Mathematica 导数、积分、方程等的数值计算

Mathematica 导数、积分、方程等的数值计算
Mathematica 导数、积分、方程等的数值计算

第4章导数、积分、方程等的数值计算

在上一章的符号运算中已经指出,有些数学问题的解可以用一个解析式(数学公式)精确地表示出来,而另一些问题则不能。遇到这种情况时,人们常会转而去求它的近似数值解,所谓近似数值解是指按照某种逼近思路,推导出相应的迭代公式,当给定一个适当的初始值(或称初始点)后,由迭代公式就可产生一系列的近似解(点),从而一步一步的去逼近原问题的精确解(点)。在迭代过程中所有的计算(按迭代公式)都是对具体数值进行的,或者说计算的主要对象是具体的数值(主要是实数)。。

4.1 函数值与导数值的计算

4.1.1函数值的计算

在Mathematica系统里,计算函数值的过程同数学里的情况基本相似?

Note:先定义函数表达式,再作变量替换。

4.1.2导数值的计算

Note:先定义函数表达式,再求导函数,最后作变量替换。

4.2定积分与重积分的数值计算

4.2.1定积分的数值计算

在Mathematica系统中为我们提供的对定积分进行近似数值计算的函数是NIntegrate,它的调用格式如下:

NIntegrate[f(x),{x,a,b}]

式中f(x)为被积分函数,x为积分变量,a为积分下限,b为积分上限,有时a可取到-∞,b可取到+∞?

4.2.2 重积分的数值计算

1.矩形区域G:a≤x≤b,c≤y≤d上的二重积分

Note:先对y积分,再对x积分。

2.一般(有界)区域G上的二重积分

NIntegrate[f[x,y],{x,x1,x2},{y,y1[x],y2[x]}] Or

NIntegrate[f[x,y],{y,y1,y2},{x,x1[y],x2[y]}] Zhou er

3.一般区域上的多重积分

4.3方程的近似根

牛顿迭代法的几何解释

在0x 处作曲线的切线, 切线方程为 y = f (0x )+f ’ (0x ) (x -0x ). 令y =0,可得切线与x 轴的交点横坐标 1x =0x -)

(' )(00x f x f , 这就是牛顿法的迭代公式. 因此, 牛顿法又称"切线法".

分析法(零点存在定理)图形法

随机生点法

4.4常微分方程数值解

4.5 偏微分方程求解(略)

用导数求切线方程的四种类型84657

题型一:利用导数去切线斜率 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为 解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,. 类型二:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例2 求过曲线32y x x =-上的点(11)-,的切线方程. 类型三:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法来求解. 例3 求过点(20),且与曲线1y x =相切的直线方程. 题型二:利用导数判断函数单调性 总结求解函数f(x)单调区间的步骤: 练习:判断下列函数的单调性,并求出单调区间。 (1)确定函数f(x)的定义域; (2)求f(x)的导数f'(x); (3)解不等式 f'(x)>0 ,解集在定义域内的部分为 增区间; (4)解不等式 f'(x)<0 ,解集在定义域内的部分为 减区间. 例1.:已知导函数 的下列信息: 注意: x x x f x x x f x x x x f ln 2 1 )()3(7 62)()2(),0(,sin )()1(223-=+-=∈-=π图像的大致形状。 试画出或当或当当)(0)(,1,40)(,1,40)(,41x f x f x x x f x x x f x ='==<'<>>'<<3211 11(1)2231(11)y x y x x =-+-=-+-练习:、在,处的切线方程 、在,处的切线方程1(01)x y xe =+-3、曲线在,处的切线方程sin 20x y x e x =++=5、曲线在处的切线方程

选修4-4 坐标系与参数方程知识点及经典例题

坐标系与参数方程 *选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系: ① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. ③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. ④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:① 了解参数方程,了解参数的意义. ② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 第一讲 一、平面直角坐标系 伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换???>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

方法1:求伸缩变换后的图形。 由伸缩变换公式解出x、y,代入已知曲线方程就可求得伸缩变换后的曲线方程。 例::在一个平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 方法2:待定系数法求伸缩变换。 求伸缩变换时,先设出变换,再代入原方程或变换后的方程,求出其中系数即可。 例:在同一平面直角坐标系中,求下列图形变换的伸缩变换:

二、极坐标 1.极坐标系的概念:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 2.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 3.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。 4.极坐标与直角坐标的互化: 如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ). (1)极坐标化直角坐标 (2)直角坐标化极坐标 ? ????ρ2=x 2+y 2,tan θ=y x (x ≠0).

