一计算结果节点手册结构手册图集理论公式 M20 Q235B(Q345B) 408mm(525mm) 520mm(700mm) 400mm(500mm) 410mm(530mm) 496mm(638mm) M22 Q235B(Q345B) 448mm(576mm) 570mm(770mm) 440mm(550mm) 450mm(580mm) 559mm(719mm) M24 Q235B(Q345B) 489mm(629mm) 620mm(840mm) 480mm(600mm) 490mm(630mm) 596mm(766mm) 抗震设防等级7度基础混凝土等C20 地脚螺栓型号材质方法一计算结果节点手册结构手册图集理论公式 M20 Q235B(Q345B) 429mm(551mm) 520mm(700mm) 400mm(500mm) 431mm(557mm)

相关文档
最新文档