橡胶混炼胶物理性能指标探讨

橡胶混炼胶物理性能指标探讨
橡胶混炼胶物理性能指标探讨

一.拉伸强度

拉伸强度表征制品能够抵抗拉伸破坏的极限能力

·橡胶的拉伸强度:

未填充硫化胶:聚氨酯橡胶PUR>天然橡胶NR/异戊IR>氯丁橡胶CR>丁基橡胶IIR>氯磺化聚乙烯CSM>丁晴橡胶NBR/氟橡胶FKM>顺丁橡胶BR>三元乙丙橡胶EPDM>丁苯橡胶SBR>丙烯酸酯橡胶ACM>氯醇橡胶CO>硅橡胶Q

填充硫化胶:聚氨酯橡胶PUR>聚酯型热塑性弹性体>天然橡胶NR/异戊IR>SBS热塑性弹性体>丁晴橡胶NBR/氯丁橡胶CR>丁苯橡胶SBR/三元乙丙橡胶EPDM/氟橡胶FKM>氯磺化聚乙烯CSM>丁基橡胶IIR>顺丁橡胶BR/氯醇橡胶CO>丙烯酸酯橡胶ACM>硅橡胶Q

在快速形变下,橡胶的拉伸强度比慢速形变时高;高温下测试的拉伸强度,远远低与室温下的拉伸强度.

·硫化体系的影响

对常用的软质硫化胶而言,欲通过硫化体系提高拉伸强度时,应采用硫磺-促进剂的传统硫化体系,并适当提高硫磺用量.同时促进剂选用噻唑类如M,DM与胍类并用,并适当增加用量.

·填充体系的影响

*填料的粒径越小,比表面积越大,表面活性越大,则补强效果越好.

*结晶型(如天然橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大,可出现单调下降.

*非结晶型(如丁苯橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大而增大,达到最大值,然后下降.

*低不饱和度橡胶(如三元乙丙橡胶,丁基橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大而增大,达到最大值后可以保持不变.

*对热塑型弹性体而言,填充剂使其拉伸强度降低.

*一般情况下,软质橡胶的碳黑用量在40-60份时,硫化胶的拉伸性能比较好.

·软化体系的影响

总的来说,加入软化剂会降低硫化橡胶的拉伸强度.但软化剂数量不超过5份时,硫化橡胶的拉伸强度有可能增大.因为含有少量软化剂,可以使碳黑的分散效果好.

*芳氢油对非极性的不饱和橡胶(异戊橡胶,顺丁橡胶,丁苯橡胶)硫化胶的拉伸强度影响小.用量5-15份*石蜡油对非极性的不饱和橡胶(异戊橡胶,顺丁橡胶,丁苯橡胶)硫化胶的拉伸强度影响大.

*对极性的不饱和橡胶(如丁晴橡胶,氯丁橡胶),最好采用芳氢油和酯类软化剂(如DBP,DOP等)

·提高硫化胶拉伸强度的其他方法:

*橡胶和某些树脂共混;如天然胶,丁苯橡胶和高苯乙烯树脂共混.天然胶和聚乙烯共混.丁晴橡胶和聚氯乙烯共混,乙丙橡胶与聚丙烯共混.

*橡胶的化学改性.

*填料的改性==>使用表面活性剂或偶联剂.

二.撕裂强度

是由于材料中的裂纹或裂口受力时迅速扩大开裂而导致破坏的现象.

·各种橡胶(硫化胶)的撕裂强度:

天然橡胶NR>聚酯型热塑性弹性体>异戊橡胶IR>聚氨酯橡胶PUR>氯醇橡胶CO>丁晴橡胶NBR>丁基橡胶IIR>氯丁橡胶CR>氯磺化聚乙烯CSM>SBS热塑性弹性体>顺丁橡胶BR>丁苯橡胶SBR>三元乙丙橡胶EPDM>氟橡胶FKM>硅橡胶Q>丙烯酸酯橡胶ACM

·撕裂强度和硫化体系的关系:

*撕裂强度和交联密度的关系有一个极大值,一般随交联密度的增加,撕裂强度增大,并出现一个极大值;

然后随交联密度的增加,撕裂强度急剧下降.和拉伸强度类似,但最佳撕裂强度的交联密度不拉伸强度达到最佳值的交联密度要低。

*应采用硫磺-促进剂的传统硫化体系,硫磺用量2.0-3.0份.

*促进剂选用中等活性,平坦性好的品种,如DM,CZ等; 过硫影响大.

*在天然橡胶中,如果用有效硫化体系代替普通硫化体系时,撕裂强度明显降低.但过硫影响不大.

·撕裂强度和填充体系的关系:

*随碳黑粒径的减小,撕裂强度增加。

*结构度低的碳黑对撕裂强度的提高有利。

*在天然橡胶中增加高耐磨碳黑的用量,可以使撕裂强度增大。

*在丁苯橡胶中增加高耐磨碳黑的用量(60-70份),出现最大值,然后逐渐下降。

*一般合成橡胶特别是丁基橡胶,使用碳黑补强时,都可以明显的提高撕裂强度。

*使用各向同性的补强填充剂,如碳黑,白碳黑,白艳华,立德粉和氧化锌等,可以获得较高的撕裂强度。*而使用各向异性的补强填充剂,如陶土,碳酸镁等则不能获得较高的撕裂强度。

*某些偶联剂改性的无机填料,如用羧化聚丁二烯CPB改性的碳酸钙,氢氧化铝,也能提高丁苯橡胶的撕裂强度。

软化体系对撕裂强度的影响

*通常加入软化剂会使硫化胶的撕裂强度降低,尤其是石蜡油对丁苯橡胶硫化胶的撕裂强度极为不利。而芳氢油则可以保证丁苯橡胶硫化胶的撕裂强度。

*采用石油系软化剂作为丁晴橡胶和氯丁橡胶的软化剂时,应使用芳氢含量高于50-60%的高芳氢油,而不能使用石蜡油。

三.定伸应力和硬度

高定伸应力橡胶:氯丁橡胶,丁晴橡胶,聚氨酯橡胶,结晶型橡胶如天然橡胶等.

·

*不论是纯胶硫化还是填充硫化胶,随交联密度增加,定伸应力和硬度也随之直线上升.

交联密度的大小通常是通过调整硫化体系中的硫化剂,促进剂,助硫化剂,活性剂等配合剂的品种和用量类实现.

有的促进剂只有一种功能,有的促进剂具有多种功能;如秋兰姆类,胍类和次磺酰胺类促进剂的活性很高.其

硫化胶的定伸应力也比较高.

TMTD具有多种功能,兼有活化,促进及硫化作用,因此TMTD可以有效的提高定伸应力.

在配方设计中,为了保持硫化胶定伸应力恒定不变,需要减少多硫键含量而减少硫磺用量时,应当增加促进剂用量.使硫磺用量和促进剂用量之积(硫磺数量*促进剂用量)保持恒定.

·填充体系和定伸应力的关系:

*不同类型的填料对硫化胶定伸应力和硬度的影响是不同的:粒径小,活性大的填料,硫化胶定伸应力和硬度

提高的幅度较大.随填料用量的增加,定伸应力和硬度也随之增大.

*结构性高的碳黑其定伸应力也高.

*一般来说,硫化胶的硬度随填料用量的增加而增大.

四.磨耗

耐磨耗性表征硫化胶抵抗摩擦力作用下因表面破坏而使材料损耗的能力.

橡胶的磨耗主要以下三种形式:

1.磨损磨耗

2.疲劳磨耗

3.卷曲磨耗

硫化胶的耐磨耗性与拉伸强度,定伸应力,撕裂强度,疲劳性能以及粘弹性能有关.

定伸应力对不同类型的磨耗有不同的影响.定伸应力高时,摩擦表面上的凸它压入橡胶深度小,抗变形能力强,摩擦系数小,而且橡胶表面刚性大,不易打皱而引起卷曲,对磨损磨耗和卷曲磨耗有利.

提高硫化胶的弹性,耐磨耗性也会随之提高.