参数方程典型例题分析

参数方程典型例题分析 例1在方程(为参数)所表示的曲线上一点的坐标是().(A)(2,-7)(B)(,)(C)(,)(D)(1,0) 分析由已知得可否定(A)又,分别将,,1代入上式得,,-1,∴(,)是曲线上的点,故选(C).例2直线(为参数)上的点A,B所对应的参数分别为, ,点P分所成的比为,那么点P对应的参数是(). (A)(B)(C)(D) 分析将,分别代入参数方程, 得A点的横坐标致为,B点的横坐标为, 由定比分点坐标公式得P的横坐标为 , 可知点P所对应的参数是故应选(C). 例3化下列参数方程为普通方程,并画出方程的曲线. (1)(为参数,)

(2)(为参数); (3)(为参数), 解:(1)∵ ∴, ∴或 故普通方程为(或),方程的曲线如图. (2)将代入得 ∵普通方程为(),方程的曲线如图.

(3)两式相除得代入得 整理得 ∵ ∴普通方程为(),方程的曲线如图. 点评(l)消去参数的常用方法有代入法,加减消元法,乘除消元法,三角消元法等;(2)参数方程化普通方程在转化过程中,要注意由参数给出的,的范围,以保证普通方程与参数方程等价. 例4已知参数方程 ①若为常数,为参数,方程所表示的曲线是什么? ②若为常数,为参数,方程所表示的曲线是什么? 解:①当时,由(1)得,由(2)得,

∴,它表示中心在原点, 长轴长为,短轴长为焦点在轴上的椭圆. 当时,,, 它表示在轴上的一段线段. ②当()时,由(1)得, 由(2)得.平方相减得, 即 它表示中心在原点,实轴长为,虚轴长为, 焦点在轴上的双曲线. 当()时,,它表示轴; 当()时,, ∵(时)或(时) ∴,∴方程为(), 它表示轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线. 点评本题的启示是形式相同的方程,由于选择参数的不同,可表示不同的曲线,因此要注意区分问题中的字母是常数还是参数. 例5直线(为参数)与圆(为参数)相切,则直线的倾斜角为().

用导数求切线方程的四种类型

用导数求切线方程的四种类型 浙江 曾安雄 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线 方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =- 解:由2 ()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为 (1)3(1)y x --=--,即32y x =-+,因而选B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --= 解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴. 由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用?法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0?=,得1b =-,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.

(完整版)用导数求切线方程教案

用导数求切线方程 一、教学目标: (1)知识与技能: 理解导数的几何意义. 能够应用导数公式及运算法则进行求导运算. (2)过程与方法: 掌握基本初等函数的导数公式及运算法则求简单函数的导数. (3)情感态度与价值观: 通过导数的几何意义的探索过程,掌握计算简单函数的导数,培养学生主动探索、勇于发现之间的联系的精神,渗透由特殊到一般的思想方法. 二、重点、难点 重点:能用导数的几何意义求切线方程. 难点:用导数求切线方程. 三、学情分析 学生在前面已学习导数的概念,能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,本节课进一步研究和学习导数的几何意义与切线方程之间的联系。根据学生好动、观察能力强的特点,让他们采用小组合作、讨论的形式归纳本节课的知识,突出本节课的重点、难点。 四、教学过程: 【知识回顾】 1. 导数的概念 函数()y f x =在0x x =处的导数是 _____________________.

2. 导数的几何意义 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(00x f x 处的切线的斜率,即________=k . 3. 基本初等函数的导数公式: 1)若()f x c =(c 为常数),则()________'=x f ; 2)若()f x x α=,则()________'=x f ; 3)若()sin f x x =,则()________'=x f ; 4)若()cos f x x =,则()________'=x f ; 5)若()x f x a =,则()________'=x f ; 6)若()x f x e =,则()________'=x f ; 7)若()log x a f x =,则()________'=x f ; 8)若()ln f x x =,则()________'=x f . 4. 导数的运算法则 1)()()[]_______________'=±x g x f 2)()()[]_________________'=?x g x f 3)()_______________________')(=?? ????x g x f 4)()'________cf x =???? 【新课引入】 1. 用导数求切线方程的四种常见的类型及解法: 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =-- B.32y x =-+ C.43y x =-+ D.45y x =- 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --=

