错误接线分析方法操作步骤

错误接线分析方法操作步骤
错误接线分析方法操作步骤

错误接线分析方法(仅供参考)

电能计量的接线方式分直接接入和经互感器接入。

直接接入方式比较简单,不容易出错,并且顺序错了也能正确计量,所以只分析经互感器接入。

经互感器接入又分为三相三线和三相四线,因为三相四线线路清晰,且属于级别比较高的计量方式,运行环境也好,安装过程严格,一般不会出错。所以这里只分析三相三线经互感器接入。

三相三线经互感器又分四线制和简化线制,简化线制被逐步淘汰,在实际中已经很少见,所以也不分析。

三相三线经互感器四线制虽然现场不会出现很复杂的故障方式,但是在培训中通过设置复杂的方式来提高学员的理论分析水平。在考试中设置复杂故障方式来拉开选手的分数。

三相三线经互感器四线制的故障分2种,电压断相和电压不断相。

当电压不断相的时候,分析方法跟挂什么表没有关系。

当断相的时候,跟挂什么表有关系。

一、挂一个有功机械表

这时候电压断相,对应的有功元件就没有电压。

二、挂一个有功机械表和一个60度无功机械表

这时候电压断相,对应的有功元件会经无功线圈感应电压。

三、挂一个多功能表

如果这是一个普通的多功能表,那么它内部可能由一个有功表和一个60度无功表组成的,分析方法与二相同。这种多功能表的无功计算方法就是我们常说的正弦无功或三相三线60度无功。

如果这是一个比较昂贵的高精度多功能表,那么它的计量原理可能是基于AD采样的,与标准表一样,这种表的无功不是通过有功计算,而是通过单片机运算的,也叫真无功。这种表只相当于一个有功机械表,与一分析相同

综上所述,仿真台虽然有多种接线方式能挂多种表,但是作为培训来讲,主要还是学习三相三线经PT CT接入挂一个有功机械表和一个60度无功机械表这种模式,关于种情况在孟凡利的《运行中电能计量装置错误接线》有详细讲述,该书作为仿真学习的教材最合适不过。

下面总结一个简单的查线步骤,供老师和学员参考。

1、首先测量U13、U1

2、U31,如果出现173V则说明出现极性反,如果出现57.7伏说明一次断相,如

果出现20V、70V、50V说明二次断相

2、测量对地电压寻找B。

3、测量角度,画出正相序还是逆相序

4、已知电压,根据电流为感性的原则,区分电流顺序

三相四线电能表错误接线分析及判断电子版本

三相四线电能表错误接线分析及判断

三相四线电能表错误接线 分析及判断

三相四线电度表接线方式的分析与判断 1、三相四线电度表标准接线方式 P=P1+P2+P3 =U A I A cos ψA + U B I B cos ψB + U C I C cos ψC =3 UI cos ψ 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b) 2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式 P=P1+P2+P3 =U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA ) =3 UI cos (120°+ψ) =-3 UI cos (60°-ψ)故当Ψ在0°~60°内,呈反转状态。

负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b) 3、三相四线电度表电压正相序A 、B 、C 而电流正相序是C 、A 、B 的接线方式 P=P1+P2+P3 =U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB ) =3 UI cos (120°-ψ) =-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b) 4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式

三相四线电度表错误接线分析

三相四线电度表错误接线分析 1 前言 三相四线有功电度表在低压系统电能计量中应用较为普遍,其接线方式主要有直接接入和经过电流互感器间接接入两种方式,直接接入法主要用于负荷电流较小的用户,负荷较大的用户一般采用经电流互感器接入法。采用电流互感器间接接入时,在实际接线中经常会出现电流互感器接反、电流电压不同相、电压回路断线等造成电度表不能准确计量等现象,本文针对以上几种现象进行了分析,并给出了判断依据。 2 三相四线有功电度表经电流互感器间接接入正确接线 正确接线图及向量图如图1所示, 此时三相有功功率的计算式为: P=UICOS(180?,Φ)+ UICOSΦ,UICOSΦ aaabbbccc 假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电度表明显走慢。B、C相CT接反与A相接反结果相同。 3.1.2 2CT接反

3个CT中2个CT接反,假设为A、B相CT接反,其接线图及向量图如图3所示: 此时三相有功功率的计算式为: P=UICOS(180?,Φ)+ UICOS(180?,Φ),UICOS(180?,Φ) aaabbbccc 假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电度表反转。 3.2电压、电流回路不同相 3.2.1两元件电压、电流不同相 假设A相电压、电流同相,其它两相电压、电流不同相,其接线图、向量图如图5所示。

P=UICOS(120?,Φ)+ UICOS(120?,Φ), UICOS(120?,Φ) abbbcccaa 假设三相负载对称,则此时有功功率为:P=3UICOS(120?,Φ),此时电度表反转,计量值为正确接法的-1/(1/2+ t anΦ* /2) 图7所示接法中有功功率的计算式为 P=UICOS(120?,Φ)+ UICOS(120?,Φ),UICOS(120?,Φ) accbaacbb 假设三相负载对称,则此时有功功率为:P=3UICOS(120?,Φ)

