合肥工业大学-直动式溢流阀仿真

合肥工业大学-直动式溢流阀仿真
合肥工业大学-直动式溢流阀仿真

计算机仿真

直动式溢流阀仿真实验

班级:机设13-4班

学号: 2013210360

姓名:杨尚武

授课教师:翟华

日期: 2016年4月13日

一、实验目的

本实验要求学生能掌握连续系统仿真的一般过程,状态变量法的一般过程,键合图法仿真的一般过程,以四阶定步长龙格——库塔法的计算机程序的编写。二、实验要求

本实验要求学生能掌握连续系统仿真的一般过程,状态变量法的一般过程,键合图法仿真的一般过程,以及四阶定步长龙格—库塔法的计算机程序的编号要求每个学生参考上述源程序,独立编写C语言源程序或其他高级语言程序,正确计算仿真结果,并绘制压力P(t)和时间t的关系图,以及阀芯位移x(t)和时间t的关系。

三、参考C语言程序

#include "stdio.h"

#include "math.h"

void main()

{FILE * fp;

int i,j,e,g,l,s,n1,n2,b[3][2];

float d1,r1,r2,i1,c1,c2,x1,h1,a1,c,p0,pp,q1,x2,t;

float a[3][3],y[3],u[2],k[3][5],h[5],p[3][5],z[3],d[3][5];

if((fp=fopen("fz1","wb"))==NULL)

{printf("cannot open file\n");

}

fprintf(fp,"digital simulation of hydraulic relief valve\n");

d1=0.012;

r1=0.39e+11;

r2=0.147e+12;

i1=0.0614;

c1=0.8e-12;

c2=0.2e-4;

x1=0.0014;

p0=0.6e+6;

pp=0.3e+7;

q1=0.46e-3;

h1=0.0003;

t=0.0;

n1=5;

n2=55;

a1=0.785*d1*d1;

a[0][0]=-a1*a1*r1/i1;

a[0][1]=-1.0/c2;

a[0][2]=a1/c1;

a[1][0]=1/i1;

a[1][1]=0.0;

a[1][2]=0.0;

a[2][0]=-a1/i1;

a[2][1]=0.0;

a[2][2]=-1/(r2*c1);

for (i=0;i<=2;i++)

{for (j=0;j<=1;j++)

b[i][j]=0;

}

b[0][0]=-1;

b[2][1]=1;

y[0]=0.0;

y[1]=0.0;

y[2]=p0*c1;

x2=q1/(0.7*3.14*d1*sqrt(2.0*pp/900.0));

u[0]=pp*a1-(x1+x2)/c2;

u[1]=q1;

c=-0.7*3.14*d1*sqrt(2.0/900.0);

for(i=0;i<=2;i++)

{k[i][0]=0.0;}

h[0]=0.0;

h[1]=h1/2.0;

h[2]=h1/2.0;

h[3]=h1;

fprintf(fp," T P(T) X(T)\n"); for (e=1;e<=n2;e++)

{for (g=1;g<=n1;g++)

{t=t+h1;

for(j=1;j<=4;j++)

{for(i=0;i<=2;i++)

{p[i][j]=h[j-1]*k[i][j-1];

z[i]=y[i];

z[i]=z[i]+p[i][j];

}

if(z[1]<0.0) z[1]=0.0;

if(y[1]==0.0&&z[0]<0.0)z[0]=0.0;

if(z[2]<0.0) z[2]=0.0;

for (i=0;i<=2;i++)

{d[i][j]=0.0;

for(l=0;l<=2;l++)

{d[i][j]=d[i][j]+a[i][l]*z[l];}

k[i][j]=d[i][j];

for(s=0;s<=1;s++)

{k[i][j]=k[i][j]+b[i][s]*u[s];}

}

if(y[1]==0.0&&k[0][j]<0.0)k[0][j]=0.0;

if(y[1]==0.0&&k[1][j]<0.0)k[1][j]=0.0;

if(y[2]==0.0&&k[2][j]<0.0)k[2][j]=0.0;

if(y[1]>x1)

{k[2][j]=k[2][j]+c*(z[1]-x1)*sqrt(z[2]/c1);

if(y[2]==0.0&&k[2][j]<0.0) k[2][j]=0.0;

}

}

for(i=0;i<=2;i++)

{y[i]=y[i]+h1*(k[i][1]+2*k[i][2]+2*k[i][3]+k[i][4])/6.0; }

if(y[1]<0.0)y[1]=0.0;

if(y[1]==0.0&&y[0]<0.0)y[0]=0.0;

if(y[2]<0.0)y[2]=0.0;

}

fprintf(fp,"%7.5f %e %e\n",t,y[2]/c1,y[1]); }

}

四、输出结果

digital simulation of hydraulic relief valve

T P(T) X(T)

0.00150 1.449418e+06 0.000000e+00

0.00300 2.288071e+06 0.000000e+00

0.00450 3.099895e+06 1.151061e-04

0.00600 3.868414e+06 4.654126e-04

0.00750 4.600404e+06 1.006565e-03

0.00900 4.988608e+06 1.692020e-03

0.01050 3.161974e+06 2.095751e-03 0.01200 1.816280e+06 1.854696e-03 0.01350 1.982722e+06 1.433021e-03 0.01500 2.839527e+06 1.252615e-03 0.01650 3.644874e+06 1.364071e-03 0.01800 3.882667e+06 1.673995e-03 0.01950 3.016941e+06 1.839893e-03 0.02100 2.377060e+06 1.706981e-03 0.02250 2.531030e+06 1.497600e-03 0.02400 3.156087e+06 1.446740e-03 0.02550 3.501333e+06 1.583777e-03 0.02700 3.186811e+06 1.717583e-03 0.02850 2.736281e+06 1.695083e-03 0.03000 2.673098e+06 1.579036e-03 0.03150 2.970536e+06 1.515308e-03 0.03300 3.243553e+06 1.563448e-03 0.03450 3.179934e+06 1.648301e-03 0.03600 2.923158e+06 1.665780e-03 0.03750 2.805473e+06 1.611564e-03 0.03900 2.920318e+06 1.561015e-03 0.04050 3.096681e+06 1.568833e-03 0.04200 3.124609e+06 1.614838e-03 0.04350 3.001740e+06 1.639431e-03 0.04500 2.899607e+06 1.619705e-03 0.04650 2.925323e+06 1.587159e-03 0.04800 3.023885e+06 1.580377e-03 0.04950 3.071301e+06 1.601658e-03 0.05100 3.024275e+06 1.621452e-03 0.05250 2.955756e+06 1.617937e-03 0.05400 2.946312e+06 1.600020e-03 0.05550 2.993725e+06 1.590586e-03 0.05700 3.033829e+06 1.598347e-03 0.05850 3.023208e+06 1.611109e-03 0.06000 2.984370e+06 1.613578e-03 0.06150 2.966569e+06 1.605188e-03 0.06300 2.985009e+06 1.597548e-03 0.06450 3.011714e+06 1.598983e-03 0.06600 3.015217e+06 1.606013e-03