·胶种的影响:

*在通用的二烯类橡胶中,其硫化胶的耐磨耗性如下:

*顺丁橡胶>溶聚丁苯橡胶>乳聚丁苯橡胶>天然橡胶>异戊橡胶

顺丁橡胶硫化胶的耐磨耗性随顺式链节(1,4结构)含量的增加而提高

*丁苯橡胶弹性,拉伸强度,撕裂强度都不如天然橡胶,但却优于天然橡胶.

丁苯橡胶耐磨耗性随分子量的增加而提高.

丁晴橡胶硫化胶的耐磨耗性比异戊橡胶好,其耐磨性随丙烯晴含量增加而提高.羧基丁晴胶耐磨耗性好.

乙丙橡胶硫化胶的耐磨耗性,和丁苯橡胶相当,随生胶门尼粘度的提高,其耐磨耗性也随之提高.

丁基橡胶硫化胶的耐磨耗性,在20度时和异戊橡胶相近;但当温度升至100度时,耐磨耗性急剧降低.丁基橡胶采用高温混炼时,硫化胶的耐磨耗性显著提高.

以氯磺化聚乙烯为基础的硫化胶,具有较高的耐磨耗性,高温下的耐磨耗也好.

丙烯酸酯橡胶为基础的硫化胶,比丁晴橡胶硫化胶稍微差一点

聚氨酯橡胶是所有橡胶中在常温下耐磨耗性最好的一种.在高温下耐磨耗性急剧下降.

胶种: 磨耗量/MG

PUR 0.5-3.5

NBR 44

CR: 280

NR 146

SBR 177

IIR 205

·硫化体系和耐磨耗性的关系

硫化胶的耐磨耗性随硫化剂用量增大有一个最大值,耐磨耗性达到最佳状态时的最佳硫化程度,随碳黑用量增大及结构性提高而降低.

一般硫磺+促进剂CZ体系的耐磨耗性比较好.

以DTDM+硫磺(低于1.0份)+促进剂NOBS体系硫化胶耐磨耗性和其他力学性能比较好

以硫磺+CZ(主促进剂)+TMTD+DM+D(副促进剂)硫化天然胶时,硫磺用量1.8-2.5份.

以顺丁胶为主的胶料,硫磺用量为1.5-1.8份.

·填充体系和耐磨耗性的关系

通常硫化胶的耐磨耗性随碳黑粒径减小,表面活性和分散性的增加而提高。

在EPDM 胶料中添加50质量份的SAF 和ISAF碳黑的硫化胶,其耐磨耗性比填充等量FEF碳黑的耐磨性提高一倍。

各种橡胶的最佳填充量:BR》充油SBR》不充油SBR》IR》NR

用硅烷偶联剂处理的白碳黑也可以提高硫化胶的耐磨耗性。

·软化剂对硫化橡胶耐磨耗性的影响

通常在胶料中加入软化剂能降低硫化胶的耐磨耗性。

充油丁苯橡胶(SBR-1712)的硫化胶耐磨耗性比SBR-1500高1-2倍。

总的来说,在天然橡胶中和丁苯橡胶中采用芳径油,对耐磨耗的损失较小。

·耐磨耗性与防护体系的关系

在疲劳磨耗的条件下,胶料中添加防老剂可以提高硫化胶的耐磨耗性。

防老剂最好选用能防止疲劳老化的品种,具有优异的防臭老化的对苯二胺类防老剂,尤其是1019NA,效果突出。防老剂H,DPPD也有防止疲劳老化的效果,但因为喷霜限制其使用。

防老剂D对NR也有防止疲劳老化的效果。但对SBR无效。

在SBR中,防老剂IPPO对其疲劳老化有防护效果。

除N010NA外,UOP588(6PPD),DTPD,DPPD/H等也均有一定的防止疲劳老化的效果。

五.弹性

在通用橡胶中,顺丁橡胶,天然橡胶的弹性最好.

为降低天然橡胶的结晶能力,在天然橡胶中并用顺丁橡胶,可以使硫化胶的弹性增加.

·弹性和硫化体系的关系

随交联密度的增加,硫化胶弹性增大,并出现最大值,交联密度继续增大,弹性则呈下降趋势.适当提高硫化程度对弹性有利,也就是说硫化剂和促进剂的用量可以适当增加.

高弹性硫化体系的配合.选用硫磺+次磺酰胺例如S:CZ=2:1.5或硫磺/胍类S:DOTG=4:1.0

·弹性和填充体系的关系

橡胶的弹性完全是橡胶分子提供的,所以提高含胶率是提供高弹性的最直接最有效的方法.但为了降低成本,还要选用适当的填料.

碳黑粒径越小,表面活性越大,补强性能越好的碳黑,对硫化胶的弹性越不利.

各种橡胶的性能

各种橡胶的性能 橡胶材质材质说明优缺点经常用途 丁睛胶NBR (Nitrile Rubber)由丙烯睛与丁二烯共聚合而成, 丙烯睛含量由 18%~50% ,丙烯 睛含量愈高,对石化油品碳氢燃 料油之抵抗性愈好,但低温性能 则变差,一般使用温度范围为 -25~100 ℃。丁睛胶为目前油封 及 O 型圈最常用之橡胶之一。 优点: 具良好的抗油、抗水、抗溶剂及 抗高压油的特性。 具良好的压缩歪,抗磨及伸长 力。 缺点: 不适合用于极性溶剂之中,例如 酮类、臭氧、硝基烃, MEK 和 氯仿。 用于制作燃油箱、润滑油箱以及 在石油系液压油、汽油、水、硅 润滑脂、硅油、二酯系润滑油、 甘醇系液压油等流体介质中使 用的橡胶零件,特别是密封零 件。可说是目前用途最广、成本 最低的橡胶密封件。 氢化丁睛胶HNBR (Hydrogenate Nitrile)氢化丁睛胶为丁睛胶中经由氢 化后去除部份双链,经氢化后其 耐温性、耐候性比一般丁睛橡胶 提高很多,耐油性与一般丁睛胶 相近。一般使用温度范围为 -25~150 ℃。 优点: 较丁睛胶拥有较佳的抗磨性 具极佳的抗蚀、抗张、抗撕和压 缩歪的特性 在臭氧、阳光及其它的大气状况 下具良好的抵抗性 一般来说适用于洗衣或洗碗的 清洗剂中 缺点: 不建议使用于醇类,酯类或是芳 香族的溶液之中。 空调制冷业,广泛用于环保冷媒 R134a 系统中的密封件。 汽车发动机系统密封件。 氟橡胶FPM / FKM (Fluoro Carbon Rubber)分子内含氟之橡胶,依氟含量 ( 即单体构造 ) 而有各种类 型。目前广用的六氟化系氟橡胶 最早由杜邦公司以 "Viton" 商 品名上市。耐高温性优于硅橡 胶,有极佳的耐化学性、耐大部 分油及溶剂 ( 酮、酯类除 外 ) 、耐候性及耐臭氧性;耐 寒性则较不良,一般使用温度范 围为 -20~250 ℃。特殊配方可 耐低温至 -40 ℃。 优点: 可抗热至250 ℃ 对于大部份油品及溶剂都具有 抵抗的能力,尤其是所有的酸 类、脂族烃、芳香烃及动植物油 缺点: 不建议使用于酮类,低分子量的 酯类及含硝的混合物。 汽车、机车、柴油发动机及燃料 系统。 化工厂的密封件。 三元乙丙胶EPDM (Ethylene propylene Rubber)由乙烯及丙烯共聚合而成主链 不合双链,因此耐热性、耐老化 优点: 具良好抗候性及抗臭氧性 高温水蒸汽环境之密封件。 卫浴设备密封件或零件。