三相四线电能表错误接线分析报告及判断

三相四线电能表错误接线 分析及判断

三相四线电度表接线方式的分析与判断 1、三相四线电度表标准接线方式 P=P1+P2+P3 =U A I A cos ψA + U B I B cos ψB + U C I C cos ψC =3 UI cos ψ 负载120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a)(b) 2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式 P=P1+P2+P3 =U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA ) =3 UI cos (120°+ψ) =-3 UI cos (60°-ψ)故当Ψ在0°~60°,呈反转状态。 负载120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a)(b)

P=P1+P2+P3 =U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB ) =3 UI cos (120°-ψ) =-3 UI cos (60°+ψ)故当Ψ在0°~30°,呈反转状态。 负载120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a)(b) 4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式 P=P1+P2+P3 =U B I A cos (120°-ψA )+ U C I B cos (120°-ψB )+ U A I C cos (120°-ψC ) =3 UI cos (120°-ψ) =-3 UI cos (60°+ψ)故当Ψ在0°~30°,呈反转状态。或正或反 负载120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a)(b)

电能计量装置错误接线判断与分析

电能计量装置错误接线判断与分析 【摘要】电能计量装置错误的接线将会直接影响计量用电的精确性,本文以三相二元件接线为例针对用电计量装置接线错误的判断进行分析。 【关键词】电能表;错误接线;判断;反接 电能计量装置作为供电企业计收电量的重要工具,它的准确与否直接关系到供用电双方的经济利益,随着社会用电量日益增多,电能计量装置的准确性越来越受到人们重视。因电能表本身精确度的超差,一般造成电能表的误差可以很少,但因电能表的接线错误会导致整套计量装置少计、不计或反记的误差,将给供用电双方带来极大的经济损失。因此,为了保证电能计量装置的准确性,电能表必须做到接线正确,确保电能表在正确的接线状态下计量电量。 电能表的测量电路是由其端钮盒中的铜接头引入的,电流线路输入相电流,电压线路输入线电压。下面以三相二元件接线为例介绍电能表原理接线图和向量图。 1 电能表正确接线 在三相三线制电路中,不论对称与否,都可以采用两个功率表的方法测量三相功率,称为二瓦计法。下图是一种三相二元件接线方式,使线电流从*端分别流入两个功率表的电流线圈,它们的电压线圈的非*端共同接到非电流线圈所在的第三条端线上,两个功率表读数的代数和为三相三线制中电路吸收的平均功率。 设两个功率表的读书分别用P1和P2表示,则有P1=Re[ab*a*],P2=Re[cb*c*], 所以P1+P2=Re[ab*a*+cb*c*]=Uab*Ia*cos()+Ucb*Ic*cos()=UIcos 2 电能表错误接线分析 电能表的错误接线(包括断线)造成输入量的错误,将会导致电能表数的不正确,从而使电能计量失准。电能表错误接线的种类很多,一般包括:电压、电流回路短路或断路;电压、电流互感器极性接反;电能表的电压、电流元件相位错误等等。下面就几种常见的情况进行分析说明。 2.1 电压回路断线 假设a相电压回路断线,则测量第一元件,有Uab=0, P=P1+P2=Re[ab*a*+cb*c*]

三相三线电能计量装置错误接线检查作业指导书.doc

三相三线有功电能表错误接线检查作业指导书 一、任务要求: 1、遵守安全工作规程,正确使用仪表; 2、画出向量图,描述故障错误; 3、列出各元件功率表达式及总的功率表达式; 4、求出更正系数 二、适用范围: 电压互感器采用两台单相互感器按V/v 0方式连接,电流互感器采用分开四线制连接方式。所接负载为一块三相三线有功电能表和一块三相三线(60°)无功电能表、电压回路阻抗对称的感性负载(容性负载的分析方法可类推)功率因数COS Φ>0.5(Φ<60°)。 三、配备工具: 一块数字式相位伏安表(仅提供一组电压测试线和一个电流钳)。 四、相关知识: (一)三相三线有功电能表正确接线的相量图 (二)正确功率表达式: )30cos(1u u uv I U P ?+?= )30cos(2w w wv I U P ?-?= ???cos 3)30cos()30cos( 210UI I U I U P P P w w wv u u uv =-?++?=+= )090:900:(οοοο≤≤-≤≤??容性时感性时 (三)电压互感器一次断线、二次断线、二次极性反接情况的电路分析。 1、电压互感器V 型接线一、二次断线时二次侧线电压数值表:

下表列出了当一次断和二次断电压时,二次侧各相与相间电压的数值。 序号故障 断线 情况 故障断线接线图 (实线为有功电能表, 虚线为无功电能表) 电压互感器一、二次断线时二次侧电压(V) 二次侧不接 电能表(空载) 二次侧接一只 有功电能表 二次侧接一只有功 电能表和一只无功电 能表 Uuv Uwv Uwu Uuv Uwv Uwu Uuv Uwv Uwu 1 一次 侧U 相断 相 0 100 100 0 100 100 50 100 50 2 一 次侧V 相断 相 50 50 100 50 50 100 50 50 100 3 一 次侧 W相 断相 100 0 100 100 0 100 100 33 67 4 二次 侧u相 断相 0 100 0 0 100 100 50 100 50 5 二 次侧 v相断 相 0 0 100 50 50 100 67 33 100 6 二 次侧w 相断 相 100 0 0 100 0 100 100 33 67