0.06750 2.996430e+06 1.609634e-03 0.06900 2.980998e+06 1.606533e-03 0.07050 2.985335e+06 1.601573e-03 0.07200 3.000486e+06 1.600654e-03 0.07350 3.007349e+06 1.603957e-03 0.07500 2.999997e+06 1.606921e-03 0.07650 2.989607e+06 1.606318e-03 0.07800 2.988369e+06 1.603569e-03 0.07950 2.995737e+06 1.602179e-03 0.08100 3.001721e+06 1.603411e-03 0.08250 2.999946e+06 1.605345e-03

五、实验报告

1.直动式溢流阀键合图模型是:

2.直动式溢流阀系统状态方程是:

121432122121121

1121212121)111(11I R A p Q V C R R R p I A V p I

x

S V C A x C p e ++---==-+--=

3.系统压力随时间变化曲线为:

4.阀芯位移随时间变化的曲线为:

液压与气压传动第五章习题答案

第五章习题答案 5-1 填空题 1.液压控制阀按连接方式不同,有(管式)、(板式及叠加式)、(插装式)三种连接。 2.单向阀的作用是(允许油液单方向通过),正向通油时应(压力损失要小),反向时(密封性要好)。 3.按阀芯运动的控制方式不同,换向阀可分为(手动)、(机动)、(电动或电磁)、(液动)和(电液动)换向阀。 4.电磁换向阀的电磁铁按所接电源的不同,可分为(直流电)和(交流电)两种。 5.液压系统中常见的溢流阀按结构分有(直动式)和(先导式)两种。前者一般用于(低压),后者一般用于(中、高压)。 6.压力继电器是一种能将(压力信号)转换为(电信号)的能量装置。 5-2 判断题 1.高压大流量液压系统常采用电磁换向阀实现主油路换向。(×) 2.节流阀和调速阀分别用于节流和调速,属于不同类型的阀。(×) 3.当顺序阀的出油口与油箱接通时,即成为卸荷阀。(×) 4.顺序阀和溢流阀在某些场合可以互换。(√) 5.背压阀是一种特殊的阀,不可用其它阀代替。(×) 6.通过节流阀的流量与节流阀的通流面积成正比,与阀两端的压力差大小无关。(×) 5-3 问答题 1.什么是三位换向阀的“中位机能”?有哪些常用的中位机能?中位机能的作用如何? 答:对于各种操纵方式的三位换向阀,阀芯在中间位置时各油口的连通方式,称为换向阀的中位机能。常用的中位机能有:O 、P 、Y、 H、M 、K 。中位机能的作用:满足液压系统提出的各种性能要求如:卸荷、保压、启动平稳性及液压缸浮动和任意位置停留等。 2.从结构原理和图形符号上,说明溢流阀、减压阀和顺序阀的异同点及各自的特点。 答:略 3.先导式溢流阀中的阻尼小孔起什么作用?是否可以将阻尼小孔加大或堵塞? 答:产生压力降,从而使主阀芯动作。不可。 4.为什么说调速阀比节流阀的调速性能好?两种阀各用在什么场合较为合理? 答:调速阀比节流阀多了定差减压阀,油液流过时先经过减压阀产生一次压力降,并利用减压阀阀芯的自动调节,使节流阀前后的压力差保持不变,因而使通过节流阀的流量保持平稳,所以调速阀比节流阀的调速性能好。

直动溢流阀的动态特性

(一)结构简图 为了建立直动式溢流阀的数学模型,需要首先画出它的结构简图。结构简图并不代表所研究对象的具体结构,但是要能反映出该研究对象的物理特征,以能正确的写出数学模型。 直动式溢流阀的结构简图见图1-1。系统中的工作油液在压力p下,以流量q进入溢流阀,其中一部分流量q经阀口排人油箱,另一部分流量流经阻尼空进入阀芯地部,以控制阀芯发开口量x。因为阻尼孔有液阻R,油液流经阻尼孔时有压力消耗,所以阀芯地部的油压Pa 可能与系统中的压力p不一样。阀芯上部受弹簧力作用,弹簧刚度为K弹,阀芯的下部有控制油压的作用力,承压面积为A,阀口处液流使阀芯受有液动力,其中稳态液动力的作用可以看成是弹簧的附加刚度K动,阀芯等运动件质量为m,在运动中有关心。有关变量和 量都注在图1-1中 直动溢流阀的结构简图 (二)在动态分析中所考虑的因素 在一个研究对象中,影响动态性能的因素是比较多的。在分析时,这些因素不可能都考虑,也没有必要都考虑,但是影响动态性能的主要因素必须考虑。有些因素对动态性能虽有影响,但影响不大,为了使分析研究简化起见,这些因素就可以忽略掉。 在本例中,考虑的因素有:阀芯等运动件的质量,弹簧的刚度,阻尼孔处的液阻,阀口处的流量特征以及阀口液流产生的稳态液动力等。同时对一些因素予以忽略。因一般阀口处的排油直接回油箱,且回油管道较短,所以排油管道中的液阻忽略不计,同时忽略了与排油腔相通的阀芯顶部容腔油液的作用。如果回油管较长,或排油管路中还有其他元件,则要考虑它们的影响。油液的可压缩性对动态性能是有影响的,但在本例中,如阀芯底部的容腔等,容积都很小,其中液体的可压缩性影响不大,所以可以忽略不计。溢流阀中液流通道很短,

毕业设计设参考资料:溢流阀

第1章绪论 液压技术作为一门新兴应用学科,虽然历史较短,发展的速度却非常惊人。液压设备能传递很大的力或力矩,单位功率重量轻,结构尺寸小,在同等功率下,其重量的尺寸仅为直流电机的10%~20%左右;反应速度快、准、稳;又能在大范围内方便地实现无级变速;易实现功率放大;易进行过载保护;能自动润滑,寿命长,制造成本较低。因此,世界各国均已广泛地应用在锻压机械、工程机械、机床工业、汽车工业、冶金工业、农业机械、船舶交通、铁道车辆和飞机、坦克、导弹、火箭、雷达等国防工业中。 液压传动设备一般由四大元件组成,即动力元件——液压泵;执行元件——液压缸和液压马达;控制元件——各种液压阀;辅助元件——油箱、蓄能器等。 液压阀的功用是控制液压传动系统的油流方向,压力和流量;实现执行元件的设计动作以控制、实施整个液压系统及设备的全部工作功能。 1.1 液压技术的发展历史 液压技术作为一门新兴应用学科,虽然历史较短,发展的速度却非常惊人。液压设备能传递很大的力或力矩,单位功率重量轻,结构尺寸小,在同等功率下,其重量的尺寸仅为直流电机的10%~20%左右;反应速度快、准、稳;又能在大范围内方便地实现无级变速;易实现功率放大;易进行过载保护;能自动润滑,寿命长,制造成本较低。因此,世界各国均已广泛地应用在锻压机械、工程机械、机床工业、汽车工业、冶金工业、农业机械、船舶交通、铁道车辆和飞机、坦克、导弹、火箭、雷达等国防工业中。 液压传动设备一般由四大元件组成,即动力元件——液压泵;执行元件——液压缸和液压马达;控制元件——各种液压阀;辅助元件——油箱、蓄能器等。 液压阀的功用是控制液压传动系统的油流方向,压力和流量;实现执行元件的设计动作以控制、实施整个液压系统及设备的全部工作功能。 1.2 我国液压阀技术的发展概况 我国的液压工业及液压阀的制造,起始于第一个五年计划(1953~1957年),期间,由于机床制造工业发展的迫切需求,50年代初期,上海机床厂、天津液压件厂仿造了苏联的各类低压泵、阀。 随后,以广州机床研究所为主,在引进消化国外中低压元件制造技术的基础上,自行设计了公称压力为2.5MPa和6.3MPa的中低压液压阀系统(简称广州型),并迅速投入大批量生产。