导数之一:导数求导与切线方程

本章节知识提要 考试要求1.导数概念及其几何意义(1)了解导数概念的实际背景; (2)理解导数的几何 意义. 2.导数的运算 (1)能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y = x 1,y =x 的导数; (2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数. 3.导数在研究函数中的应用 (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次); (2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 4.生活中的优化问题:会利用导数解决某些实际问题. 5.定积分与微积分基本定理 (1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念; (2)了解微积分基本定理的含义 导数(1):求导与切线 ?知识点梳理? 1. 求导公式与求导法则:

0'=C ; 1)'(-=n n nx x ; x x cos )'(sin =; x sin )'(cos -= x x 1)'(ln = ; x x e e =)'( a a a x x ln )'(= 2. 法则1 )(.))'(('=x f c x cf 法则2 '''[()()]()()f x g x f x g x ±=±. 法则3 [()()]'()()()f x g x f x g x f x g x '= +, [()]'(cf x cf x '= 法则4:'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ??-=≠ ??? 3.利用导数求曲线的切线方程:函数()y f x =在点0x 的导数的几何意义就是曲线()y f x =在点00(,)p x y 处的切线的斜率,也就是说,曲线()y f x =在点00(,)p x y 处的切线斜率是0()f x ',切线的方程为000()()y y f x x x '-=- 曲线f (x )在A (m,n )处的切线方程求法: ①求函数f (x )的导数f ′(x ). ②求值:f ′(m )得过A 点的切线的斜率 ③由点斜式写出切线方程:y –n = f ′(m )(x-m) ?精选例题? 例1.求下列函数的导函数 1. x x f =)( 2.2)(e x f = 3.y=2x+3 4.x x f = )( 5.y=x 2+3x-3 6. 1y x = 7. x x x f ln 2)(= 8. 32)sin()(x x x f += 9. x x x x f 2ln )(+= 例2:.求函数12+=x y 在-1,0,1处导数。 例3:已知曲线313y x =上一点P (2,38 ),求点P 处的切线的斜率及切线方程?

2参数方程知识讲解及典型例题

参数方程 一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数 t 的函数,即 ?? ?==)()(t f y t f x ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数. 1 y x Eg1(1 Eg2(1总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程: 中心在原点,焦点在x 轴上的椭圆: θ θsin cos b y a x == (θ为参数,θ的几何意义是离心角,如图角AON 是离心角)

注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0 θ θ sin cos 00b y y a x x +=+= Eg 3, 4 pt y pt x 222 == (t 为参数,p >0,t 的几何意义为过圆点的直线的斜率的倒数) 直线方程与抛物线方程联立即可得到。 三、一次曲线(直线)的参数方程 过定点P 0(x 0,y 0),倾角为α的直线, P 是直线上任意一点,设P 0P=t ,P 0P 叫点P 到定点P 0的有向距离,在P 0两侧t 的符号相反,直线的参数方程

αα sin cos 00t y y t x x +=+= (t 为参数,t 的几何意义为有向距离) 说明:①t 的符号相对于点P 0,正负在P 0点两侧 ②|P 0P |=|t | 直线参数方程的变式: bt y y at x x +=+=00,但此时t 的几何意义不是有向距离,只有当 t 得 y x Eg

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

(完整版)参数方程高考真题专题训练

高考真题专题训练——参数方程专题(6.11-6.12) 1、(2012课标全国Ⅰ,理23,10分)在直角坐标系xOy 中,曲线C 1的参数方程为 2cos 22sin x y α α =?? =+?(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程 (Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 πθ=与C 1的异于极点的交点 为A ,与C 2的异于极点的交点为B ,求AB . 2、(2012课标全国Ⅱ,理23,10分)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数??? ???==,以坐 标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π (1)求点,,,A B C D 的直角坐标; (2)设P 为1C 上任意一点,求2 2 2 2 PA PB PC PD +++的取值范围。 3、(2013课标全国Ⅰ,理23,10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos , 55sin x t y t =+??=+?(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴 建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).