三相四线电度表错误接线分析

三相四线电度表错误接线的分析与判断 动力工程部电气车间 二O一一年九月

三相四线电度表接线方式的分析与判断 1、三相四线电度表标准接线方式 P=P1+P2+P3 =U A I A cos ψA + U B I B cos ψB + U C I C cos ψC =3 UI cos ψ 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b) 2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式 P=P1+P2+P3 =U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA ) =3 UI cos (120°+ψ) =-3 UI cos (60°-ψ)故当Ψ在0°~60°内,呈反转状态。 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b)

P=P1+P2+P3 =U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB ) =3 UI cos (120°-ψ) =-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b) 4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式 P=P1+P2+P3 =U B I A cos (120°-ψA )+ U C I B cos (120°-ψB )+ U A I C cos (120°-ψC ) =3 UI cos (120°-ψ) =-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。或正或反 负载 120o 120o 120o U A U B U C I A I B I C ΨA ΨB ΨC (a) (b)

电能表错误接线主要表现

电能表错接线的主要表现为: 电能表反转、不转、转速变慢等情况。由于电能表计量装置是由电能表、互感器、二次回路等多种元件构成,因此,电能表的错误计量及其更正也呈多样性变化。为公平、公正、合理计量电能,及时、快捷、正确诊断错误接线及采取有效的防范措施,是摆在供电企业员工面前的重要课题,是提高供电企业形象和减少电量丢失的有效途径。笔者结合装表接电和电能计量装置的运行检查实践,浅谈电能表比较典型的错误接线及防止措施,以供同行参考。 二、电能计量装置常见错误接线 1、单相有功电能表的错误接线 当直接接入式单相电能表装表时,误将进电能表的火线与零线接反了,零线从电能表引出后处在开断状态,而负载跨接在火线和地线之间,如图1所示,用电依然正常,因电能表电流线圈无电流通过而不转。 当电压小钩断开或接触不良造成开路时,其接线如图2所示,此时电能表的测量功率P=(0)×IcosΦ=0,电能表不转。 当电流互感器二次测开路时,电能表电流线圈无电流通过,电能表测量的功率 P=U(0)cosΦ=0,电能表不转。同样,电流互感器二次侧短路时,因无电流通过电流线圈,电能表也会不转。当电流互感器二次侧极性接反时,电能表测量的功率P'=-UIcosΦ电能表反转,其接线如图3所示。 2、三相三线两元件电能表错误接线 当电压线A、B相电压对调; B、C相电压对调; A、C相电压对调时,对调后计量值P'均为零,电能表不转。 3、三相三元件电能表的错误接线 当有任一只电流线或CT极性接反时,接反相测量的有功功率为负值,其更正系数 电能表变慢。 当有两相电流线或CT极性接反时,接反两相的测量值为负值,更正系数 电能表反转。 当三相电流线或CT极性接反时,电能表反转,K=-1。 当电流回路一相开路时,电能表仅计量两相电量; 二相开路时,仅计量一相电量; 三相开路时,电能表停转。同样,电流回路出现一相、两相、三相短路时,电能表计量值同上。 当低压三相四线电能表CT接线正确,而电压辅助线相序与电流不一致时,如, 电能表反转。 在电压回路存在开路故障时,有以下特征: 一相电压回路开路,电能表计量两相电量; 两相电压回路开路时,电能表仅计量一相电量,电能表变慢; 三相电压回路开路时,电能表停转。 三、规范电能表计量装置的安装接线及工艺 规范电能计量装置的安装接线,是防止计量差错的有效手段。首先电能计量装置的二次回路应符合技术要求: 对高压CT接线,不宜采用简化接线,而应用分相接线,即三相三线二只CT用4根线连接,三相系统三只CT用6根线连接。对于低压的有的仍用简化接线,即三相三线2只CT采用不完全星形接法,用3根线连接; 三相四线3只CT星形法接线,用4根线连接。 其次,当PT二次电压线用电缆连接时,一般采用四芯,一根芯作为备用,35kV 以上计费用PT二次回路,应不装设隔离开关辅助触点,但安装熔断器; 35kV及

