解三角形专题复习

解三角形专题复习
解三角形专题复习

期末复习 期末复 期末复习专题——解三角形 一、填空题

1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且a sin A sin B +b cos 2 A =2a ,

则b

a

=________. 2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a sin A +b sin B -c sin C =3a sin

B ,则角

C 等于________. 3.在△ABC 中,sin(A +B )·sin(A -B )=sin 2C ,则此三角形的形状是________三角形. 4.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________.

5.在△ABC 中,BC =1,B =π

3

,△ABC 的面积S =3,则sin C =________.

6.在△ABC 中,sin 2A ≤sin 2

B +sin 2

C -sin B sin C .则A 的取值范围是________.

7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =1

4

a,2sin B =3sin C ,

则cos A 的值为________.

8.在△ABC 中,AD 为BC 边上的高线,AD =BC ,角A ,B ,C 的对边为a ,b ,c ,则b

c

c

b

的取值范围是________. 二、解答题

9.已知函数f (x )=sin ????π4+x ·

sin ????

π4-x +3sin x cos x (x ∈R ). (1)求f ????π6的值;(2)在△ABC 中,若f ???

?A 2=1,求sin B +sin C 的最大值.

10.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =1

7.

(1)求sin ∠BAD ;

(2)求BD ,AC 的长.

11.已知△ABC 的三个内角A ,B ,C 所对的边分别是a ,b ,c ,B =2π

3

,b =3,求a +c

的范围.

12.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步

行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C . 现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min

后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速

直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =3

5

.

(1)求索道AB 的长;

(2)问:乙出发多少分钟后,乙在缆车上与甲的距离最短? (3)为使两位游客在C 处互相等待的时间不超过3分钟,乙

步行的速度应控制在什么范围内?

13.如图所示,在四边形中, ,

;为边上一点,,,.

(Ⅰ)求sin ∠CED 的值;

(Ⅱ)求BE 的长.

14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A B C A B

+=+.

(1)求角C 的大小;

(2)若△ABC 的外接圆直径为1,求22a b +的取值范围. 15.在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =BC .

ABCD AB DA ⊥CE

=23

ADC π

∠=

E AD 1DE =2EA =3

BEC π

∠=

16.在ABC ?中,内角A 、B 、C 的对边长分别为a 、b 、c .已知2

2

2a c b -=,且

sin 4cos sin B A C =,求b .

17. 在△ ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,向量(2sin ,,m B =

2cos 2,2cos 12B n B ?

?=- ??

?,且//m n 。

(1)求锐角B 的大小;

(2)如果b =2,求△ ABC 面积的最大值。

期末复习——解三角形专题(参考答案) 一、填空题1.答案 2

2. 解析 由正弦定理,得a 2+b 2-c 2=3ab ,

所以cos C =a 2+b 2-c 22ab =32,又0<C <π,所以C =π6.答案 π

6

3.解析 因为sin(A +B )sin(A -B )=sin 2 C ,所以sin (A -B )=sin C ,又因为A ,B ,C

为△ABC 的内角,所以A -B =C ,所以A =90°,所以△ABC 为直角三角形. 4. 解析 由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC ·cos A ,

∴12=AB 2+16-2×AB ×4×cos 60°,解得AB =2,

∴S △ABC =12·AB ·AC ·sin A =1

2

×2×4×sin 60°=2 3.答案 2 3

5. 解析:因为在△ABC 中,BC =1,B =π3,△ABC 的面积S =3,所以S △ABC =1

2

BC ×BA sin

B =3,即12×1×BA ×3

2

=3,解得BA =4.又由余弦定理,得AC 2=BC 2+BA 2-

2BC ·BA cos B ,即得AC =13,由正弦定理,得BA sin C =AC sin B ,解得sin C =239

13

.

6.解析 由题意结合正弦定理,得a 2≤b 2+c 2-bc ?b 2+c 2-a 2

≥bc ?b 2+c 2-a 2bc

≥1?

cos A ≥12,A 为△ABC 内角?0<A ≤π

3

.答案 ????0,π3 7. 解析 ∵2sin B =3sin C ,由正弦定理得2b =3c ,∴b =3

2c ,

又b -c =14a ,∴a =4(b -c ),∴a =2c .∴cos A =b 2+c 2-a 22bc =9

4c 2

+c 2

-4c 2

2·32c

2=-1

4. 8.解析 因为AD =BC =a ,由12a 2=1

2

bc sin A ,

解得sin A =a 2

bc ,再由余弦定理得cos A =b 2+c 2-a 22bc =12????b c +c b -a 2

bc =12????b c +c b -sin A ,

得b c +c b =2cos A +sin A ,又A ∈(0,π),所以由基本不等式和辅助角公式得b c +c

b 的取值范围是[2,5].

二、解答题9. 解 (1) f ????π6=1.

(2)由f ????A 2=1,有f ????A 2=sin ????A +π6=1,因为0<A <π,所以A +π6=π2,即A =π3

. sin B +sin C =sin B +sin ????2π3-B =32sin B +3

2

cos B =3sin ????B +π3. 因为0<B <2π3,所以π3<B +π

3

<π,0<sin ????B +π3≤1,

所以sin B +sin C 的最大值为 3.

10. 解 (1)在△ADC 中,因为cos ∠ADC =1

7

所以sin ∠ADC =43

7

.所以sin ∠BAD =sin(∠ADC -∠B )

=sin ∠ADC cos ∠B -cos ∠ADC sin ∠B =437×12-17×32=33

14.