4,(2013课标全国Ⅱ,理23,10分)已知动点P ,Q 都在曲线C :2cos , 2sin x t y t =??=?(t 为参数)上, 对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 5、(2014课标全国Ⅰ,理23,12分)已知曲线C :22 149x y +=,直线l :222x t y t =+??=-?(t 为参 数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程; (Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值. 6、(2014课标全国Ⅱ,理23,10分)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ??∈????. (Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

最新极坐标与参数方程经典练习题-带详细解答

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为122x t y ?=+?? ??=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两 点,求弦长||AB .2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π ,圆C 的极坐标方程 为)4 π ρθ= -. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程 已知直线l 的参数方程是)(242 2 2 2 是参数t t y t x ??? ? ?? ? +==,圆C 的极坐标方程为 )4 cos(2π θρ+=. (I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴 重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+??=-+? (α为参数), 点Q 的极坐标为7 )4 π。 (1)化圆C 的参数方程为极坐标方程; (2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。 5.在极坐标系中,点M 坐标是)2, 3(π ,曲线C 的方程为)4 sin(22π θρ+ =;以极点 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .

利用导数求切线方程

切线方程的求法 ●基础知识总结和逻辑关系 一、 函数的单调性 求可导函数单调区间的一般步骤和方法: 1) 确定函数的()f x 的定义区间; 2) 求'()f x ,令'()0f x =,解此方程,求出它在定义区间内的一切实根; 3) 把函数()f x 的无定义点的横坐标和上面的各实数根按由小到大的顺序排列起来, 然后用这些点把函数()f x 的定义区间分成若干个小区间; 4) 确定'()f x 在各个区间内的符号,由'()f x 的符号判定函数()f x 在每个相应小区 间内的单调性. 二、 函数的极值 求函数的极值的三个基本步骤 1) 求导数'()f x ; 2) 求方程'()0f x =的所有实数根; 3) 检验'()f x 在方程'()0f x =的根左右的符号,如果是左正右负(左负右正),则() f x 在这个根处取得极大(小)值. 三、 求函数最值 1) 求函数()f x 在区间(,)a b 上的极值; 2) 将极值与区间端点函数值(),()f a f b 比较,其中最大的一个就是最大值,最小的一个就 是最小值. 四利用导数证明不等式 1) 利用导数得出函数单调性来证明不等式 我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减).因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的.即把证明不等式转化为证明函数的单调性.具体有如下几种形式:

① 直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减) 区间,自变量越大,函数值越大(小),来证明不等式成立. ② 把不等式变形后再构造函数,然后利用导数证明该函数的单调性,达到证明不等式的目 的. 2) 利用导数求出函数的最值(或值域)后,再证明不等式. 导数的另一个作用是求函数的最值. 因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立.从而把证明不等式问题转化为函数求最值问题. ●解题方法总结和题型归类 1导数的几何意义及切线方程的求法 1)曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别: 曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,若切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 2)解决方案:解这类问题的关键就是抓住切点.看准题目所求的是“在曲线上某点处的切线方程”还是“过某点的切线方程”,然后求某点处的斜率,用点斜式写出切线方程. 【题】求过曲线cos y x =上点1 (,)32 P π且与在这点的切线垂直的直线方程. 【答案】:22032 x π--+= 【难度】* 【点评】

极坐标全参数方程高考练习含问题详解(非常好的练习题)

极坐标与参数方程高考精练(经典39题) 1.在极坐标系中,以点(2,)2C π 为圆心,半径为3的圆C 与直线:()3l R π θρ=∈交于,A B 两点.(1)求圆C 及直线 l 的普通方程.(2)求弦长AB . 2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4 R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是)2,3(π ,曲线C 的方程为)4 sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半 轴建立平面直角坐标系,斜率是1-的直线l 经过点M . (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值.

4.已知直线l 的参数方程是)(242222是参数t t y t x ???????+==,圆C 的极坐标方程为)4cos(2πθρ+=. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t t y t a x ,3???=+=.在极坐标系(与直角坐标系xOy 取相同的长 度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,数a 的值. 6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。 (I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。

用导数求切线方程的四种类型

用导数求切线方程的四种类型 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数,并代入点斜式方程即可.例1 曲线在点处的切线方程为( ) A.B. C.D. 解:由则在点处斜率,故所求的切线方程为,即,因而选B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线的平行的抛物线的切线方程是( ) A.B. C.D. 解:设为切点,则切点的斜率为. . 由此得到切点.故切线方程为,即,故选D. 评注:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为,代入,得,又因为,得,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线上的点的切线方程. 解:设想为切点,则切线的斜率为. 切线方程为. . 又知切线过点,把它代入上述方程,得. 解得,或.