橡胶材料种类性能表

橡胶材料种类性能表 序 号 橡胶种类主要材料优点劣势适用范围使用温度 1 天然橡胶 (NR)异戊二烯聚合 物 优良的回弹性,拉 伸强度、伸长率、 耐磨性,撕裂和压 缩永久变形性能 不耐油,耐 天候、臭 氧、氧的性 能较差 制作轮胎、减 震零件、缓冲 绳和密封零件 -60~100℃ 2 丁苯橡胶 (SBR)丁二烯与苯乙 烯的共聚物 含10%苯乙烯的 丁苯-10有良好寒 性,含30%苯乙 烯的丁苯-30耐磨 性优良 耐油、耐老 化性能较差 制作轮胎和密 封零件 -60~120℃ 3 丁二烯橡 胶(BR)丁二烯聚合物常用的顺丁二烯橡 胶,耐寒、耐磨及 回弹性能较好 制品不耐 油,不耐老 化 适于制作轮 胎、密封零 件、减震零 件、胶带和胶 管等制品 -70~100℃ 4 氯丁橡胶 (CR)氯丁二烯聚合 物 耐天候,耐臭氧老 化,有自熄性,耐 油性能仅次于丁腈 橡胶,拉伸强度、 伸长率、回弹性优 良,与金属和织物 粘结性很好 制品不耐合 成双酯润滑 油及磷酸酯 液压油 适于制作密封 圈及密封型 材、胶管、涂 层、电线绝缘 层、胶布及配 制胶粘剂等 -35~130℃ 5 丁腈橡胶 (NBR)丁二烯丙烯腈 的共聚物 一般含丙烯腈 18%、26%或 40%,含量愈高, 耐油、耐热、耐磨 性能愈好,但耐寒 性则相反。含羧基 的丁腈橡胶,耐 磨、耐高温、耐油 性能优于丁腈橡胶 制品不耐天 候、不耐臭 氧老化、不 耐磷酸酯液 压油 丁腈橡胶适于 制作各种耐油 密封零件、膜 片、胶管和软 油箱 -55~130℃ 6 乙丙橡胶 (EPM、 EPDM )乙烯、丙烯的 二元共聚物 (EPM)或乙 烯、丙烯、二 烯类烯烃的三 元共聚 (EPDM) 耐天候、耐臭氧老 化,耐蒸汽、磷酸 酯液压油、酸、碱 以及火箭燃料和氧 化剂,电绝缘性能 优良 品不耐石油 基油类 适于制作磷酸 酯液压油系统 的密封零件、 胶管及飞机、 汽车门窗密封 型材、胶布和 电线绝缘层 -60~150℃ 7 丁基橡胶 (IIR)异丁烯和异戊 二烯的共聚物 耐天候、臭氧老 化,耐磷酸酯液压 油,耐酸、碱、火 箭燃料及氧化剂, 制品不耐石 油基油类 适于制作轮胎 内胎,门窗密 封条,磷酸酯 液压油系统的 -60~150℃

丁苯橡胶的塑炼和混炼

丁苯橡胶的塑炼和混炼 宋啸 北京石油化工学院高063班 摘要:简单介绍了乳聚丁苯橡胶的塑炼和混炼方法。 关键词:丁苯橡胶塑炼混炼 丁苯橡胶是产量最大的通用合成橡胶,是橡胶工业的骨干产品,它是合成橡胶第一大品种,综合性能良好,价格低,在多数场合可代替天然橡胶使用,主要用于轮胎工业,汽车部件、胶管、胶带、胶鞋、电线电缆以及其它橡胶制品。下面介绍丁苯橡胶的两种加工技术——塑炼和混炼。 1 丁苯橡胶的塑炼 丁苯橡胶可以通过调节平均分子量来改善其加工性能,一般来说,丁苯橡胶的门尼粘度多在35—60之间。因此丁苯橡胶也可不用塑炼。但实际上经过塑炼后,可增进配合剂的分散性,有助于提高产品质量。特别是海绵橡胶创品,丁苯橡胶经过塑炼后,容易发泡,且泡孔大小均匀。因此,丁苯橡胶与天然橡胶一样,塑炼也是重要工艺之一。 1.1塑炼与分子量分布 丁苯橡胶的加工性能不仅受微观结构如顺式、反式及乙烯型等的影响,而且也受其平均分子量与分子量分布的影响。经过塑炼后,橡胶分子量中的大分子发生解聚,使得平均分子量降低,加工性能改善。研究表明丁苯橡胶比在相同条件下薄通的天然橡胶塑炼效果小,但高粘度的丁苯橡胶有较明显的塑炼效果。 1.2塑炼条件对塑炼效果的影响 丁苯橡胶塑炼时,炼胶机的辊筒转速、速比、辊距及橡胶混度等各种条件对塑炼效果均有影响。 辊筒速比愈大,亦即前后辊筒平均转速愈快,则塑炼效果亦愈大。此时也意味着橡胶通过辊缝次数愈多,塑炼效果愈好。另外根据炼胶机的塑炼条件,存在一定的极限粘度。随着辊筒平均转速的增加,辊距的减小及橡胶温度的降低极限粘度值也低。要想在某个极限粘度以下进行塑炼时,需要变换塑炼条件以适应低极限粘度要求。 辊筒大小对塑炼效果没有多大影响,而辊距大小确有显著影响。辊筒温度愈低,塑炼效果越大。辊距愈小,速比愈大,塑炼橡胶的门尼粘度愈低。 1.3塑炼条件与凝胶生成 塑炼温度对丁苯橡胶的塑炼效果影响颇大,当塑炼辊温超过120o C时,会迅速产生凝胶。在150o C时凝胶生成可高达44.3%,一般认为,在这么高温度下生成的凝胶属于自动氧化类型。凝胶含量与门尼粘度之间不一定成比例,在凝胶含量非常高时,会出现假门尼现象,门尼粘度反而会低。另外辊筒收缩性与凝胶含量关系也不大,与上述门尼现象相似。 1.4塑炼对硫化橡胶的影响 对不同塑炼程度的丁苯橡胶1502和丁苯橡胶1507进行温炼,其硫化橡胶橡胶物理性能要有所变化,研究结果表明,在塑炼过度时有降低抗张强度的趋向。 2 丁苯橡胶的混炼 丁苯橡胶混炼系指在其塑炼胶中均匀混入硫化剂、补强剂、软化剂等配合剂的作业。混炼胶质量对最终产品物理性能有直接影响,因此要认真操作。丁苯橡胶在设计时虽已考虑了使其易于加工,但由于聚合温度、乳化剂种类、结合苯乙烯含量及凝聚剂种类等制造条件的变化,也会产生种种性质上的差别。因此日本工业标准(JIS)在丁苯橡胶的试验方法中规定了

各种橡胶性能一览表

各种橡胶性能一览表 Prepared on 24 November 2020

注:芳香烃溶剂对硅橡胶有影响,采用氟硅橡胶可获得良好的耐芳香烃性。 材质 Material 物性 Physical 天然 橡胶 (NR) Natu ral Rubb er 丁 苯 橡 胶 (SB R) 丁 基 橡 胶 (II R) But yl 三 元 乙 丙 橡 胶 EP D M 氯丁橡胶 (CR) Neoprene 丁 腈 橡 胶 (N BR )Nit rile 聚氨 脂 (PU) Uret hane 硅 (硅) 胶 (SR) Silic one 氯 磺 化 聚 乙 烯 胶 ( C S M

) H y p al o n PHYSI CALPR OPERT IES一般物性 比重 Specific Gravity 硬度范围 Hardness Rang(Sho re A°) 30- 100 35- 100 30- 90 30- 90 35-95 30- 100 55- 100 20- 90 4 0- 9 0 最大搞张 强度 Tensile Strength Max(psi 4000 300 250 300 3000 300 3000 1500 3 0 最大延伸 率 Elongatio n Max(% 750 600 700 600 600 600 750 800 6 0 回复力 Resilience E G P- F G G-E F-G F-E F-G F - G 压缩变形 Compress ion Set G F P- G G F-G G G-E G-E F - G 不透气性 Impermea blity to Gases F F E F F- G G P-F P-F G 抗屈曲龟 裂Flex Cracking Resistanc e F G G G G F G-E F-E G 抗撕裂性 Tear Strength E F G F- G F-G F-G E P-F F - G 耐磨性 Abrasion Resistanc e E G-E G G- E G-E G- E E P-F G - E 抗冲击强 度Impact Strength E E G G G-E F-G G-E P-G G