直动式溢流阀的动态特性仿真

液压建模与系统仿真结课作业 直动式溢流阀的动态特性仿真 姓名郑文婧 学号132085206011 学院能源与动力工程 专业动力工程 2014年7月10日

直动式溢流阀的动态特性仿真 溢流阀一种压力控制阀,在液压设备中主要起定压溢流作用,稳压作用,系统卸荷作用和安全保护作用。定压溢流作用:在定量泵节流调节系统中,定量泵提供的是恒定流量,当系统压力增大时,会使流量需求减小,此时溢流阀开启,使多余流量溢回油箱,保证溢流阀进口压力,即泵出口压力恒定(阀口常随压力波动开启)。稳压作用:溢流阀串联在回油路上,溢流阀产生背压运动部件平稳性增加。系统卸荷作用:在溢流阀的遥控口串接溢小流量的电磁阀,当电磁铁通电时,溢流阀的遥控口通油箱,此时液压泵卸荷,溢流阀此时作为卸荷阀使用。安全保护作用:系统正常工作时,阀门关闭,只有负载超过规定的极限(系统压力超过调定压力)时开启溢流,进行过载保护,使系统压力不再增加(通常使溢流阀的调定压力比系统最高工作压力高10%~20%)。 1、基于Matlab 的直动式溢流阀的仿真 1.1、液压系统及动态过程 任何一个液压元件总是在某一定的液压系统中工作的。在绘制功率键合图,进行动态分析时,总是针对某一具体动态过程进行研究的。 本研究的直动式溢流阀调压系统的液压原理图如图1-1所示。在图中所示情况下,液压泵的供油经电磁阀流回油箱,当电磁阀突然通电关闭时,直动式溢流阀由原来的关闭状态到打开溢流,直到系统达到新的静平衡状态的瞬态响应过程。 图1.1-1 直动式溢流阀调压系统的液压原理图 在上图中,因重点研究的是溢流阀,因此对溢流阀本身的影响特性的因素考虑的多一点,其他不必要的可忽略不计。为了便于分析,需要画出直动式溢流阀的的结构简图,该结构简图及其与系统其他部分的关系如图1-2。 图1.1-2 所研究系统的结构简图

直动式比例方向阀

83 200/103 ED
MD1E
直动式比例方向阀
开环控制 MD1E 反馈控制 MD1ER 序列 51 序列 50
板式 CETOP 03 P max 350 bar Q max (见 技术参 数表 )
安装面尺寸
CETOP 4.2-4-03-350
ISO/CD 4401-03
工作原理

MD1E 阀是一种直动式比例方向阀,其油口尺寸和位置完 全符合 CETOP 和 ISO 标准。 该阀用于液压执行机构的运动方向和速度控制。 该阀的开度及流量可连续调节,并与输入到电磁铁的电流 成正比。 — 该阀可直接采用电流控制单元控制,也可采用 相配套的电子控制单元控制,以充分发挥它的 性能(见 10 节)。 — 该阀可采用开环控制方式,或者阀芯位移反馈的 闭环控制方式,以使系统具有最优的控制精度和 重复性。
— —
技术参数 (采用配套的电气控制单元,在油液粘度为 36 cSt,温度 为 50°C 下测得)
MD1E 最大工作压力: - P-A-B口 - T口 bar bar l/min MD1ER 350 140 2.5 - 4 - 8 - 16 - 24 见8节 % of Q max % of Q max < 6% < ±2% < 1% < ±0.5%
最大流量(P-T压差Δp =10 bar) 阶跃响应 滞环 重复性 电气性能 环境温度 油液温度范围 油液粘度范围 推荐油液粘度 油液清洁度 质量 MD1E - S* MD1E - TA/TC
液压符号 (典型)
见7节 °C °C cSt cSt –10~+50 –20~+80 10~ 400 25
NAS 1638 7 – 9 级 kg 1.6 1.2 1.9 –
83 200/103 ED
1/8

动画演示溢流阀的作用

动画演示溢流阀的作用 080202232 曹宇08机电一体行政2班 摘要: ◆溢流阀的结构原理 ◆DBD型直动式溢流阀结构原理。 ◆动画演示。 ◆溢流阀的应用。 ◆用动画演示溢流阀。 关键词: ?液压系统, ?溢流阀 ●机电一体化。 1)结构原理 1)DBD型直动式溢流阀图1是DBD型直动式溢流阀的结构原理图。进油口的压力油通过阻尼活塞作用在其底部,形成了一个与弹簧力相抗衡的液压力。当此液压力小于调压弹簧的弹簧力时,锥阀关闭,此阀不起调压作用。随着进油口压力的不断提高。当液压力大于弹簧力时,锥阀开启,多余的油液溢回油箱,使进油口压力稳定在调定值上。 DBD型直动式溢流阀结构原理图 a)至40MPa阀的结构;b)至63MPa阀的结构 1—调节螺杆;2—阀体;3—调压弹簧;4—偏流盘;5—锥阀;6—阻尼活塞阻尼活塞的作用:一是在锥阀开启或闭合时起阻尼作用,用来提高阀的调压稳定性;二是对锥阀起导向作用,以提高阀的密封性能。 偏流盘的作用:偏流盘上开有环形槽,用以改变锥阀出油口的液流方向。于是偏流盘受到了一个液动力,此液动力与弹簧力的作用方向相反,并随溢流量的增加而加大。当溢流 量增加时,由于、阀锥开口增大,引起弹簧力增加。但由于液动力也同时增加,结构抵消了弹簧力的增量。因此这种阀的进口压力不受流量变化的影响,其p-Q