故所求切线方程为,或,即,或. 评注:可以发现直线并不以为切点,实际上是经过了点且以为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法. 类型四:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点且与曲线相切的直线方程. 解:设为切点,则切线的斜率为. 切线方程为,即. 又已知切线过点,把它代入上述方程,得. 解得,即. 评注:点实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性. 例5 已知函数,过点作曲线的切线,求此切线方程. 解:曲线方程为,点不在曲线上. 设切点为, 则点的坐标满足. 因, 故切线的方程为. 点在切线上,则有. 化简得,解得. 所以,切点为,切线方程为. 评注:此类题的解题思路是,先判断点A是否在曲线上,若点A在曲线上,化为类型一或类型三;若点A不在曲线上,应先设出切点并求出切点.

典型极坐标参数方程练习题带答案

极坐标参数方程练习题 1.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程; (2)若直线C 3的极坐标方程为θ=π 4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 解:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π 4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22, ρ2= 2.故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1,所以△C 2MN 的面积为1 2. 4.(2014·,23,10分,中)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程; (2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程. 解:(1)设(x 1,y 1)为圆上的点,经变换为C 上点(x ,y ),依题意,得?????x =x 1,y =2y 1, 由 x 2 1+y 21=1 得x 2 +? ?? ??y 22 =1. 即曲线C 的方程为x 2 +y 2 4=1. 故C 的参数方程为?????x =cos t , y =2sin t (t 为参数). (2)由???x 2 +y 2 4=1, 2x +y -2=0解得?? ???x =1,y =0或?????x =0, y =2.

高中数学-导数的计算练习

高中数学-导数的计算练习 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列求导运算正确的是 A .211()1x x x '+=+ B .21 (log )ln 2 x x '= C .3(3)3log x x x '= D .2 (cos )2sin x x x x '=- 【答案】B 【解析】因为211()x x '=- ,所以A 项应为2 11x -;由1(log )ln a x x a '=知B 项正确;由()ln x x a a a '=可知C 项错误;D 项中,2 2 (cos )2cos sin x x x x x x '=-,所以D 项是错误的,综上所述,正确选项为B . 2.已知函数3 ()f x x =在点P 处的导数值为3,则P 点的坐标为 A .(2,8)-- B .(1,1)-- C .(2,8)--或(2,8) D .(1,1)--或(1,1) 【答案】D 3.已知函数()f x 的导函数为()f x ',且满足()(1)2ln xf f x x ='+,则(1)f '等于 A .e - B . 1- C .1 D .e 【答案】B 【解析】∵函数()f x 的导函数为()f x ',且满足()(1)2ln (0)f x x xf x ='+>, ∴1 ()1()2f x f x '='+ ,把1x =代入()f x '可得(1)2(1)1f f '='+,解得(1)1f '=-.故选B . 4.曲线e x y =在点2 (2,e )处的切线与坐标轴所围成的三角形的面积为 A .2e 2 B .23e C .26e D .29e 【答案】A

高考极坐标参数方程含答案(经典39题)

1 3的圆C 与直线交于,A B 两点. (1)求圆C 及直线l 的普通方程.(2 2.在极坐标系中,曲线2 :sin 2cos L ρθθ=,过点A (5,α)(α 的直线l ,且l 与曲线L 分别交于B ,C 两点. (Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长. 3.在极坐标系中,点M 坐标是,曲线C 的方程为轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线(1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ?的值. 4.已知直线l 的参数方程是 C (1)求圆心C 的直角坐标;(2)由直线 l 上的点向圆C 引切线,求切线长的最小值. 5.在直角坐标系xOy 中,直线l 在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=. (Ⅰ)求圆C 在直角坐标系中的方程; (Ⅱ)若圆C 与直线l 相切,求实数a 的值. 6.在极坐标系中,O 为极点,已知圆C r=1,P 在圆C 上运动。 (I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。

7.在极坐标系中,极点为坐标原点O ,已知圆C ,直线l 的极坐 (1)求圆C 的极坐标方程;(2)若圆C 和直线l 相交于A ,B 两点,求线段AB 的长. 8.平面直角坐标系中,将曲线?? ?==ααsin cos 4y x (α为参数)上的每一点纵坐标不变,横坐标变为原来的 一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线1C .以坐标原点为极点,x 的非负半轴为极轴,建立的极坐标中的曲线2C 的方程为θρsin 4=,求1C 和2C 公共弦的长度. 9.在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方 程是θρcos 4=,直线l (t 为参数)。求极点在直线l 上的射影点P 的极坐标;若M 、N 分别为曲线C 、直线l 上的动点,求 10.已知极坐标系下曲线C 的方程为θθρsin 4cos 2+=,直线l 经过点 (Ⅰ)求直线l 在相应直角坐标系下的参数方程; (Ⅱ)设l 与曲线C 相交于两点B A 、,求点P 到B A 、两点的距离之积.