橡胶塑炼与混炼

一 生胶的塑炼工艺 生胶的塑炼原理 一.塑炼的定义 通过机械应力、热、氧或加入某些化学试剂等方式,使橡胶由强韧的高弹性状态转变为柔软的塑性状态的过程。 塑性(可塑性):橡胶在发生变形后,不能恢复其原来状态,或者说保持其变形状态的性质。

二.塑炼的目的和要求 1.塑炼的目的 减小弹性,提高可塑性;降低粘度;改善流动性;提高胶料溶解性和成型粘着性。 2.塑炼胶的质量要求 (1)可塑度要适当 应满足加工工艺要求,在此基础上应具有最小的可塑性。过度塑炼会降低硫化胶的强度、弹性、耐磨性等,而且会增加动力消耗。 塑炼程度:根据混炼胶工艺性能和制品性能的要求来确定。 如:供胶、浸胶、刮胶、擦胶和制造海绵等用途的胶料,要求的可塑度较大,生胶的塑炼程度要高些。供模压用的胶料,则要求可塑性宜小。 一般:胶管外层胶可塑度:~; 胶管内层胶:~; 胎面胶:~; 胎侧胶左右; 海绵胶~ (2)塑炼均匀 三.生胶的增塑方法和原理 (一)增塑方法 (二)塑炼原理 生胶的分子量与可塑性有着密切的关系。分子量越小,可塑性就越大。生胶经过机械塑炼后,分子量降低,粘度下降,可塑性增大。由此可见,生胶在塑炼过程中,可塑性的提高是通过分子量的降低来实现的。 η0—聚合物熔体的最大粘度;A—特性常数;M W—聚合物的重均分子量 1.机械塑炼过程机理 在低温下:在机械力作用下首先切断橡胶大分子链生成大分子自由基。 (机械力引发橡胶大分子的断链,氧作为自由基接受体,起着阻断自由基的作用。) 在高温下:机械力切断橡胶大分子生成自由基的几率减少。橡胶大分子在机械力的活化作用下,氧引发橡胶大分子的断链。 (机械力起到应力活化作用,氧作为自由基引发体,引发橡胶大分子的断链。) 链终止:橡胶氢过氧化物不稳定,分解生成较小的大分子,连锁反应终止。 2.影响塑炼的因素: (1)机械力的作用 根据理论分析,机械力对橡胶分子的断链作用,可表示为: 式中ρ—分子链断链的几率;K1、K2—常数;E—分子链的化学键能;F0—作用于分子链上的

各种橡胶基本特性(精)

1.3 、应用范围:主要用于制作耐油橡胶制品,广泛用于制造密封件、垫片、垫圈等模制品和压出制品,各种橡胶胶辊、耐油胶管、工业用品和粘合剂等等。 2. 羧基丁腈橡胶(XNBR 2.1 :基本特性: 2.1.1 硫化速度比丁腈胶快,易焦烧。 2.1.2 纯胶配合显示高的拉伸强度。 2.1.3 硫化胶的耐热性、耐磨性好。 2.1.4 与酚酫树脂相容性好。 2.2 、应用范围:主要用于胶管、密封件、垫圈、油封、各种模型制品和粘合剂等。

3 、丁腈橡胶 - 聚氯乙烯共混胶(NBR/PVC 3.1 、基本特性: 3.1.1 耐臭氧和耐天候老化性能比通常丁腈橡胶显著提高。 3.1.2 比通常丁腈橡胶提高了耐燃性。 3.1.3 耐磨耗、耐油性、耐化学药品等性能比通常丁腈橡胶有所改善。 2.1.4 提高了压出、压延工艺性能。 2.1.5 可任意着色制作艳色制品。 2.1.6 低温特性、弹性降低,压缩变形增大。 2.1.7 比通常的聚氯乙烯改善了低温特性、耐油性、伸长率等。 3.2 应用范围:主要用于电线电缆护套,油管和燃油管外层胶,皮辊和皮圈,汽车模压零件,微孔海绵,发泡绝热层,安全靴和防护涂层等。 4 、氢化丁腈橡胶(HNBR 4.1 、基本特性 4.1.1 氢化丁腈橡胶虽经氢化饱和,但仍然保持原丁腈的特性。具有拉伸结晶性,因而强度较高。 4.1.2 有良好的耐热和耐臭氧、耐天候老化性能以及耐化学酸碱性能。 4.1.3 良好的耐技术液体(包括含腐蚀添加物的油类的溶胀性能。 4.1.4 良好的机械性能,即使在温升条件下仍保持相当水平。 4.1.5 在极有害的条件下,有显著的耐磨耗性能。

物理性能名词解释

聚合物性能指标解释 1、拉伸强度 拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。 (1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa 表示。 (2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。 (3)拉伸强度的计算: σt = p /( b×d) 式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。 注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。(4)在应力应变曲线中,即使负荷不增加,伸长率也会上升的那一点通常称为屈服点,此时的应力称为屈服强度,此时的变形率就叫屈服伸长率;同理,在断裂点的应力和变形率就分别称为断裂拉伸强度和断裂伸长率。 2、弯曲模量 又称挠曲模量。是弯曲应力比上弯曲产生的形变。材料在弹性极限内抵抗弯曲变形的能力。E为弯曲模量;L、b、d分别为试样的支撑跨度、宽度和厚度;m为载荷(P)-挠度(δ)曲线上直线段的斜率,单位为N/m2或Pa。 弯曲模量与拉伸模量的区别: 拉伸模量即拉伸的应力与拉伸所产生的形变之比。 弯曲模量即弯曲应力与弯曲所产生的形变之比。 弯曲模量用来表征材料的刚性,与分子量大小有关,同种材质分子量越大,模量越高,另外还与样条的冷却有关,冷却越快模量越低。即弯曲模量的测试结果与样品的均匀度及制样条件有关,测试结果相差太大,无意义,应找到原因再测试。 2GB/T9341—2000中弯曲模量的计算方法。新标准中规定了弹性模量的测量,先根据给定的弯曲应变εfi=0.0005和εfi=0.0025,得出相应的挠度S1和S2(Si=εfiL2/6h),而弯曲模量Ef=(σf2-σf1)/(εf2-εf1)。其中σf2和σf1分别为挠度S1和S2时的弯曲应力。新标准还规定此公式只在线性应力-应变区间才是精确的,即对大多数塑料来说仅在小挠度时才是精确的。由此公式可以看出,在应力-应变线性关系的前提下,是由应变为0.0005和0.0025这两点所对应的应力差值与应变差值的比值作为弯曲模量的。 附:弹性模量 弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。因合金成分不同、热处理状态不同、冷塑性变形不同等,金属材料的杨氏模量值会有5%或者更大的波动。但是总体来说,金属材料的弹性模量是一个对组织不敏感的力学性能指标,合金化、热处理(纤维组织)、冷塑性变形等对弹性模量的影响较小,温度、加载速率等外在因素对其影响也不大,所以一般工程应用中都把弹性模量作为常数。 弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。