特性曲线比较理想,启闭特性好,有利于提高阀的额定流量。 (2)应用 1)起安全阀作用(防止液压系统过载)溢流阀起安全阀作用时,是为了限制液压系统的最高压力,以保证系统的安全。在系统正常工作情况下,阀关闭不溢流,系统的工作压力决定于外载荷。当系统压力达到阀的调定压力时,阀开启溢流,此时系统压力就决定于溢流阀的调定压力。 2)起溢流阀作用(维持液压系统压力恒定)在节流调速系统中,溢流阀在正常工作时为常开,通过溢流将多余油液排回油箱而维持液压系统压力基本恒定。 3)使液压系统卸荷先导式溢流阀的远程控制口通油箱,就可以利用溢流阀使系统卸荷。DBW型先导式电磁溢流阀利用本身的电磁换向阀就可实现系统卸荷,而其他的先导式溢流阀要实现系统卸荷,就要在远程控制口上添加换向阀。 4)远程调压在先导式溢流阀的远程控制口上接远程调压阀,能实现远程调压。 此外,溢流阀还可做背压阀使用,能使系统工作平稳;溢流阀与换向阀配合,可实现系统的多级压力控制;在制动回路中,用溢流阀可实现制动作用;在液压试验台系统中,溢流阀可用作加载阀等。

溢流阀原理及故障处理

溢流阀原理及故障处理 主编:龙游

目录 一、DB/DBW型先导溢流阀 (1) 二、DR型先导式减压阀…………………………………………………… 三、DZ型先导顺序阀……………………………………………………… 四、DA/DAW型先导控制式卸荷阀………………………………………… 五、压力继电器……………………………………………………………… 六、压力表开关……………………………………………………………… 七、单向阀、液控单向阀…………………………………………………… 八、电磁换向阀和电液换向阀……………………………………………… 九、Z2FS型叠加式单向节流阀……………………………………………… 十、行程节流阀……………………………………………………………… 十一、2FRM型调速阀………………………………………………………… 十二、分流—集流阀………………………………………………………………

一、DB/DBW 型先导溢流阀 1.结构和工作原理 DB 型阀是先导控制式的溢流阀;DBW 型阀是先导控制式的电磁溢阀。DB 型阀是用来控制液压系统的压力;DBW 型阀也可以控制液压系统的压力,并且能在任意时刻使系统卸荷。 DB 型阀主要是由先导阀和主阀组成。DBW 型阀是由电磁换向阀、先导阀和主阀组成。 DB 型溢流阀: A 腔的压力油作用在主阀芯(1)下端的同时,通过阻尼器(2)、(3)和通道(12)、(4)、(5)作用在主阀芯上端和先导阀(7)的锥阀(6)上。当系统压力超过弹簧(8)的调定值时,锥阀(6)被打开。同时主阀芯上端的压力油通过阻尼器(3)、通道(5)、弹簧腔(9)及通道(10)流回B 腔(控制油内排型)或通过外排口(11) 流回油箱(控制油外排型)。这样,当压力油通过阻尼器(2)、(3)时在主阀芯(1)上产生了一个压力差,主阀芯在这个压差的作用下打开,这样在调定的工作压力下压力油从A 腔流到B 腔(即卸荷)。 DBW 型电磁溢流阀: 此阀工作原理与DB 型阀相同,只是可通过安装在先导阀上的电磁换向阀 (14)使系统在任意时刻卸荷。 DB/DBW 型阀均设有控制油内部供油道(12)、(4)和内部排油道(10);控制油外供口X 和外排口Y 。这样就可根据控制油供给和排出的不同形式的组合内供内排、外供内排、内供外排和外供外排4种型式。 2.溢流阀常见故障及排除 溢流阀在使用中,常见的故障有噪声、振动、阀芯径向卡紧和调压失灵等。 (一)噪声和振动 液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。 (1)压力不均匀引起的噪声 先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。 由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。 (2)空穴产生的噪声 图1 DB 型溢流阀

溢流阀知识大全

溢流阀知识大全 一、DB/DBW型先导溢流阀 1.结构和工作原理 DB型阀是先导控制式的溢流阀;DBW型阀是先导控制式的电磁溢阀。DB 型阀是用来控制液压系统的压力;DBW型阀也可以控制液压系统的压力,并且能在任意时刻使系统卸荷。 DB型阀主要是由先导阀和主阀组成。DBW型阀是由电磁换向阀、先导阀和主阀组成。 DB型溢流阀: A腔的压力油作用在主阀芯(1)下端的同时,通过阻尼器(2)、(3)和通道(12)、(4)、(5)作用在主阀芯上端和先导阀(7)的锥阀(6)上。当系统压力超过弹簧(8)的调定值时,锥阀(6)被打开。同时主阀芯上端的压力油通过阻尼器(3)、通道(5)、弹簧腔(9)及通道(10)流回B腔(控制油内排型)或通过外排口(11)流回油箱(控制油外排型)。这样,当压力油通过阻尼器(2)、(3)时在主阀芯(1)上产生了一个压力差,主阀芯在这个压差的作用下打开,这样在调定的工作压力下压力油从A腔流到B腔(即卸荷)。 DBW型电磁溢流阀: 此阀工作原理与DB型阀相同,只是可通过安装在先导阀上的电磁换向阀(14)使系统在任意时刻卸荷。 DB/DBW型阀均设有控制油内部供油道(12)、(4)和内部排油道(10);控制油外供口X和外排口Y。这样就可根据控制油供给和排出的不同形式的组合内供内排、外供内排、内供外排和外供外排4种型式。 2.溢流阀常见故障及排除 溢流阀在使用中,常见的故障有噪声、振动、阀芯径向卡紧和调压失灵等。 (一)噪声和振动 液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。 (1)压力不均匀引起的噪声 先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。 由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。(2)空穴产生的噪声 当由于各种原因,空气被吸入油液中,或者在油液压力低于大气压时,溶解在油液中的部分空气就会析出形成

溢流阀的基本结构及其工作原理

溢流阀的基本结构及其工作原理在液压传动系统中,控制油液压力高低的液压阀称之为压力控制阀,简称压力阀。这类阀的共同点是利用作用在阀芯上的液压力和弹簧力相平衡的原理工作的。 一、溢流阀的基本结构及其工作原理 溢流阀的主要作用是对液压系统定压或进行安全保护。 (一)溢流阀的作用和性能要求 1.溢流阀的作用 在液压系统中用来维持定压是溢流阀的主要用途。它常用于节流调速系统中,和流量控制阀配合使用,调节进入系统的流量,并保持系统的压力基本恒定。用于过载保护的溢流阀一般称为安全阀。 2.液压系统对溢流阀的性能要求 (1)定压精度高 (2)灵敏度要高 (3)工作要平稳且无振动和噪声

(4)当阀关闭时密封要好,泄漏要小。 (二)溢流阀的结构和工作原理 常用的溢流阀按其结构形式和基本动作方式可归结为直动式和先导式两种。 1.直动式溢流阀 直动式溢流阀是依靠系统中的压力油直接作用在阀芯上与弹簧力等相平衡,以控制阀芯的启闭动作,溢流阀是利用被控压力作为信号来改变弹簧的压缩量,从而改变阀口的通流面积和系统的溢流量来达到定压目的的。当系统压力升高时,阀芯上升,阀口通流面积增加,溢流量增大,进而使系统压力下降。溢流阀内部通过阀芯的平衡和运动构成的这种负反馈作用是其定压作用的基本原理,也是所有定压阀的基本工作原理。