分析电能计量装置故障及错误接线检查

分析电能计量装置故障及错误接线检查 摘要:近几年来,随着社会经济的迅速发展以及综合国力的不断增强,电力企 业的服务工作不断深化。而电能计量装置的使用,除了为电力企业的经济效益提 供保障外,还在很大程度上为用电客户提供了优质服务。在整个电能计量装置中,工作人员能否对其进行正确的接线,不仅关系着整个装置的运行,同时还关系着 整个电力系统的运行。 关键词:电能计量装置;故障;错误接线 一、电能计量装置故障及错误接线检查的重要性 第一,电能计量装置故障和错误接线问题,与用户利益息息相关。作为贸易 结算依据的电能计量装置若存在故障或者错误接线,势必造成计量失准,存在多 计量或少计量的情况,有违电能计量“公平、合理、准确”的宗旨,对用户权益造 成侵蚀,造成用户用电成本失真,影响用户效益效率。第二,电能计量装置故障 和错误接线问题,与电力企业经济技术指标和经济效益相互关联,若电能计量装 置存在故障和错误接线,将会影响供售电量的统计,难以准确记录电力用户的实 际用电情况,致使线损等相关指标统计失准失真,影响着交易的公平性,容易造 成服务事件,影响供电企业服务社会的形象。 二、电能计量装置要求 电能计量装置的根本目的在于准确的记录用电居民的准确用电量,避免偷电、漏电的现象发生。而在电能计量装置安装的过程中,必须符合以下几方面要求: 一是安装人员要仔细检查电能表及互感器,确保其误差在装置运行的范围内,以 此来保障电能表与互感器的顺利运行。二是在互感器以及电能表的运行中,工作 人员要对互感器的变比、性能以及组别进行仔细的观察,同时还要保障互感器及 电能表倍率的准确性。三是在电能计量装置的过程中,工作人员还要确保电能表 的铭牌数据与线路电压、电流、频率以及相序等保持一致。四是在装置安装的过 程中,其铭牌上都有规定的额定值,由此对电流、电压互感器的二次负载范围做 出了规定。与此同时,电压互感器二次导线降压不能超过额定电压的0.5%。 三、电能计量装置故障及处理 3.1常见故障 电能计量装置常见故障类型有电流互感器故障、电压互感器故障、二次回路 故障、电能表故障、互感器极性错误、电流电压相位不对应等。电流、电压互感 器故障主要有二次电流、电压不平衡;内部响声异常,出现滋滋响声等;油浸式 互感器渗油、油面过低、油色异常,电压互感器一次保险熔断等。二次回路故障 包括电压二次回路短路,电流互感器二次回路开路,二次回路接触不良,二次回 路接触电阻过大等。电能表故障分为显示故障、计量故障、外观故障,其中显示 故障分为黑屏、花屏、彩虹现象、残像和拖尾、断续显示、乱码、漏液、显示错 误等;计量故障分为误差超差、潜动、不启动、停走、组合误差超差、时段转换 错误等;外观故障包括螺钉生锈、面板/外壳变色、液晶模糊、按键接触不良等。 3.2故障处理 第一,选择高精度、稳定性好的多功能电能表,随着科技发展浪潮的不断推进,电子技术也得到了一定的发展,通过对多功能电子表进行分析,可知其运行 趋于稳定状态,而且误差基本处于可控范围内,无较大的浮动,多功能电子表具 有多种功能,比如电能计量、失压记录、追补电量等,且荷载力强、能耗低,在 电能计量装置中发挥着巨大的影响力;第二,减小互感器合成误差,在电流、电

三相四线错误接线检查方法3

三相四线错误接线检查作业指导书 一、任务要求 1、遵守安全工作规程,正确使用仪表; 2、画出向量图,描述故障错误; 3、列出各元件功率表达式及总的功率表达式; 4、求出更正系数。 二、使用工具 1、低压验电笔; 2、相位表; 3、相序表。 三、适用范围 三相四线制感应式有功电能表与三相四线制感应式跨相900无功电能表无TV 、经TA 接入或经TV 、TA 接入的联合接线方式。 四、相关知识 ① 三相四线有功电能表正确接线的相量图: ②正确功率表达式: u u u I U P ?cos 1= v v v I U P ? c o s 2= w w w I U P ?c o s 3= ????cos 3 cos cos cos 3210UI I U I U I U P P P P w w w v v v u u u =++=++= )090900( ≤≤-≤≤??::容性时感性时 五、操作步骤 说明:①下列涉及1、2、3数字均表示电能表第几元件;N 表示有功电能表的零线端,

②操作前均需办理第二种工作票,并做好安全措施。 1、未经TV ,经TA 接入的三相四线制有功和无功电能表接线方式: (1)测量相电压,判断是否存在断相。 U 1N = U 2N = U 3N = 注:不近似或不等于220V 的为断线相。 (2)测量各相与参考点(U u )的电压,判断哪相是U 相。 U 1u = U 2u = U 3u = 注:①0V 为U 相; ②其他两相近似或等于380V ,则非0V 相为U 相。 (3)确定电压相序。 注:①利用相序表确定电压相序; ②利用任意正常两相相电压的夹角(按顺序相邻两相夹角为1200或相隔两相夹角为2400均为正相序;反之类推)。 12120U U ∧?? = 0 13240U U ∧?? = 023120U U ∧?? =均为正相序; 0 12240U U ∧?? = 0 13120U U ∧?? = 023240U U ∧?? =均为逆相序; (4)测量相电流,判断是否存在短路、断相。 I 1= I 2= I 3= 注:①出现短路,仍有较小电流,出现断相电流为0A ; ②同时出现短路与断相,应从TA 二次接线端子处测量(此处相序永远正确), 如哪相电流为0A ,则就是哪相电流断路。 (5)以任意一正常的相电压为基准,测量与正常相电流的夹角,判断相电流的相序。 11U I ∧?? = 12U I ∧?? = 13U I ∧?? = (设U 1、I 1、I 2、I 3均为正常) (6)如出现相电流极性反,测量相应元件进出电流线的对地电压,判断哪种极性反(此项只能记录在草稿纸上)。 注:①TA 极性反与表尾反的区别:即TA 极性反是指从TA 二次出线端K 1、K 2与 联合接线盒之间的电流线接反;表尾反是指从TA 二次出线K 1、K 2未接反,只是从联合接线盒到有功电能表的电流进出线接反; ②相电流进线对地电压>相电流出线对地电压,则为TA 极性反; ③相电流进线对地电压<相电流出线对地电压,则为电流表尾反。