混炼橡胶物理性能

一.拉伸强度 拉伸强度表征制品能够抵抗拉伸破坏的极限能力 ·橡胶的拉伸强度: 未填充硫化胶:聚氨酯橡胶PUR>天然橡胶NR/异戊IR>氯丁橡胶CR>丁基橡胶IIR>氯磺化聚乙烯CSM>丁晴橡胶NBR/氟橡胶FKM>顺丁橡胶BR>三元乙丙橡胶EPDM>丁苯橡胶SBR>丙烯酸酯橡胶ACM>氯醇橡胶CO>硅橡胶Q 填充硫化胶:聚氨酯橡胶PUR>聚酯型热塑性弹性体>天然橡胶NR/异戊IR>SBS热塑性弹性体>丁晴橡胶NBR/氯丁橡胶CR>丁苯橡胶SBR/三元乙丙橡胶EPDM/氟橡胶FKM>氯磺化聚乙烯CSM>丁基橡胶IIR>顺丁橡胶BR/氯醇橡胶CO>丙烯酸酯橡胶ACM>硅橡胶Q 在快速形变下,橡胶的拉伸强度比慢速形变时高;高温下测试的拉伸强度,远远低与室温下的拉伸强度. ·硫化体系的影响 对常用的软质硫化胶而言,欲通过硫化体系提高拉伸强度时,应采用硫磺-促进剂的传统硫化体系,并适当提高硫磺用量.同时促进剂选用噻唑类如M,DM与胍类并用,并适当增加用量. ·填充体系的影响 *填料的粒径越小,比表面积越大,表面活性越大,则补强效果越好. *结晶型(如天然橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大,可出现单调下降. *非结晶型(如丁苯橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大而增大,达到最大值,然后下降. *低不饱和度橡胶(如三元乙丙橡胶,丁基橡胶)为基础的硫化胶,拉伸强度随填充剂用量增大而增大,达到最大值后可以保持不变. *对热塑型弹性体而言,填充剂使其拉伸强度降低. *一般情况下,软质橡胶的碳黑用量在40-60份时,硫化胶的拉伸性能比较好. ·软化体系的影响 总的来说,加入软化剂会降低硫化橡胶的拉伸强度.但软化剂数量不超过5份时,硫化橡胶的拉伸强度有可能增大.因为含有少量软化剂,可以使碳黑的分散效果好. *芳氢油对非极性的不饱和橡胶(异戊橡胶,顺丁橡胶,丁苯橡胶)硫化胶的拉伸强度影响小.用量5-15份

几种常用橡胶性能比较

几种常用橡胶性能比较 天然橡胶(NR) 天然橡胶由三叶树采集制成的弹性体,机械强度高、耐磨、耐压、伸长率高、弹性高、滞后损失小,能耐多次屈挠弯曲变形,适合纸厂、木业、家具、涂布、输送等胶辊应用。本厂天然橡胶分别使用印度尼西亚、泰国和海南三种产地,硬度可以在邵氏3 0~10 0 ° A调制。 丁腈橡胶(NBR) 首先由德国在30年代研制而成,因含丙烯腈,所以对矿物油、动植物油、液体燃料和脂肪族溶剂有较高的稳定性,耐油性是丁腈橡胶最大的特长。耐热性能好,能耐一般化学品优于通用橡胶。配合法国特种油膏,着墨性能优。广泛用于印刷类胶辊,配合耐酸碱物质、耐热剂,用于浆染、印染、砂辊。因耐磨性能比天然橡胶大30%左右,也是做其它滚轮比较理想的弹性体。采用的丁腈胶台湾南帝(NANCAR)系列、日本合成橡胶公司(JSR)系列,日本瑞翁公司丁腈橡胶,硬度可以在邵氏20~100 ° A调制。 三元乙丙橡胶(EPDM) 三元乙丙橡胶作为半通用合成橡胶,其使用温度范围-55~150℃之间。三元乙丙橡胶具有突出的耐臭氧性、耐侯性、耐水性、耐热性、耐蒸汽、耐化学药品(如氨水、酒精、双氧水、盐、硫酸、烧碱、石灰等)性能。适用于高要求的高速水墨印刷辊及化工、电镀、电子、纺织、染整、丝光和人造革类所用胶辊等使用。 氯丁橡胶(CR) 30年代美国公司生产的氯丁橡胶,改变了人们对橡胶易燃特点的看法,氯丁橡胶作为一种通用型特种橡胶,耐油性次于丁腈橡胶,优于通用橡胶,具有耐燃性、耐臭氧性、耐热老化性优异,耐化学品性能好,透气率小,其弹性与通用橡胶相当。适用于印刷类胶辊、耐碱类浆纱辊、浆染胶辊等使用。 氯磺化聚乙烯/海泊隆(CSM)

各种橡胶的性能

各种橡胶的性能材质材质说明优缺点经常用途 丁睛胶NBR (Nitrile Rubber)由丙烯睛与丁二烯共聚合而成, 丙烯睛含量由 18%~50% ,丙烯睛 含量愈高,对石化油品碳氢燃料 油之抵抗性愈好,但低温性能则 变差,一般使用温度范围为 -25~100 ℃。丁睛胶为目前油封 及 O 型圈最常用之橡胶之一。 优点: 具良好的抗油、抗水、抗溶剂及 抗高压油的特性。 具良好的压缩歪,抗磨及伸长力。 缺点: 不适合用于极性溶剂之中,例如 酮类、臭氧、硝基烃, MEK 和氯 仿。 用于制作燃油箱、润滑油箱以及 在石油系液压油、汽油、水、硅 润滑脂、硅油、二酯系润滑油、 甘醇系液压油等流体介质中使用 的橡胶零件,特别是密封零件。 可说是目前用途最广、成本最低 的橡胶密封件。 氢化丁睛胶HNBR (Hydrogenate Nitrile)氢化丁睛胶为丁睛胶中经由氢化 后去除部份双链,经氢化后其耐 温性、耐候性比一般丁睛橡胶提 高很多,耐油性与一般丁睛胶相 近。一般使用温度范围为 -25~150 ℃。 优点: 较丁睛胶拥有较佳的抗磨性 具极佳的抗蚀、抗张、抗撕和压 缩歪的特性 在臭氧、阳光及其它的大气状况 下具良好的抵抗性 一般来说适用于洗衣或洗碗的清 洗剂中 缺点: 不建议使用于醇类,酯类或是芳 香族的溶液之中。 空调制冷业,广泛用于环保冷媒 R134a 系统中的密封件。 汽车发动机系统密封件。 氟橡胶FPM / FKM (Fluoro Carbon Rubber)分子内含氟之橡胶,依氟含量 ( 即单体构造 ) 而有各种类型。 目前广用的六氟化系氟橡胶最早 由杜邦公司以 "Viton" 商品名 上市。耐高温性优于硅橡胶,有 极佳的耐化学性、耐大部分油及 溶剂 ( 酮、酯类除外 ) 、耐候 性及耐臭氧性;耐寒性则较不良, 一般使用温度范围为 -20~250 ℃。特殊配方可耐低温 至 -40 ℃。 优点: 可抗热至250 ℃ 对于大部份油品及溶剂都具有抵 抗的能力,尤其是所有的酸类、 脂族烃、芳香烃及动植物油 缺点: 不建议使用于酮类,低分子量的 酯类及含硝的混合物。 汽车、机车、柴油发动机及燃料 系统。 化工厂的密封件。 三元乙丙胶EPDM (Ethylene propylene Rubber)由乙烯及丙烯共聚合而成主链不 合双链,因此耐热性、耐老化性、 耐臭氧性、安定性均非常优秀, 优点: 具良好抗候性及抗臭氧性 具极佳的抗水性及抗化学物 高温水蒸汽环境之密封件。 卫浴设备密封件或零件。 制动 ( 刹车 ) 系统中的橡胶零

各种橡胶性能一览表

各种橡胶性能的比较表 天然橡胶NR 聚 戊 二 烯 橡 胶 IR 丁 苯 橡 胶 SBR 聚 丁 二 烯 橡 胶 BR 乙 丙 橡 胶 EP DM 丁 基 橡 胶 IIR 氯 丁 橡 胶 CR 丁 腈 橡 胶 NB R 聚 硫 橡 胶 PT R 硅橡 胶 Silico ne 聚 氨 酯 橡 胶 AU EU 抗张强度 (纯胶料)极 好 极 好 差差差 中 等 好差差差- 抗张强度 (补强胶料)极 好 极 好 好 - 极 好 好 好- 极 好 好 好 - 极 好 极 好 中 等 中等 好- 极 好 抗撕裂性 (冷)好 中 等 差 - 中 极 好 好好好 中 等 好中等好

等 (热)好好 中 等极 好 极 好 中 等 好差差差好 耐磨性 极 好好 好 - 极 好 极 好 极 好 中 等 - 好 极 好 极 好 中 等 中等 极 好 抗自然老 化性差差差 差 - 中 等 极 好 好 - 极 好 极 好 中 等 极 好 极好 极 好 抗氧化性好好好好 极 好好 - 极 好 好 中 等 极 好 极好 极 好 耐热性好好好好好 好 - 好好 中 等 极好 中 等-