14导数的定义及导数的计算

第11节 导数的定义及导数的计算 (14) 一.知识要点: 1.导数的定义:割线1l 的斜率=00()() f x x f x y x x +?-?=??,当x ? 趋于0时得到()f x 在0x 处切线的斜率:0000()()lim lim l x x f x x f x y k x x ?→?→+?-?==??也称()f x 在0x 处的导数。 2.导函数的定义:若()f x 在区间(,)a b 上的每一点x 处都有导数,导数记为 ()f x ',则0 ()() ()lim x f x x f x f x x ?→+?-'=?,称()f x '为()f x 的导函数。 3.导数的几何意义:()f x 在0x 处的导数值等于曲线()f x 在点00(,())P x f x 处切线的斜率。即:0()l k f x '=. 4.常见导数公式:0C '= 1 ()x x α αα-'= (sin )cos x x '= (cos )sin x x '=- ()ln x x a a a '=()x x e e '= 1(log )ln a x x a '= 1 (ln )x x '= 5.导数运算法则: (1).[]()()()()f x g x f x g x '''±=± (2)[]()()()()()()f x g x f x g x f x g x '''?=?+? (3)2 ()()()()()()()f x f x g x f x g x g x g x ''' ??-=???? 6.复合函数求导:(理) (()),(),()y f g x y f u u g x ===设,则()().y f u u x '''=? 二.考点评析 例1.利用导数定义求函数的导数 (1)2 348y x x =-+ (2)1y x x =+ y x l 1 l f(x 0) f(x 0+x) y x x 0x 0+x O y x L f(x) P(x 0,f(x 0)) o x 0

参数方程典型例题分析报告

参数方程典型例题分析例1在方程(为参数)所表示的曲线上一点的坐标是().(A)(2,-7)(B)(,)(C)(,)(D)(1,0) 分析由已知得可否定(A)又,分别将,, 1代入上式得,,-1,∴(,)是曲线上的点,故选(C).例2直线(为参数)上的点A,B所对应的参数分别为, ,点P分所成的比为,那么点P对应的参数是().(A)(B)(C)(D) 分析将,分别代入参数方程, 得A点的横坐标致为,B点的横坐标为, 由定比分点坐标公式得P的横坐标为 , 可知点P所对应的参数是故应选(C). 例3化下列参数方程为普通方程,并画出方程的曲线. (1)(为参数,) (2)(为参数); (3)(为参数), 解:(1)∵ ∴, ∴或 故普通方程为(或),方程的曲线如图.

(2)将代入得 ∵普通方程为(),方程的曲线如图. (3)两式相除得代入得 整理得 ∵ ∴普通方程为(),方程的曲线如图. 点评(l)消去参数的常用方法有代入法,加减消元法,乘除消元法,三角消元法等;(2)参数方程化普通方程在转化过程中,要注意由参数给出的,的围,以保证普通方程与参数方程等价. 例4已知参数方程 ①若为常数,为参数,方程所表示的曲线是什么? ②若为常数,为参数,方程所表示的曲线是什么? 解:①当时,由(1)得,由(2)得, ∴,它表示中心在原点, 长轴长为,短轴长为焦点在轴上的椭圆. 当时,,,

它表示在轴上的一段线段. ②当()时,由(1)得, 由(2)得.平方相减得, 即 它表示中心在原点,实轴长为,虚轴长为, 焦点在轴上的双曲线. 当()时,,它表示轴; 当()时,, ∵(时)或(时) ∴,∴方程为(), 它表示轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线. 点评本题的启示是形式相同的方程,由于选择参数的不同,可表示不同的曲线,因此要注意区分问题中的字母是常数还是参数. 例5直线(为参数)与圆(为参数)相切,则直线的倾斜角为(). (A)或(B)或(C)或(D)或 分析将参数方程化为普通方程,直线为(), 当时不合题意. 因为,它们相切的充要条件是, 解得,又, ∴或,故选(A). 例6求椭圆上的点到直线的最大、最小距离. 解将椭圆普通方程化为参数方程(), 则椭圆任意一点的坐标可设为(,), 于是点到直线的距离 ∴,此时;,此时

相关文档
最新文档