? 2.先导式溢流阀 图-19所示为先导式溢流阀的结构示意图,由于先导阀芯一般为锥阀,受压面积较小,所以用一个刚度不太大的弹簧即可调整较高的开启压力,用螺钉调节导阀弹簧的预紧力,就可调节溢流阀的溢流阀压力。 先导式溢流阀有一个远程控制口K,如果将K口用油管接到另一个远程调压阀(远程调压阀的结构和溢流阀的先导控制部分一样),调节远程调压阀的弹簧力,即可调节溢流阀主阀芯上端的液压力,从而对溢流阀的溢流压力实现远程调压。但是,远程调压阀所能调节的最高压力不得超过溢流阀本身导阀的调整压力。当远程控制口K通过二位二通阀接通油箱时,主阀芯上端的压力接近于零,主阀芯上移到最高位置.阀口开得很大。由于主阀弹簧较软,这时溢流阀p口处压力很低,系统的油在低压下通过溢流阀流回油箱,实现卸荷。 (三)溢流阀的性能 溢流阀的性能包括溢流阀的静态性能和动态性能。 1.静态性能

溢流阀TT_US_Relief - 2011-10-08

压力溢流和调节阀 要求快速响应、低泄漏量以及高抗污染能力的中位截止换向阀与变量泵系统,或中位连通换向阀与定量泵系统,如需要快速溢流,可考虑使用直动式溢流阀。在使用对称或不对称排量的液压执行器时,需考虑: 1)先导式溢流阀可进行精确压力调节 2) 直动式溢流阀具有响应快速、高抗污染性和低泄漏量3) 自动跳合溢流阀可减小热量损失(不能在负载压力保持系统中) 然而在不对称排量执行器或带泄油口马达系统中时,请谨慎使用溢流阀回路以避免气蚀和超压。 要求连续流量下高精确压力调 节的中位截止换向阀与定量泵 系统.可考虑采用先导式溢流阀 应用 设计构思和特点 2口直动式面积差限压插装溢流阀–RD*A Sun特有的RD*A型带面积差溢流阀的性能特点有: ? 相对平坦的压力上升特性(尤其在最大弹簧调节范围处。) ? 与先导式溢流阀相比,在相同物理尺寸下,其具有更高通流能力(25至200gpm[100至800L/min])。 ? 低滞回性(复位压力为设定压力的90%),低泄漏量(10滴/ min)。 ? 采用了锥形阀座式设计,适用于负载压力保持系统。 ? 快速的启闭特性 (典型响应时间2 ms)。 ? 对油液温度和清洁度不敏感。 ? 油液低温能可靠关闭,油液高温下优异稳定性(无振荡)。? 可靠的结构设计可承受高压力冲击与背压。 ? 不适用于具有频繁压力变化要求的系统,因其承受压力时难以调节。 注意:查阅页5上通用溢流阀注意事项1,2,4 限压插装溢流阀与调压插装溢流阀 Sun限压溢流阀和调压溢流阀为常闭压力控制元件,当油液流经阀时,在输入口1与输出口2之间保持恒定的压差。Sun液压溢流阀调压范围可高达5000p s i(350b ar)(瞬间情况下可达6000p si [420bar])。(气控型的调压范围较低)。出厂前所有Sun溢流阀的出厂设定均在流量为4gpm(16L/min)下进行。 注意:所有Sun2口插装溢流阀(除用于控制先导流量的溢流阀外)均可进行互换(例如给定基本尺寸下,油路和插孔相同)。直动式限压溢流阀 响应迅速,常用于: ? 在泵输出液流间歇性堵塞时保护定量泵和换向阀。 ? 配合压力补偿泵,抑制压力冲击。 ? 在启停大惯性负载时,保护液压执行器(液压缸和液压马达)不受压力冲击影响。 先导式[二级]调压溢流阀 较直动式具有更平坦的压力调节特性,但其快速性略小。它在第二级油路前配置有机构用来保护节流口不受油液污染影响。常用于: ? 可在大范围内连续可变地调节流量,以此产生恒定压力。 该图仅为说明, 并非实际回路 泵一侧 执行器一侧

比例阀溢流阀详细介绍

直动式比例溢流阀 直动式比例溢流阀的工作原理及结构见图3-2,。这是一种带位置电反馈的双弹簧结构的直动式溢流阀。它于手调式直动溢流阀的功能完全一样。其主要区别是用比例电磁铁取代了手动弹簧力调节组件。 如图3-2a所示,它主要包括阀体6,带位置传感器1、比例电磁铁2、阀座7、阀芯5及调压弹簧4等主要零件。当电信号输入时,电磁铁产生相应的电磁力,通过弹簧座3加在调压弹簧4和阀芯上,并对弹簧预压缩。此预压缩量决定了溢流压力。而压缩量正比输入电信号,所以溢流压力也正比于输入电信号,实现对压力的比例控制。 弹簧座德实际位置由差动变压器式位移传感器1检测,实际值被反馈到输入端与输入值进行比较,当出现误差就由电控制器产生信号加以纠正。由图3-2b所示的结构框图可见,利用这种原理,可排除电磁铁摩擦的影响,从而较少迟滞和提高重复精度等因素会影响调压精度。显然这是一种属于间接检测的反馈方式。 a

b 图3-2 带位置电反馈的直动式溢流阀 a)工作原理及结构b)结构框图 1—位移传感器2—比例电磁铁3—弹簧座4—调压弹簧 5—阀芯6—阀体7—阀座8—调零螺钉 普通溢流阀可以靠不同刚度的调压弹簧来改变压力等级,而比例溢流阀却不能。由于比例电磁铁的推力是一定的,所以不同的等级要靠改变阀座的孔径来获得。这就使得不同压力等级时,其允许的最大溢流量也不相同。根据压力等级不同,最大过流量为2~10L/min。阀的最大设定压力就是阀的额定工作压力,而设定最低压力与溢流量有关。这种直动式的溢流阀除在小流量场合下单独作用,作为调节元件外,更多的是作为先导式溢流阀或减压阀的先导阀用。另外,位于阀底部德调节螺钉8,可在一定范围内,调节溢流阀的工作零位。先导式比例溢流阀 1.结构及工作原理 图3-3所示为一种先导式比例溢流阀的结构图。它的上部位先导级6,是一个直动式比例溢流阀。下部为主阀级11,中部带有一个手调限压阀10,用于防止系统过载。 当比例电磁铁9通有输入信号电流时,它施加一个直接作用在先导阀芯8上。先导压力油从内部先导油口(取下螺堵13)或从外部先导油口X处进入,经流道口和节流3后分成两股,一股经节流孔5