极 好 好 低温屈挠性极 好 极 好 好 极 好 好 中 等 中 等 中 等 好极好 极 好 压缩变形中 等 - 好 中 等 - 好 差 - 中 等 好好 中 等 差 - 好 好 差 - 中 等 极好好 不渗透性 中 等好 中 等 差 - 中 等 差- 中 等 极 好 好 极 好 极 好 中等好 阻燃性差差差差差差 极 好 差差中等差 耐?性好好好好好 极 好好 中 等 好-好

耐酸性 (稀)好好 中 等 - 好 好好 极 好 极 好 好好好好 (浓)中 等 - 好 中 等 - 好 中 等 - 好 好好 极 好 好 中 等 差中等 中 等 电气性能好 - 极 好 好 - 极 好 好好 极 好 好 - 极 好 差 - 中 等 差好极好 好- 极 好 耐溶剂性 脂肪烃差差差差差差好 极 好极 好 好好 芳香烃差差差差差差中中极好差

力学性能指标

力学性能指标:拉伸强度、断裂伸长率、硬度、弹性模量、冲击强度。 影响力学性能的因素:温度、拉伸速度、环境介质、压力等。 弹性变形特点:可逆变形虎克定律弹性变形量很小,一般不超过0.5%-1% 材料的弹性模量主要取决于结合键的本性和原子间的结合力,而材料的成分和组织对它的影响不大共价键的弹性模量最高. 弹性比功:又称弹性比能,表示金属材料吸收弹性变形功的能力。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。 循环韧性的意义:循环韧性越高,机件依靠自身的消振能力越好,所以高循环韧性对于降机器的噪声,抑制高速机械的振动,防止共振导致疲劳断裂意义重大 金属材料常见的塑性变形方式滑移和孪生 金属应变硬化机理与高分子应变硬化机理的区别:金属机理:位错的增殖与交互作用导致的阻碍高分子机理:发生应变诱导结晶、分子链接近最大伸长 韧性断裂:金属断裂前产生明显的宏观塑性变形的断裂,有一个缓慢的撕裂过程,在裂纹扩展过程中不断消耗能量。脆性断裂:突然发生断裂,基本上不发生塑性变形,没有明显征兆,因此危害性很大。 α值越大,表示应力状态越“软”,金属越易于产生塑性变形和韧性断裂。α值越小,表示应力状态越“硬”,金属越不易于产生塑性变形而易于产生脆性断裂。拉伸时塑性很好的材料,在压缩时只发生压缩变形而不断裂。硬度:布氏、洛氏、维氏 缺口效应:缺口根部产生应力集中,同时缺口截面上的应力分布发生改变。 断裂韧性:由于裂纹破坏了材料的均匀连续性,改变了材料内部应力状态和应力分布,所以机件的结构性能就不再相似于无裂纹的试样性能,传统的力学强度理论就不再适用。 断裂力学就是在这种背景下发展起来的一门新型断裂强度科学,是在承认机件存在宏观裂纹的前提下,建立了裂纹扩展的各种新的力学参量,并提出了含裂纹体的断裂判据和材料断裂韧度。 分析裂纹体断裂问题的方法:应力应变分析方法:考虑裂纹尖端附近的应力场强度,得到相应的断裂K判据。(2) 能量分析方法:考虑裂纹扩展时系统能量的变化,建立能量转化平衡方程,得到相应的断裂G判 KI和KIC的区别:应力场强度因子KI增大到临界值KIC时,材料发生断裂,这个临界值KIC称为断裂韧度。KI是力学参量,与载荷、试样尺寸有关,而和材料本身无关。KIC是力学性能指标,只与材料组织结构、成分有关,与试样尺寸和载荷无关。根据KI和KIC的相对大小,可以建立裂纹失稳扩展脆断的断裂K判据,由于平面应变断裂最危险,通常以KIC为标准建立: 应力腐蚀现象:在应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆性断裂现象。 应力腐蚀产生的条件:(1)必须有应力,特别是拉应力的作用, 远低于材料的屈服强度,是脆性断裂;(2)对一定成分的合金,只有在特定介质中才发生应力腐蚀断裂;(3)应力腐蚀断裂速度约为10-8-10-6 m/s数量级的范围内,远大于没有应力时的腐蚀速度,又远小于单纯力学因素引起的断裂速度。 机理:当应力腐蚀敏感的材料置于腐蚀介质中,首先在金属的表面形成一层保护膜,它阻止了腐蚀进行,即所谓“钝化”。由于拉应力和保护膜增厚带来的附加应力使局部地区的保护膜破裂,破裂处金属直接暴露在介质中,成为微电池的阳极,产生阳极溶解。阳极小阴极大,所以溶解速度很快,腐蚀到一定程度又形成新的保护膜,但在拉应力的作用下又可能重新破坏,发生新的阳极溶解。这种保护膜反复形成反复破裂的过程,就会使某些局部地区腐蚀加

常用橡胶性能一览表

常用橡胶性能一览表 橡胶材质概述特性用途 丁腈胶(NBR ) 由丁二烯与丙烯 腈经乳液聚合而得 的共聚物,称丁二 烯-丙烯腈橡胶, 简称丁腈橡胶。它 的含量是影响丁腈 橡胶性能的重要指 针。并以优异的耐 油性着称。 耐油性最好,对非极性和弱极性油类 基本不溶胀。 耐热氧老化性能优于天然、丁苯等 通用橡胶。 耐磨性较好,其耐磨性比天然橡胶 高30%-45% 。 耐化学腐蚀性优于天然橡胶,但对 强氧化性酸的抵抗能力较差。 弹性、耐寒性、耐屈挠性、抗撕裂 性差,变形生热大。 电绝缘性能差,属于半导体橡胶, 不宜作电绝缘材料使用。耐臭氧性能 較差。 加工性能較差。 用于制作接触油类 的胶管、胶辊、密 封垫圈、贮槽衬 里,飞机油箱衬里 以及大型油囊等。 可制造运送热物料 的运输带。 乙丙胶(EPD M) 是由乙烯、丙烯 为基础单体合成的 共聚物。橡胶分子 链中依单体单元组 成不同有二元乙丙 橡胶和三元乙丙橡 胶之分。 耐老化性能优异,被誉为“无龟 裂”橡胶。 优秀的耐化学药品性能。卓越的耐 水、耐过热水及耐水蒸气性。 优异的电绝缘性能。低密度和高填 充特性。乙丙胶具有良好的弹性和抗 压缩变形性。 不耐油。 硫化速度慢,比一般合成橡胶慢3-4 倍。 自黏性和互黏性都很差,给加工工 艺带来困难。 汽车零件:包括轮 胎胎侧及胎侧覆盖 胶条等。電氣製 品:包括高、中、 低壓電纜絕緣材料 等。工业制品:耐 酸、碱、氨、及氧 化剂等;各种用途 的胶管、垫圈;耐 热输送带和传动带 等。 建筑材料:桥梁工 程用橡胶制品,橡 胶地砖等。其它方 面:橡皮船、游泳 用气垫、潜水衣 等。其使用寿命比 其它通用橡胶高。

橡胶工艺学第12章

第十二章混炼工艺 混炼:通过适当的加工将配合剂与生胶均匀混合在一起,制成质量均一的混合物的工艺过程。 混炼胶的质量要求:(1)胶料应具有良好的加工工艺性能;(2)保证成品具有良好的使用性能。 §12.1 混炼前的准备 一.原材料与配合剂的质量检验 通常对配合剂检验的内容主要有:纯度、粒度及分布、机械杂质、灰分及挥发分含量、酸碱度等。具体依配合剂类型不同而异。 生胶一般检验化学成分、门尼粘度及物理机械性能。 二.配合剂的补充加工 (一)粉碎 块状和粗粒状配合剂必须经过粉碎或磨细处理才能使用,如沥青、松香和古马隆等固体用粉碎机粉碎。 (二)干燥 干燥的目的是减少配合剂中的水分和其他挥发分含量,防止粉末状配合剂结团,便于筛选和混炼分散,避免某些配合剂遇水变质和胶料内部产生气泡和海绵。 干燥方式可采用真空干燥箱、干燥室或螺旋式连续干燥机等。 (三)熔化与过滤及加温 低熔点固体软化剂如石蜡和松香等须进行加热熔化,达到干燥脱水和降低粘度作用后,再经过滤去掉其中的机械杂质。 (四)筛选 粉末状固体软化剂粒度及粒度分布达不到规定标准的,或已经发生配合剂结团及含有机械杂质的必须经过筛选加工,去掉其中的机械杂质、较大颗粒与结团。 三.油膏和母炼胶的制造 油膏:为了使配合剂易于在胶料中混合分散,减少飞扬损失造成环境污染,保证胶料的混炼质量,将某些配合剂、促进剂等事先以较大比例与液体软化剂混合制成膏状混合物。 母炼胶:将在通常混炼条件下短时间内难以混合均匀且混炼生热量多,能耗较大的某些配合剂以较大的比例事先与生胶单独混合制成组分比较简单的混合物料。最常见的有促进剂母胶、炭黑母胶、化学塑解剂母胶等。 四.称量配合 要求称量配合操作做到:精密、准确、不漏、不错。 称量配合的操作方式有两种:(1)手工操作;(2)机械化自动称量配合。