有功电能表错误接线现场检查及判断

有功电能表错误接线现场检查及判断 https://www.360docs.net/doc/ff7218371.html, 2007年3月7日11:06 来源: 张玉林江苏省盐都县供电公司 (224002) 随着国民经济的不断发展,电能需求量的日益增加,电力客户逐步增多,电能计量装置接线的准确性要求不断提高。计量是否准确不但影响到供电企业的形象和声誉,而且直接关系到供电企业的经济效益。电能表的计量准确性可以通过电能计量装置检定机构(国家授权由电力企业计量检定部门检定,一般是供电企业的计量中心)的校验得到保证,而现场接线的准确性,不仅取决于装表人员的工作责任心、业务水平及工作的熟练程度,而且由于电力客户法律、法规意识谈薄、有意窃电,致使计量装置错误接线,直接影响到计量的准确性。对于现场接线的检查,一般采用电能表现场校验仪,采用六角图法检查分析判断,但其存在许多不足:①设备投资比较大、仪器较多、携带运输不方便;②接线较多、操作步骤复杂、使用不方便;③需提供操作电源,受现场环境影响较大;④当三相二元件有功电能表错误接线在48种以外时,仪器无法分析判断。为克服上述缺陷,我们在现场采用了手持式钳形数字万用表,对计量装置接线现场检查,依据现场检查结果进行分析判断,大大减少了投资和现场工作量,受到了现场检定人员的一致好评。 1 主要功能介绍 使用该仪表可以在现场完成诸如感性、容性电路的判别、电能表接线正确与否、电能表运行快慢判断、测量三相相序、判断变压器接线组别。可进行三相相

电压、线电压、三相电流、相位差、相序及电阻的测量。 2 测量前准备工作 工作前,首先要完善好工作票制度和工作许可制度,认真填写好变电第二种工作票,并履行好工作许可手续。完成后,可通过仪表的相位测量档测量出三相负载的性质(阻性、感性、容性及相角一功角)。三相二元件有功电能表正确原理接线图见图1。 图1 三相两元件有功电能表正确接线图 3 检查测量步骤 (1)电能计量装置外观检查:通过对电能计量装置外表、封印等的检查,初步判断电力客户是否依法用电,有无违约窃电现象。 (2)相关数据测量: ①三相相电压及线电压--用仪表的电压档可判断出电能表有无某元件失压、欠压现象; ②三相电流测量--用仪表的电流档,用钳形表可依次测量出I 1、I 2 、I 1 +I 2 , 从而判断出电能表某相元件有无缺电流、电流反接或电流差现象; ③电源相序测量--用仪表的相位测量档测量接入电能表电压U 12与U 32 之间的 相位差,若为300°,则为正相序;若为60°,则为反相序;

三相四线及三相三线错误接线向量图分析及更正

三相四线测量常识———————————————第一步:测三相电压测量U1n接线图如下: 测量U2n、U3n方法与上面图类似,移动红线到第二、第三元件电压端,零线不动。(注意选择交流500) 不带电压互感器时220V为正常,且三相电压数值相接近为正常。如果有某相为0,说明该相电压断线。 能够测出U1=_____V U2=_____V U3=_____V 第二步:测量各元件对参考点Ua的电压测量方法如下图: 测量方法与上类似,移动红线到第二、第三元件电压端,接参考点的连线不动。 目的:测出对参考点电压为0的该相确定为A相 能够测出U1a=_____V U2a=_____V U3a=_____V

第三步:测量三个元件的相电流测量I1的方法如下图: 测量其它相与上图类似,移动黑线到第二、第三元件电流进线端。 目的:判断各元件电流是否正常,正常是三相相电流相接近,如果有某相为0,说明该相电流开路或短路。 能测出I1=_____A I2=_____A I3=_____A 第四步:测量第一元件电压与各元件电流的相位角测量

第五步:测量第一元件与第二元件电压间的相位角 按照上图可以测出

电能计量装置错误接线检测与分析

电能计量装置错误接线检测与分析 电能计量装置在运行中经常会出现错误接线,错误接线会造成电量的差错、会出现不正确的计量或多或少,这样给用户或供电部门造成不必要的损失。电能计量装置正确接线是保证计量准确的必要条件。因此,电能计量装置接线检查也是一项很重要的任务。 标签:计量装置接线错误 电能表的计量准确性可以通过电能计量检定机构(国家授权由电力企业计量检定部门检定,一般是供电企业的计量中心)的校验得到保证,而现场接线的准确性,不仅取决于装表人员的工作责任心、业务水平及工作的熟练程度,而且由于电力客户法律、法规意识谈薄、有意窃电,致使计量装置错误接线,直接影响到计量的准确性。 对于现场接线的检查,一般采用电能表现场校验仪,采用六角图法检查分析判断,但其存在许多不足:①设备投资比较大、仪器较多、携带运输不方便;②接线较多、操作步骤复杂、使用不方便;③需提供操作电源,受现场环境影响较大;④当三相二元件有功电能表错误接线在48种以外时,仪器无法分析判断。为克服上述缺陷,我们在现场采用了手持式钳形相位表,对计量装置接线现场检查,依据现场检查结果进行分析判断,大大减少了投资和现场工作量,受到了现场检定人员的一致好评。使用该仪表可以在现场完成诸如感性、容性负荷的判别、电能表接线正确与否、电能表运行快慢判断、测量三相相序、判断变压器接线组别。可进行三相相电压、线电压、三相电流、相位差、相序及电阻的测量。 解决问题的实践过程描述 一、工作前,首先要完善好工作票制度和工作许可制度,认真填写好变电站第二种工作票,并履行好工作许可手续。完成后,可通过钳形相位表(以使用SMG2000相位表为例)?的相位测量档测量出三相负载的性质(阻性、感性、容性及相角)。 钳形相位表的使用方法: 1.将相位表的红笔和黑笔连线的另一端,按颜色分别插入相位表上标有“U1”的两侧插孔内。 2.将相位表电流卡钳连线的另一端,插入相位表上标有“I2”插孔内。此时应注意:使用相位表时I1和U2是一组,I2和U1是一组。 3.在使用相位表前应先对其进行“校准”。具体方法是:将相位表上的旋钮开关至“360°校”档。此时,相位表上的显示窗口应显示“360”,若显示值不是“360”时,可调节“W”校准螺丝,直至其显示值为“360”为止。