溢流阀的设计

溢流阀的设计 第1章绪论 液压技术作为一门新兴应用学科,虽然历史较短,发展的速度却非常惊人。液压设备能传递很大的力或力矩,单位功率重量轻,结构尺寸小,在同等功率下,其重量的尺寸仅为直流电机的10%~20%左右;反应速度快、准、稳;又能在大范围内方便地实现无级变速;易实现功率放大;易进行过载保护;能自动润滑,寿命长,制造成本较低。因此,世界各国均已广泛地应用在锻压机械、工程机械、机床工业、汽车工业、冶金工业、农业机械、船舶交通、铁道车辆和飞机、坦克、导弹、火箭、雷达等国防工业中。 液压传动设备一般由四大元件组成,即动力元件——液压泵;执行元件——液压缸和液压马达;控制元件——各种液压阀;辅助元件——油箱、蓄能器等。 液压阀的功用是控制液压传动系统的油流方向,压力和流量;实现执行元件的设计动作以控制、实施整个液压系统及设备的全部工作功能。 1.1 液压技术的发展历史 液压技术作为一门新兴应用学科,虽然历史较短,发展的速度却非常惊人。液压设备能传递很大的力或力矩,单位功率重量轻,结构尺寸小,在同等功率下,其重量的尺寸仅为直流电机的10%~20%左右;反应速度快、准、稳;又能在大范围内方便地实现无级变速;易实现功率放大;易进行过载保护;能自动润滑,寿命长,制造成本较低。因此,世界各国均已广泛地应用在锻压机械、工程机械、机床工业、汽车工业、冶金工业、农业机械、船舶交通、铁道车辆和飞机、坦克、导弹、火箭、雷达等国防工业中。 液压传动设备一般由四大元件组成,即动力元件——液压泵;执行元件——液压缸和液压马达;控制元件——各种液压阀;辅助元件——油箱、蓄能器等。 液压阀的功用是控制液压传动系统的油流方向,压力和流量;实现执行元件的设计动作以控制、实施整个液压系统及设备的全部工作功能。 1.2 我国液压阀技术的发展概况 我国的液压工业及液压阀的制造,起始于第一个五年计划(1953~1957年),期间,由于机床制造工业发展的迫切需求,50年代初期,上海机床厂、天津液压件厂仿造了苏联的各类低压泵、阀。 随后,以广州机床研究所为主,在引进消化国外中低压元件制造技术的基础上,

溢流阀的工作原理及分析

【溢流阀的工作原理及分析】 直动型溢流阀 直动式溢流阀的结构原理图及图形符号,它由阀芯(滑阀)及调压机构(调压螺钉和调压弹簧)等主要部分组成。阀体左、右两端开有溢流的进口P(按液压泵或被控液压油路)和出油口T(接油箱),阀体中开有阻尼孔和泄油孔。这种阀是利用进油口的液压力直接与弹簧力相平衡来进行压力控制的。液压油从油口P进入阀体孔内的同时,经阻尼孔进入阀芯底部,当作用于阀芯的向上的液压作用力较小时,阀芯在弹簧力的作用下处于下端位置,油口P与T不相通。当油压升高至使阀芯底部端向上的液压力大于弹簧预调力时,阀芯上升,直到阀口开启,油口P与T相通,液压油液经出油口T溢流回油箱,使油口P的压力稳定在溢流阀的调定值。通过调压螺钉5、调压弹簧7的预调力,即可调整溢流压力。经阀芯与阀体孔径向间隙泄漏弹簧腔的油液,直接通过油孔8与溢流阀进口压力,高压时所需调节力及弹簧尺寸较大,故多用于低压系统场合。

先导型溢流阀 先导型溢流阀的结构原理及图形符号,它由先导阀(导阀芯7及调压弹簧8)和主阀(主阀芯2及复位弹簧4)两大部分构成,先导阀负责调压,主阀负责溢流。阀体1上开有进油口P、出油口T 和一个远程控制口K,主阀内设有阻尼孔3和泄油孔12,主阀与先导阀间设有阻尼孔5。这种阀的主阀启、闭受控于先导阀,即利用主阀芯上、下两端的压力差与弹簧相平衡进行压力控制。液压油从进油口P进入,通过阻尼孔3后作用在先导阀上,并经阻尼孔5流入主阀芯上端,同时进入主阀芯底端。当进油口的压力较低,先导阀上的液压作用力不足以克服调压弹簧8的作用力时,先导阀关闭,没有油液流过阻尼孔3,所以主阀芯上、下两端的压力相等,在复位弹簧4的作用下,主阀芯2上在最下端位置,溢流阀进油口P和回油口T不通,没有溢流。当进油口压力长高到先导阀上的液压力大于调压弹簧8的预调力时,先导阀打开,液压油即通过阻尼孔3,经先导阀和泄油孔12流回油箱。由于阻尼孔3的作用,使主阀芯上端的压力小于下端,

插装阀原理图

1 插装阀概述 二通插装阀是插装阀基本组件(阀芯、阀套、弹簧和密封圈)插到特别设计加工的阀体内,配以盖板、先导阀组成的一种多功能的复合阀。因每个插装阀基本组件有且只有两个油口,故被称为二通插装阀,早期又称为逻辑阀。 1.1 二通插装阀的特点 二通插装阀具有下列特点:流通能力大,压力损失小,适用于大流量液压系统;主阀芯行程短,动作灵敏,响应快,冲击小;抗油污能力强,对油液过滤精度无严格要求;结构简单,维修方便,故障少,寿命长;插件具有一阀多能的特性,便于组成各种液压回路,工作稳定可靠;插件具有通用化、标准化、系列化程度很高的零件,可以组成集成化系统。 1.2 二通插装阀的组成 二通插装阀由插装元件、控制盖板、先导控制元件和插装块体四部分组成。图1是二通插装阀的典型结构。

图1 二通插装阀的典型结构 控制盖板用以固定插装件,安装先导控制阀,内装棱阀、溢流阀等。控制盖板内有控制油通道,配有一个或多个阻尼螺塞。通常盖板有五个控制油孔:X、Y、Z1、Z2和中心孔a(见图2)。由于盖板是按通用性来设计的,具体运用到某个控制油路上有的孔可能被堵住不用。为防止将盖板装错,盖板上的定位孔,起标定盖板方位的作用。另外,拆卸盖板之前就必须看清、记牢盖板的安装方法。

图2 盖板控制油孔 先导控制元件称作先导阀,是小通径的电磁换向阀。块体是嵌入插装元件,安装控制盖板和其它控制阀、沟通主油路与控制油路的基础阀体。 插装元件由阀芯、阀套、弹簧以及密封件组成(图3)。每只插件有两个连接主油路的通口,阀芯的正面称为A口;阀芯环侧面的称作B 口。阀芯开启,A口和B口沟通;阀芯闭合,A口和B口之间中断。因而插装阀的功能等同于2位2通阀。故称二通插装阀,简称插装阀。