技术指标和性能指标

电位滴定仪技术要求 一、品牌型号: 1.品牌:瑞士梅特勒 2.型号:新超越系列T5 二、运行环境 1、电源电压:100~240VAC±10%;频率:50~60HZ;环境温度:5--40℃;相对空气湿度: 31℃时最大80%。 2、用途 用于各种电化学滴定分析,如酸碱滴定、络合滴定、沉淀滴定、氧化还原滴定、电导滴定、恒pH滴定、永停滴定、容量法卡氏水分测定、库仑法卡氏水分测定,两相滴定(如表面活性剂类样品)、光度滴定,并能直接测量pH值、离子浓度、氧化还原电位、温度、电导率值、极化电压、极化电流、透光率和吸光率等 三、技术指标 1、仪器的硬件连接 ①滴定仪控制方式:分体式七英寸中文彩色触摸屏和中文电脑软件双通道控制,自由切换。 ②搅拌方式:同时具有磁力搅拌器和螺旋桨搅拌器2种,搅拌速度随意可调。 ③电极接口类型:两个智能电势(mV/pH)测量电极接口、极化电极接口,温度电极接口, 电导率电极接口,库仑法电解电极接口,标配Lims接口。 2、电势(mV/pH)测量电极 2.1 mV测量电极接口 ①测量范围:-2000mV~2000mV ②分辨率:0.1mV ③最大的可能误差:0.2mV 2.2 pH测量电极接口 ①测量范围:-26.0~40.0pH ②辨率:0.001pH ③最大的可能误差:0.003pH 3、极化电极接口(Upol) ①极化电压:0-2000mV(交流电,增量0.1mV); ②测量范围:0-200μA;

③分辨率:0.1μA; ④误差范围:0.2μA; 4、极化电极接口(Ipol) ①极化电流:0-24μA(交流电,增量0.1μA); ②测量范围:0-2000mV; ③分辨率:0.1mV; ④误差范围:2mV; 5、PT1000温度电解接口 ①测量范围:-20-130; ②分辨率:0.1℃; ③误差范围:0.2℃; 6、滴定仪主机可直接扩展电导率电极接口,实现电导率直接测量和电导率滴定。 ①测量范围:±2000m V; ②分辨率:0.1mV; ③误差范围:0.2mV; 7、滴定仪主机可直接扩展电解电极接口,实现库仑法水分测定和溴指数测定(电量法) ①库仑法水分测定电流范围:可选100、200、300、400mA或Auto ②溴指数测定电流范围:可选1、5、100、200、300、400mA或Auto 8、滴定管 & 滴定管驱动器 ①滴定管驱动器的分辨率:滴定管体积的1/20000(10mL滴定管为例:0.5uL) ②具备各种体积的滴定管(包括1毫升、5毫升、10毫升、20毫升) ③滴定管可以方便安装、拆除,无需工具进行操作 ④滴定管具有滴定剂(名称、浓度)自动识别(RFID)的功能,并支持热插拔,更换滴定 管无需重启仪器,即插即用。 ⑤滴定管驱动器工作类型:上推式滴定管驱动器,保证气泡能够完全排空,从而保证结果 的准确性 四、性能指标: 1、*使用彩色TFT触摸屏为控制终端,且彩色触摸屏不低于7寸,同时具备StatusLight TM (状态指示灯),通过红、黄、绿三种颜色有效指示滴定的工作状态 2、主机内置状态指示灯,且具有声音信号的喇叭; 3、*主机内置SmartSample阅读器,无需手动输入,直接把重量等信息传入主机,实现从 天平到滴定仪的高效安全的无线数据传输,避免抄写错误; 4、*具备全面的多级用户权限管理功能,并可设置指纹或密码保护 5、具备RS232,USB,以太网和PDF等输出方式,并可输出PDF,csv,XML等格式的数据 6、*具备多次标准加入法,可实现自动化的钠,钾,钙,硝酸根等离子的含量测定,内置

橡胶强度的因素

橡胶工艺 工艺流程选段:拉伸强度是表征制品能够抵抗拉伸破坏的极限能力。影响橡胶拉伸强度的主要因素有:大分子链的主价键、分子间力以及高分子链柔性。拉伸强度与橡胶结构的关系:分子间作用力大,如极性和刚性基团等;分子量增大,范德华力增大,链段不易滑动,相当于分子间形成了物理交联点,因此随分子量增大,拉伸强度增高,到一定程度时达到平衡;分子的微观结构,如顺式和反式结构的影响;结晶和取向 工艺流程开始: 1综述 橡胶制品的主要原料是生胶、各种配合剂、以及作为骨架材料的纤维和金属材料,橡胶制品的基本生产工艺过程包括塑炼、混炼、压延、压出、成型、硫化6个基本工序。 橡胶的加工工艺过程主要是解决塑性和弹性矛盾的过程,通过各种加工手段,使得弹性的橡胶变成具有塑性的塑炼胶,在加入各种配合剂制成半成品,然后通过硫化是具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。 2橡胶加工工艺 2.1塑炼工艺 生胶塑炼是通过机械应力、热、氧或加入某些化学试剂等方法,使

生胶由强韧的弹性状态转变为柔软、便于加工的塑性状态的过程。 生胶塑炼的目的是降低它的弹性,增加可塑性,并获得适当的流动性,以满足混炼、亚衍、压出、成型、硫化以及胶浆制造、海绵胶制造等各种加工工艺过程的要求。 掌握好适当的塑炼可塑度,对橡胶制品的加工和成品质量是至关重要的。在满足加工工艺要求的前提下应尽可能降低可塑度。随着恒粘度橡胶、低粘度橡胶的出现,有的橡胶已经不需要塑炼而直接进行混炼。 在橡胶工业中,最常用的塑炼方法有机械塑炼法和化学塑炼法。机械塑炼法所用的主要设备是开放式炼胶机、密闭式炼胶机和螺杆塑炼机。化学塑炼法是在机械塑炼过程中加入化学药品来提高塑炼效果的方法。 开炼机塑炼时温度一般在80℃以下,属于低温机械混炼方法。密炼机和螺杆混炼机的排胶温度在120℃以上,甚至高达160-180℃,属于高温机械混炼。 生胶在混炼之前需要预先经过烘胶、切胶、选胶和破胶等处理才能塑炼。 几种胶的塑炼特性: 天然橡胶用开炼机塑炼时,辊筒温度为30-40℃,时间约为 15-20min;采用密炼机塑炼当温度达到120℃以上时,时间约为3-5min。