电能计量装置错误接线的原因及检查方法

电能计量装置错误接线的原因及检查方法 摘要:作为电能计量工作的重要组成部分,电能计量装置的正常运行与否显示 了电力企业的技术管理水平,直接关系到电网的安全运行和电能结算工作的顺利性,决定电能计量的公正、准确、可靠性,影响电力企业与电力用户间的关系、 电力企业的经济效益和未来发展前景。然而由于装配工作人员疏忽、技术水平低 以及用户法律意识淡薄、违法窃电等因素的存在,使电能计量装置时常出现错误 接线问题,影响公司和客户双方利益,因此有必要对电能计量装置错误接线的原 因及检查方法进行深入探究。 关键词:电能计量;电能计量装置;错误接线;检查方法 1电能计量装置及其接线检查设备的构造 电能计量装置由互感器、电能表、失压计时仪和二次回路等组成,用以计量 用户电能使用总体情况,为电力企业的电能管理和结算提供有效数据支撑。而电 能计量装置的错误接线会扰乱电能计量功能,需要通过电能计量装置错误接线的 检查与分析,对该处问题提早发现,及时处理并做好预防措施。对于电能计量设 备来说,其接线通常涵盖两大点:互感器的接线和电能表接线。 1.1互感器的接线 (1)电压互感器V/V接线。V/V接线模式通常适合于10kV中性点三相系统,优势体现在:控制了电压互感器的使用,无法有效监测电压与绝缘水平,如图1 所示。(2)电流互感器的接线。其接线方式主要分为两类:二相分相接法,适 合中性点不接地系统→三相三线系统;三相分相接法,适合于中性点直接接地系 统→三相四线系统。该接地模式有效控制了计量接线的复杂度,即使当接线出现 失误时,也能够实现对电量进行追捕计算。 1.2电能表接线模式 (1)单相表接线模式。参照负荷电流大小,来选择电能表接线模式,例如:负荷电流<50A,选择直接入式,相反大于50A,则应附加互感器辅助接线。(2)三相四线电能表接线。如果是非中性点绝缘系统,则应该选择yo/yo接线模式。 计量设备错误接线的查找方法:围绕电能表接线电压相序展开分析、判断,重点 查看电能表末端电压相序正常与否。引入钳形万用表测出电能表末端的电流、电压,从中分析评判电压对称度。 2电能计量装置错误接线的原因分析 2.1单相电路有功电能计量错误接线 单相电路有功电能计量中的错误接线问题是电能计量装置错误接线中的最常 见的,该错误情况的出现主要由以下几个方面的因素造成。第一是由于装置安装 人员在接线过程中操作失误,导致线路接反现象的情况,相线和零线混淆;第二,在电能计量装置接线时,该工作人员未能正确区分进出线;第三,电能计量装置 的电流线圈与电源间存在短路情况,接线错误使电能表无法正常计数;第四,由 于工作人员的疏忽,电压钩连片未连接,电能表故障。 2.2三相四线电路有功电能计量错误接线 三相四线电路有功电能计量错误接线存在三种表现形式,在检查工作中需要 加以注意区分。一、在三相四线有功电能计量装置线圈连接时,电压线圈会出现 断线,导致电能表接线错误;二、在该电能表正常运行时,需要将一台电流互感