电液比例溢流阀的原理及设计

电液比例溢流阀的原理及设计 今天为大家介绍一项国家发明授权专利——一种电液比例溢流阀。该专利由浙江工业大学申请,并于2016年11月30日获得授权公告。 内容说明本发明属于流体传动及控制领域中的液压控制元件,具体涉及一种电液比例溢流阀。 发明背景在液压系统中,溢流阀起到了非常重要的作用,溢流阀性能的好坏直接影响整个液压系统的控制性能,进而影响到高端制造设备的整体质量和技术水平。现在电液比例溢流阀广泛应用于许多重要的工程领域,如大型数控设备、工程机械等;导弹、卫星、舰船等军工、航天领域;汽车、行走机械等领域,在国民经济发展中占有相当重要的地位。 溢流阀按照控制方式可以分为手调式溢流阀和电液比例溢流阀。在航空、航天、武器装备、钢铁、电站等重要的工业领域得到大力发展的今天,普通的液压传动系统就需要更多的结合电子技术,像伺服控制系统那样在动力传输与转换过程中实现连续自动控制,以满足工业技术的发展,电液比例溢流阀就在这种背景下产生。电液比例溢流阀是在手调溢流阀的基础上增加电磁铁,利用电磁力来推动阀芯运动,电液比例溢流阀进口压力的高低与输入信号电流的大小成正比,即进口油压受输入电磁铁的电流大小控制。若输入信号电流是连续地按比例或按一定程序变化,则比例溢流阀所调节的液压系统压力也连续地按比例或按一定程序进行变化。随着液压技术的发展,电液比例溢流阀的发展趋势开始向小型化大流量方向发展,并提出了低功耗的要求,但目前国内外厂家的主流溢流阀还没有实现这一要求。 现有的直动式电液比例溢流阀采用比例电磁铁输出推力直接驱动阀芯运动,结构简单,但由于受比例电磁铁输出推力的限制,无法从根本上解决高压、大流量下液动力的影响问题,在高压(压差大)和大流量的工作状态下仍然会出现流量饱和现象;要从根本上消除液动力影响、提高液压阀的过流能力,最根本的办法是采用导控(先导控制)技术,其基本思想是采用一通径较小的导阀控制主阀敏感腔的压力变化,驱动主阀芯运动,因液压推力比油液流经阀口时所产生液动力大得多,足以消除其对主阀芯运动与控制产生的不利影响。

螺纹插装、直动型、座阀式溢流阀,用作限压装置以保护液压

?? 螺纹插装、直动型、座阀式溢流阀,用作限压装置以保护液压回路。 ???? RV10-20型,常态下①流向②封闭,直到①处受到足够的液压力克服弹簧力 使阀芯提升,才接通②。该阀适用于低泄漏, 对负载变化快速响应的液压回路。 ?喝RV10-20??????C???????喋???????喌喏?Б?? ???????????? ?◥ ●调节装置不会旋出阀体。 ●调节选项 A,B 和 C的调节行程:确保弹簧不会被压实。 ●可选可选压力范围达 228 bar(3300 psi)。 ●压力变化响应快。 ●尺寸紧凑。 ?? ????喝228 bar喋3300 psi喌 ??喝特性曲线列出了在各种弹簧的最大压力值时的流量. 压力增量随弹簧和 液动力变化而变化,如需特定的压力-流量性能值,请和联系工厂联系。 ????喝在80% 的开启压力下,最大内泄为0.25毫升/分钟(5 滴/分钟) ??????喝当流量达到 0.95 lmp(0.25 gpm)时的压力bar(psi)测量值 ????????喝由于制造公差,阀的调整值可能略低或略高于下表列出的标 称值 ????喝-40℃~120℃ ??喝参见 9.010.1 ??喝粘度介于 7.4~420 cSt(50~2000 ssu)的矿物油或有润滑作用的合成油 ??喝没有限制;参见 9.020.1 ??喝VC10-2 ;参见 9.110.1 ??????喝CT10-2XX ;参见 8.600.1 ???Т??喝SK10-2X-B;参见 8.650.1;SK10-2X-M(交叉溢流应用)6.020.1 207/3000 172/2500 138/2000 103/1500 69/1000 18.9 5 37.9 10 35/500 241/3500 lpm/gpm ( p s i / b a r ) USASI/ISO: げ? ??(仅指插件)

溢流阀

目录 摘要 (3) 一绪论 (5) 1.1液压技术的发展历史 (5) 1.2我国液压阀技术的发展概况 (5) 1.3本课题的目的及研究范围 (7) 二溢流阀设计主体 2.1简单溢流阀的工作原理 (7) 2.2溢流阀的结构设计 (8) 2.3直动型溢流阀 (8) 2.4先导式溢流阀 (10) 三溢流阀主要参数设计 (11) 3.1静态特性 (12) 3.2动态特性 (13) 3.3先导型溢流阀的静态特性分析 (15) 四溢流阀的基本应用............................ 错误!未定义书签。五溢流阀主要零件的加工 19 六溢流阀常见故障原因分析及排除方法 (24) 6.1噪声和振动 (24) 6.2阀芯径向卡紧............................... 错误!未定义书签。 6.3调压失灵................................... 错误!未定义书签。 6.4其它故障................................... 错误!未定义书签。

总结 (23) 致谢 (26) 参考文献........................................ 错误!未定义书签。 摘要 液压传动是利用密闭系统中受压液体来传递运动和动力的一种传递方式。 其介质为油压液体,包括液压油和其他合成液体,其特点为动力大,运动平稳。但由于液压粘度大,在流动过程中阻力损失大,因而不宜做远距离传动和控制。 在液压传动系统中,液流的压力是最基本的参数之一,执行元件的输出力或输出扭矩的大小,主要由供给的液压力所决定。为了对油液压力进行控制,并实现和提高系统的稳压、保压、减压、调压等性能或利用压力变化实现执行机构的顺序动作等,根据油液压力和控制机构弹簧力相平衡的工作原理,人们设计制造了各种压力控制阀。在液压设备中主要起定压溢流作用和安全保护作用。 定压溢流作用:在定量泵节流调节系统中,定量泵提供的是恒定流量。当系统压力增大时,会使流量需求减小。此时溢流阀开启,使多余流量溢回油箱,保证溢流阀进口压力,即泵出口压力恒定(阀口常随压力波动开启)。 安全保护作用:系统正常工作时,阀门关闭。只有负载超过规定的极限(系统压力超过调定压力)时开启溢流,进行过载保护,使系统压力不再增加(通常使溢流阀的调定压力比系统最高工作压力高10%~20%)。 实际应用中一般有:作卸荷阀用,作远程调压阀,作高低压多级控制阀,作顺序阀,用于产生背压(串在回油路上)。 溢流阀一般有两种结构:1、直动型溢流阀 2、先导型溢流阀 关键词:工作原理、实际应用、设计加工 A bstract Hydraulic transmission is airtight system using liquid pressure to deliver the power of the movement and a transfer mode.