常用橡胶的技术性能指标参数

常用橡胶的技术性能指标参数 本文介绍了天然橡胶(NR)异戊橡胶(IR)丁苯橡胶(SBR) 顺丁橡胶(BR)氯丁橡胶(CR)丁基橡胶(IIR)丁腈橡胶(NBR)乙丙橡胶(EPR)橡胶品种(简写符号)化学组成性能特点主要用途 1.天然橡胶(NR)以橡胶烃(聚异戊二烯)为主,含少量蛋白质、水分、树脂酸、糖类和无机盐等。弹性大,定伸强度高,抗撕裂性和电绝缘性优良,耐磨性和耐旱性良好,加工性佳,易于其它材料粘合,在综合性能方面优于多数合成橡胶。缺点是耐氧和耐臭氧性差,容易老化变质;耐油和耐溶剂性不好,第抗酸碱的腐蚀能力低;耐热性不高。使用温度范围:约-60℃~+80℃。制作轮胎、胶鞋、胶管、胶带、电线电缆的绝缘层和护套以及其他通用制品。特别适用于制造扭振消除器、发动机减震器、机器支座、橡胶-金属悬挂元件、膜片、模压制品。 2.丁苯橡胶(SBR)丁二烯和苯乙烯的共聚体。性能接近天然橡胶,是目前产量最大的通用合成鸾海涮氐闶悄湍バ浴⒛屠匣湍腿刃猿烊幌鸾海实匾步咸烊幌鸾壕取H钡闶牵旱越系停骨印⒖顾毫研阅芙喜睿患庸ば阅懿睿乇鹗亲哉承圆睢⑸呵慷鹊汀J褂梦露确段В涸迹?0℃~+100℃。主要用以代替天然橡胶制作轮胎、胶板、胶管、胶鞋及其他通用制品。 3.顺丁橡胶(BR)是由丁二烯聚合而成的顺式结构橡胶。优点是:弹性与耐磨性优良,耐老化性好,耐低温性优异,在动态负荷下发热量小,易于金属粘合。缺点是强度较低,抗撕裂性差,加工性能与自粘性差。使用温度范围:约-60℃~+100℃。一般多和天然橡胶或丁苯橡胶并用,主要制作轮胎胎面、运输带和特殊耐寒制品。 4.异戊橡胶(IR)是由异戊二烯单体聚合而成的一种顺式结构橡胶。化学组成、立体结构与天然橡胶相似,性能也非常接近天然橡胶,故有合成天然橡胶之称。它具有天然橡胶的大部分优点,耐老化由于天然橡胶,弹性和强力比天然橡胶稍低,加工性能差,成本较高。使用温度范围:约-50℃~+100℃可代替天然橡胶制作轮胎、胶鞋、胶管、胶带以及其他通用制品。 5.氯丁橡胶(CR)是由氯丁二烯做单体乳液聚合而成的聚合体。这种橡胶分子中含有氯原子,所以与其他通用橡胶相比:它具有优良的抗氧、抗臭氧性,不易燃,着火后能自熄,耐油、耐溶剂、耐酸碱以及耐老化、气密性好等优点;其物理机械性能也比天然橡胶好,故可用作通用橡胶,也可用作特种橡胶。主要缺点是耐寒性较差,比重较大、相对成本高,电

12种橡胶耐300种化学药品性能表

表的阅读方法 可用的顺序以1、2、3、4、5表示,这是通过综合考虑体积变化率及其它物理性质而决定的。 1. 也可用于动态部位,体积变化率在10%以内 2. 根据使用条件,也可用于动态部位,体积变化率在20%以内 3. 可用于静态部位,体积变化率在30%以内 4. 根据使用条件,可用于静态部位,体积变化率在100%以内 5. 不能使用。体积变化率在100%以上。 此外,橡胶采用了ISO的分类符号。但,Q:硅橡胶,U:聚氨酯橡胶。 另外,本表的耐性排名为参考值,实际的混合橡胶,可能会因品牌、使用环境的不同而 有所变化。 参考文献: 1. 杜邦公司:VITON Bulletin No.15 氟化橡胶的耐液体性 2. 杜邦公司:Elastmer Review 3. Goodrich公司:Hycar Report 4. Polymer公司:Technical Report 5. J.H.Perry:Chemical Engineering Hand-book 6. 信越化学:Silicone Review 7. Parkerseal公司:Seal Compound manual 8. The Los Angeles Rubbor Group Inc:The General Chemical Resistance of Various Elastomers 9. 日本华尔卡:测试数据

552

各种弹性体橡胶的耐性一览表 橡胶温度药品 丙烯酸乙酯 丙烯酸丁酯 丙烯腈 沥青 乙炔 乙醛 乙酰胺 乙酰醋酸酯 乙酰苯 丙酮 苯胺 苯胺 苯胺盐酸盐 亚麻子油 戊醇 戊烷氯萘 戊基萘 亚硫酸 亚硫酸钠 安息香酸 安息香酸苄基 Anderol、L-774 (双酯类) 氨(液体) ″ 氨(气体) ″ 氨水(30%) 硫磺 异辛烷 异癸烷 异丁醇 异丙醇 异丙醚一氧化碳 威士忌 5 5 3

橡胶混炼的38个小知识点

橡胶混炼的38个小知识点 1.橡胶为什么要塑炼 橡胶塑炼目的在于使橡胶在机械、热、化学等作用下切短大分子链,使橡胶暂时失去其弹性而使可塑性增大,以满足制造过程中的工艺要求。如:使配合剂易于混入,便于压延压出,模压花纹清楚,形状稳定,增加压型、注压胶料的流动性,使胶料易于渗入纤维,并能提高胶料溶介性及粘着性。当然一些低粘度、恒粘度橡胶有时也不一定塑炼,国产标准颗粒胶,标准马来西亚橡胶(SMR)。2.哪些因素影响橡胶在密炼机中塑炼 密炼机塑炼生胶是属于高温塑炼,温度最低在120℃以上,一般是在155℃—165℃间。生胶在密炼机腔内受高温和强机械作用,产生剧烈氧化,能在较短的时间里获得理想可塑度。因此影响密炼机进行生胶塑炼因素主要有: (1)设备技术性能,如转速等, (2)工艺条件,如时间、温度、风压及容量等. 3. 为什么各种橡胶的塑炼特性都不一样 橡胶的塑炼与其化学组成,分子结构,分子量及分子量分布有着密切联系。天然橡胶和合成橡胶由于结构和性能上的不同特点,一般说来天然胶塑炼比较容易,合成胶塑炼比较困难。就合成胶而言异戊胶,氯丁胶近于天然胶,丁苯胶,丁基胶次之,丁腈胶最困难。 4.为什么用生胶可塑性作为塑炼胶的主要质量标准 生胶的可塑性是关系到制品整个制造过程进行的难易,直接影响到硫化胶的物理机械性能及制品使用性能的重要性质。若生胶可塑性过高,会使硫化胶的物理机械性能降低。而生胶可塑度过低,则会造成下工艺加工的困难,使胶料不易混炼均匀,压延,压出时半成品表面不光滑,收缩率大,不易掌握半成品尺寸,在压延时胶料也难于擦进织物中,造成挂胶帘布掉皮等现象,大大降低布层间附着力。可塑性不均则会造成胶料的工艺性能和物理机械性能不一致,甚至影响制品使用性能不一致。因此正确掌握生胶可塑性是一个不可忽视的问题。 5.混炼的目的是什么 混炼就是按照胶料配方规定的配合剂的比例,将生胶和各种配合剂通过橡胶设备混合在一起,并使各种配合剂均匀地分散在生胶之中。胶料进行混炼的目的就是要获得物理机械性能指标均匀一致,符合配方规定的胶料性能指标,以利于下工艺操作和保证成品质量要求。 6.配合剂为什么会结团 造成配合剂结团原因有:生胶塑炼不充分,辊距过大,辊温过高,装胶容量过大,粉类配合剂中含有粗粒子或结团物,凝胶等造成。改进的办法就是针对具体情况采取:充分塑炼,适当调小辊距,降低辊温,注意加料方法;粉剂进行烘干和筛选;混炼时切割要适当。 7.胶料中炭黑用量过多为什么会产生“稀释效应” 所谓“稀释效应”就是由于在胶料配方中,炭黑的用量过多,橡胶在数量上相对地减少,导致炭黑粒子间的紧密接触,而不能在胶料中很好的分散,这即是“稀释效应”。这样因为有许多大颗粒炭黑粒团的存在,橡胶分子无法穿透到炭黑粒团里面去,橡胶与炭黑相互作用减少,强力下降而达不到预期的补强效果。8.炭黑的结构性对胶料的性能有什么影响

相关文档
最新文档