电能表错误接线检查方法及预防措施分析

电能表错误接线检查方法及预防措施分析 发表时间:2019-01-09T09:56:01.573Z 来源:《电力设备》2018年第24期作者:李欣[导读] 摘要:安装电能表的时候,我们必须严格要求安装人员的技术水平,我们必须熟悉一些相关的规章制度,这样我们就可以确保不违反国家有关规定进行安装。 (内蒙古电力(集团)有限责任公司乌海电业局海南供电分局内蒙古乌海市 016000)摘要:安装电能表的时候,我们必须严格要求安装人员的技术水平,我们必须熟悉一些相关的规章制度,这样我们就可以确保不违反国家有关规定进行安装。确保计量箱正确连接,减少操作误差,为用户提供更高效更有效的服务。电能表作为电力企业和用户的一个重要数据基础,电力测量的准确性直接关系到供应商和消费者的利益,对供应商和消费者之间的和谐关系有着极其重要的影响,所以必须要做好电能测量工作。 为了达到电能计量的精度,有必要做好电能表的维修保养工作,同时还要保证电能表连接的正确性,从而有效降低电能表产生的误差。因此,在电能表的安装过程中,我们要求相关的安装人员,除了要具备专业的安装技能之外,还要熟悉掌握相关的规章制度,这样才能使安装的过程中,既没有违反国家的相关法律,又能保证接线的正确性,将操作失误的概率降到最低,减少了工作当中的很多可以避免的麻烦,提高工作效率,给用户提供更好的服务。 关键词:电能表;错误接线;检查方法;预防措施电力仪表的准确计量是电力企业管理的重要组成部分,也是用户的电能计量管理中的一个很重要的一部分,如果计量出的结果不准确,不但会对国家的电费收入产生影响,还有影响用户的经济核算,小到寻常百姓家大到企业集团,所以电能表的计量结果是否准确不仅对实现电力企业的经济效益具有重要意义对其他的用电群体的意义也非凡。但是就目前的安装实践而言,电能表在安装的过程中,会出现很多错误,接线出现错误是一种经常会出现的问题,不管是电流回路、电压回路还是互感器等都发生过接入错误的现象,这样直接导致了电能计量的准确性减小,从而带来一系列的后期问题,因此,在安装电表时,不仅要在实验室中对其布线的符合性进行检测,还要确保布线严格符合现场的相关规范和要求。安装完成后,电线需要仔细检查和通电。还需要验证电压相位序列和电流相位的正确性,测量误差,确保布线正确。 1电能表工作原理及重要性分析目前,我国家用电基本上都是220V交流电,电能表一旦接入供电线路后,交流电就会对电能表中的电流和电压线圈产生作用,电流和电压线圈的转轴就会感应到磁场,从而使电流切磁感线后发生偏转。这种偏转可以带动电能表铝盘转动,而因为线圈感应的电流越大,偏转产生的作用力就越大,铝盘的转动就会越大。例如,当家里使用加大功率电器(电磁炉、空调等)时,铝盘指针的转动频率就会明显加快。利用这种原理可以比较直观的对电力用户使用的电能进行计算。电力企业会对电力用户进行电费收缴来维持企业的正常运作,而在电费收缴过程中最不可缺少的电力设备就是电能表,可以是说电能表示电力企业进行电费抄核收的先决条件,是计算用户用电量的最重要电力设备。 2电能表错误接线检查方法 2.1带电检查 我们在检查有功功率计接线是否正确的时候,如果没有电量计阶段,需要检查线是否联合接线盒,所以当三相负载出现对称的时候,功率的因数我们还可以估计出来,我们就可以根据下面的内容进行带电检查。第一要用秒表对正在做功的电表进行测量,测量它转10圈时候能用多长时间,然后我们利用得到的测量数据和电压的变化情况来计算高压侧功率,再将计算得到了功率和实际的功率进行对比,进而就能判断出电能表的接线是否有问题。再就是当三相负载是对称的情况下,对电能表在做功情况下进行N转秒数测量,对联合接线盒与中间相电压断开后,然后再对电能表在做功情况下进行N转秒数测量,看看两者得到的数值是否一样,若后者比前者慢了一倍,再对是间相电压进行连接,对调两边的相电压,然后对有功电能表进行观察,看其是否停数。然后再判断电能表的连线是不是对的。最后利用钳形电流表对IA和IC进行测试,再把二相电流合并到一起,在进行一次测试,若连接没有错误,前后的读数是一样没有变化的,如果合并后测试时候的读数和之前不一样,而且数值是单独测数的三倍的时候,则说明电能表有一相接线错误。 2.2停电检查 当一面是在没有电的时候,可以用万用表来检查相对电流和电压回路,从而通过电流互感器一次侧的极性及相应情况。检查仪表的次级线圈的输入和相位的准确性。为了确定是否发生了连接错误。由上述分析可见,要想检测出电能表是否有接线错误,目前有两种常见的方式,即带电情况下的检查,和不带电时候的检查。相比较而言,不带电时候的检查方法较为简单。 3电能表错误接线分析 3.1三相四线电能表误接线分析 (1)某相电流互感器的变比和其他的两相不一致或者三者都是不一样的时候。在安装完电能表后,我们可以通过肉眼观察到电流互感器和匝数的变化情况,当在通电后,我们可以利用钳形电流表来观察互感器和二次电流的变化情况,并且和第一次的变化情况进行对比,在大部分的情况下,二相线路二次电流不是有特别明显的差异变化,如果出现较大的差异,而且数值超过30%的时候,需要进行下一步的判断即三相负荷不对称或是互感器变比等情况。 (2)电压断线。在正常情况下,电能表二次回路装置是铜芯导线,但用户在选择进户线恩时候大多数都多股铝芯线,这样两股不同的线在连接的时候就要先采取一种方法进行处理,一般都是用破皮法进行处理连接,若这一开始就没有处理好的话,在后期的长时间运行的过程中就会出现氧化的现象,最后导致电能表处于缺相的状态下运行,影响电能表计量的准确性。 (3)电压电流不同相位。当电流互感器与电能表安装位置不在同水平线上时候,就会出现电压电流在不同相位的情况,这样会使电能表在不同的功率下,出现快走、慢走、倒走的情况。这种错误接线可以通过抽运法判断,即只保留单相电压,电表是否正常运行。通常情况下,这三个阶段都应该是正常运转的。 (4)零线未接入。三相负载不平衡时,由于零线接触不良或线路内部断开,造成不平衡电荷漏失。在安装完成后,可以使用万用表来测量三相相电压是否正确来判断这种误差。 (5)单相或者两相电流互感器二次极性接反。当单相互感器连接时,电表走的会变慢,两相电量少;当两个互感器倒转时,电表反转,计算功率为单相的逆功率;当三个互感器连接在一起时,功率计反向,计算功率为三相逆变功率。 3.2常见单相电能表停转错误情况

相位法对电能计量装置误接线分析..