合肥工业大学-直动式溢流阀仿真

计算机仿真 直动式溢流阀仿真实验 班级:机设13-4班 学号: 2013210360 姓名:杨尚武 授课教师:翟华 日期: 2016年4月13日

一、实验目的 本实验要求学生能掌握连续系统仿真的一般过程,状态变量法的一般过程,键合图法仿真的一般过程,以四阶定步长龙格——库塔法的计算机程序的编写。二、实验要求 本实验要求学生能掌握连续系统仿真的一般过程,状态变量法的一般过程,键合图法仿真的一般过程,以及四阶定步长龙格—库塔法的计算机程序的编号要求每个学生参考上述源程序,独立编写C语言源程序或其他高级语言程序,正确计算仿真结果,并绘制压力P(t)和时间t的关系图,以及阀芯位移x(t)和时间t的关系。 三、参考C语言程序 #include "stdio.h" #include "math.h" void main() {FILE * fp; int i,j,e,g,l,s,n1,n2,b[3][2]; float d1,r1,r2,i1,c1,c2,x1,h1,a1,c,p0,pp,q1,x2,t; float a[3][3],y[3],u[2],k[3][5],h[5],p[3][5],z[3],d[3][5]; if((fp=fopen("fz1","wb"))==NULL) {printf("cannot open file\n"); } fprintf(fp,"digital simulation of hydraulic relief valve\n"); d1=0.012; r1=0.39e+11; r2=0.147e+12; i1=0.0614; c1=0.8e-12; c2=0.2e-4; x1=0.0014; p0=0.6e+6; pp=0.3e+7; q1=0.46e-3; h1=0.0003; t=0.0; n1=5; n2=55; a1=0.785*d1*d1;

超高压直动式比例溢流阀设计

超高压直动式比例溢流阀设计 在液压传动系统中,液流的压力是最基本的参数之一,执行元件的输出力或输出扭矩的大小,主要由供给的液压力所决定。为了对油液压力进行控制,并实现和提高系统的稳压、保压、减压、调压等性能或利用压力变化实现执行机构的顺序动作等,根据油液压力和控制机构弹簧力相平衡的工作原理,人们设计制造了各种压力控制阀。在液压设备中主要起定压溢流作用和安全保護作用。 标签:电液比例溢流阀工作原理结构设计 1 绪论 液压技术作为一门新兴应用学科,虽然历史较短,发展的速度却非常惊人。液压设备能传递很大的力或力矩,单位功率重量轻,结构尺寸小,在同等功率下,其重量的尺寸仅为直流电机的10%-20%左右;反应速度快、准、稳;又能在大范围内方便地实现无级变速;易实现功率放大;易进行过载保护;能自动润滑,寿命长,制造成本较低。液压阀的功用是控制液压传动系统的油流方向、压力和流量;实现执行元件的设计动作以控制、实施整个液压系统及设备的全部工作功能。 2 比例溢流阀的结构设计 溢流阀的基本功用是:当系统的压力达到或超过溢流阀的调定压力时,系统的油液通过阀口溢出一些,以维持系统压力近于恒定,防止系统压力过载,保障泵、阀和系统的安全,此时的溢流阀常称为安全阀或限压阀。①工作原理:设弹簧预紧力为Ft,活塞底部面积为A则:当PAFt时,阀口打开,P→T,稳压溢流或安全保护。②调压原理:调节比例电磁铁的输出力,便可调节溢流阀调整压力。③特点:可知这种阀的进口压力P不受流量变化的影响,被力P变化很小,定压精度高。但由于Ft直接与PA平衡,若P较高,Q较大时,电磁力就相应地较大,且Ft略有变化,p变化较大,所以一般用于低压小流量场合。 3 溢流阀主要参数设计 溢流阀工作时,随着溢流量的变化,系统压力会产生一些波动,不同的溢流阀其波动程度不同。因此一般用溢流阀稳定工作时的压力-流量特性来描述溢流阀的动、静态特性。 3.1 比例溢流阀的主要性能指标。溢流阀在不同的场合,可以有不同的用途,而比例溢流阀具有比普通溢流阀更强大的功能,这些功能包括:①构成液压系统的恒压源。比例溢流阀作为定压元件,当控制信号一定时,可获得稳定的系统压力;改变控制信号,可无级调节系统压力,且压力变化过程平稳,对系统的冲击小。②与计算机控制系统组合后很容易实现自动控制和远程控制。③比例溢流阀可方便地构成压力反馈系统,或与其他控制元件构成复合控制系统。④合理调节

溢流阀的工作原理及分类

溢流阀的工作原理及分类 2、先导型溢流阀 由主阀和先导阀两部分组成。先导阀类似于直动型溢流阀,但一般多为锥阀(或球阀)形阀座式结构。主阀可分为一节同心结构、二节同心结构和三节同心结构。 图一、先导型溢流阀 图1为先导型溢流阀。由于主阀芯6与阀盖3、阀体4与主阀座7等三处有同心配合要求,故属于三节同心结构。压力油自阀体4中部的进油口P进入,并通过主阀芯6上的阻尼孔5进入主阀芯上腔,在油阀盖3上的通道a和锥阀座2上的小孔作用与锥阀1上。当进油

口的压力p 1小于先导阀调压弹簧9的调定值时,先导阀关闭,而且由于主阀芯上、下两侧有效面积比(A 2/A 1)为1.03~1.05,上侧稍大,作用与主阀芯上的压力差和主阀弹簧力均使主阀口闭紧,不溢流。当进油压力超过先导阀的调定压力时,先导阀被打开,造成资金油口P 井主阀芯阻尼孔5、先导阀口、主阀芯中心孔至阀体4下部出油口(溢流口)O 的流动。阻尼孔处的流动损失使主阀芯上、下腔中的油液产生一个随先导阀流量增加而增加的压力差,当它在主阀芯上、下作用面上产生的总压力差足以克服主阀弹簧力、主阀自重G 和摩擦力F f 时,主阀芯开启。此时进油口P 与出油口(溢流口)O 直接相通,造成溢流以保持系统压力。 图2、二节同心先导型溢流阀的结构图 图2为二节同心先导型溢流阀的结构图,其主阀芯为带有圆柱面的锥阀。为使主阀关闭时有良好的密封性,要求主阀芯1的圆柱导向

面和圆锥面与阀套配合良好,两处的同心度要求较高,故称二节同心。主阀芯上没有阻尼孔,而将三个阻尼孔2、3、4分别设在阀体10和先导阀体6上。其工作原理与三节同心先导型溢流阀相同,只不过油液从主阀下腔到主阀上腔,需经过三个阻尼孔。阻尼孔2和4只主阀下腔与先导阀前腔产生压力差,在通过阻尼孔3作用于主阀上腔,从而控制主阀芯开启。阻尼孔3还用以提高主阀芯的稳定性。溢流阀进出口压力为 (Pa)(5-24) 式中,A c 为先导阀座孔的面积(m2);K y 、K x 分别为主阀和先 导阀弹簧的刚度(N/m);y 0、x 分别为主阀和先导阀的预压缩量(m); y、x分别为主阀和先导阀阀口的开度(m);F f 为主阀与阀体间的摩擦力(N);G为主阀芯自重(N)。

相关文档
最新文档