3测量前准备工作 工作前,首先要完善好工作票制度和工作许可制度,认真填写好变电站第二种工作票,并履行好工作许可手续。完成后,可通过钳形相位表的相位测量档测量出三相负载的性质(阻性、感性、容性及相角)。 4.钳形相位表的使用方法(以使用SMG2000相位表为例) (1)将相位表的红笔和黑笔连线的另一端,按颜色分别插入相位表上标有“U1”的两侧插孔内。 (2)将相位表电流卡钳连线的另一端,插入相位表上标有“I2”插孔内。此时应注意:使用相位表时I1和U2是一组,I2和U1是一组。 (3)在使用相位表前应先对其进行“校准”。具体方法是:将相位表上的旋钮开关至“360°校”档。此时,相位表上的显示窗口应显示“360”,若显示值不是“360”时,可调节“W”校准螺丝,直至其显示值为“360”为止。 (4)在上述准备工作完成后,方可进行下一步的测量工作。 5.检查测量步骤 (1)电能计量装置外观检查:通过对电能计量装置外表、封印等的检查,初步判断电力客户是否依法用电,有无违约窃电现象。 (2)相关数据测量: ①三相相电压及线电压--用仪表的电压档可判断出电能表有无某元件失压、欠压现象; ②三相电流测量--用仪表的电流档,用钳表可依次测量出I1、I2、I1+I2的电流值,从而判断出电能表某相元件有无缺电流、电流反接或电流差现象; ③电压相序测量--用仪表的相位测量档测量接入电能表电压U12与U32之间的相位差,若为300°,则为正相序;若为60°,则为逆相序; ④接入电能表电流与电压间相位差测量--用仪表的相位测量档可测出U12与I1、I2之间的相位角及U32与I1、I2之间的相位角。 6.测量结果分析判断 通过所测结果,绘制出向量图,依据负载性质及功率因数范围,在图中定出b相位置(因三相二元件有功电能表中,b相不加电流即b相无电流)及a、c相位置,并依据三相相序判断出表头实际所加电压U12及U32,然后根据U12与I1、I2或U32与I1、I2间的相位关系,确定出实际表头所加电流,并准确判别出相位。据此可判断电能表二元件所加电压、电流错误接线形式,并写出电能表错误接线功率表达式,从而推算出错误接线更正系数,计算出实际电量。 7.工程实例 某10kV高压供电户,变压器总容量为2500kV A,装有150/5计量电流互感器两台、两相不完全星形接线,10/0.1kV电压互感器两台、V-V接线,三相二元件有功电能表一只。某日,电能表校表人员至现场检查,发现计量装置封印有伪造现象,电能表倒走。拆封后利用钳形相位表检测,测量数据如下: (1)实际负荷功率因数角φ=35°,为感性。 (2)电流测量值分别为:I1=3.5AI2=3.5AI1+I2=6A 因为这三个量的值不相等,其中一个量的值是其余任意一个量的倍,则说明有一相电流互感器极性接反了。 (3)电压测量值分别为:U12=102VU23=101VU31=100VU1=0VU2=102VU3=101V 因为在采用V/V形接法的电压二次回路里,规定的B相电压是要接地的,因此,对地为0V的那一相电压应该是B相电压,可判断出U1为B相电压. (4)相序测量:U12与U32间相位角为60° 因此可判断相序为逆相序。 (5)电压与电流间相位角测量值分别为:用钳形相位表的“φ”档测量各相电压对应电流的相位角。本例中所测得的相位角度为U12对I1为245°;U32对I1为185°;U12对I2为305°;U32

三相四线有功电度表错误接线分析与判断

三相四线有功电度表错误接线分析与判断 刘艳红 重庆建峰化肥公司重庆涪陵 408601 摘要:本文针对三相四线有功电度表经过电流互感器间接接入低压系统计量时容易出现的几种错误接法进行了分析,并提出了判断依据。关键词:三相四线有功电度表接法电流互感器 1 前言 三相四线有功电度表在低压系统电能计量中应用较为普遍,其接线方式主要有直接接入和经过电流互感器间接接入两种方式,直接接入法主要用于负荷电流较小的用户,负荷较大的用户一般采用经电流互感器接入法。采用电流互感器间接接入时,在实际接线中经常会出现电流互感器接反、电流电压不同相、电压回路断线等造成电度表不能准确计量等现象,本文针对以上几种现象进行了分析,并给出了判断依据。 2 三相四线有功电度表经电流互感器间接接入正确接线 正确接线图及向量图如图1所示,

此时三相有功功率的计算式为: P=U a I a COS(180°-Φa)+ U b I b COSΦb+ U c I c COSΦc 假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电度表明显走慢。B、C相CT接反与A相接反结果相同。 3.1.2 2CT接反 3个CT中2个CT接反,假设为A、B相CT接反,其接线图及向量图如图3所示:

此时三相有功功率的计算式为: P=U a I a COS(180°-Φa)+ U b I b COS(180°-Φb)+ U c I c COS(180°-Φc) 假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电度表反转。 3.2电压、电流回路不同相 3.2.1两元件电压、电流不同相

相关文档
最新文档