(2)在△ABD 中,由正弦定理得

BD =AB ·sin ∠BAD sin ∠ADB

=8×33

14437

=3.

在△ABC 中,由余弦定理得AC 2

=AB 2

+BC 2

-2AB ·BC ·cos B

=82+52-2×8×5×1

2=49.所以AC =7.

11、解 法一 由B =2π3,得A +C =π

3

.

所以sin A +sin C =sin A +sin ????π3-A =sin A +????sin π3cos A -cos π3sin A =12sin A +32

cos A =sin ????A +π3.又0<A <π3,所以π3<A +π3<2π3

. 所以32<sin ????A +π3≤1.所以sin A +sin C ∈???

?3

2,1. 由正弦定理,得a sin A =c sin C =b sin B =3

sin

3=2,

所以a +c =2sin A +2sin C =2(sin A +sin C ).所以a +c ∈(3,2].

法二 由余弦定理,得b 2=a 2+c 2-2ac cos 2π

3

=(a +c )2-2ac +ac =(a +c )2-ac ≥(a

+c )2-????a +c 22=3(a +c )

2

4,当且仅当a =c 时,取等号. 所以(a +c )2≤4,故a +c ≤2.

又a +c >b =3,所以3<a +c ≤2,即a +c ∈(3,2].

12. 解 (1)在△ABC 中,因为cos A =1213,cos C =3

5

所以sin A =513,sin C =4

5

.从而sin B =sin[π-(A +C )]=sin(A +C )

=sin A cos C +cos A sin C =513×35+1213×45=63

65

.

由正弦定理AB sin C =AC sin B ,得 AB =AC sin B ·sin C =1 2606365

×4

5

=1 040(m). 所以索道AB 的长为1 040 m.

(2)设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,

所以由余弦定理得

d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×12

13

=200(37t 2-70t +50),

因0≤t ≤1 040130,即0≤t ≤8,故当t =35

37

(min)时,甲、乙两游客距离最短.

(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ·sin A =1 2606365

×5

13

=500(m).

乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .

设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤625

14

,所以

为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在????1 25043

,62514(单位:m/min)范围内.

13.

14.解:(1)因为sin sin tan cos cos A B C A B +=+,即sin sin sin cos cos cos C A B C A B

+=+,

所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,

得 sin()sin()C A B C -=-. ………………………………4分 所以C A B C -=-,或()C A B C π-=--(不成立).

即 2C A B =+, 得 3

C π=. ………………………………7分

(2)由πππ,,,C A B αα==+=-设2πππ0,,A B α<<<<知-.

因2sin sin ,2sin sin a R A A b R B B ====, ……………………8分 故22221cos 21cos 2sin sin 22

A B a b A B --+=+=+

=12π2π11cos(2)cos(2)1cos22332??-++-=+????

ααα.………………11分

ππ2π2π,2,αα<<<<由-知-1cos 212α-<≤,故223342a b <+≤.……14分

15解:(1)在ABD △中,由正弦定理得

sin sin BD AB

A ADB

=

∠∠.

由题设知,

52sin 45sin ADB =

?∠,所以sin ADB ∠=.

由题设知,90ADB ∠

(2)由题设及(1)知,cos sin BDC ADB ∠=∠=. 在BCD △中,由余弦定理得

2222cos BC BD DC BD DC BDC =+-???∠

25825=+-??25=.所以5BC =.

16.解:由余弦定理得A bc b c a cos 22

2

2-=-,∵0,222≠=-b b c a ,

∴b A bc b 2cos 22

=-,即2cos 2+=A c b 。 由正弦定理及sin 4cos sin B A C =得

c

b C B A 2si n 2si n cos 2=

=,∴22+=

b

b

,即4=b

17.解:(1) 由题意得:22sin (2cos 1)22

B B B -=,

整理得:2sin cos B B B =,即sin 2B B =,

所以tan 2B =又B 为锐角,故02B π<<,所以223B π=,于是3

B π

=。

(2) 由三角形面积公式得:1sin 2ABC S ac B ?=,由(1)得3B π=或者56

B π

=。

当3B π=时,由b =2及余弦定理222cos 2a c b B ac

+-=,得:22

4a c ac +-=,

由均值不等式得22

424ac a c ac =+-≥-,即4ac ≤当且仅当a c =时取等号;

此时11sin 22ABC S ac B ac ?==≤

当56B π=时,由b =2及余弦定理222

cos 2a c b B ac

+-=, 得:224a c +-=,

由均值不等式得22

424a c ac =+-≥-,

即4(2

ac ≤

=,当且仅当a c =时取等号;

此时111

sin 2222

ABC S ac B ac ?==??≤-2<

综上所述,△ ABC

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形专题复习-师

解 三 角 形 ◆知识点梳理 (一)正弦定理: R C c B b A a 2sin sin sin ===(其中R 表示三角形的外接圆半径) 适用情况:(1)已知两角和一边,求其他边或其他角; (2)已知两边和对角,求其他边或其他角。 变形:① 2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R = ,sin 2b B R =,sin 2c C R = ③ sin sin sin a b c A B C ++++=2R ④::sin :sin :sin a b c A B C = (二)余弦定理:2 b =B a c c a cos 22 2 -+(求边),cosB=ac b c a 22 22-+(求角) 适用情况:(1)已知三边,求角;(2)已知两边和一角,求其他边或其他角。 (三)三角形的面积:①Λ=?= a h a S 21;②Λ==A bc S sin 2 1 ; ③C B A R S sin sin sin 22 =; ④R abc S 4=; ⑤))()((c p b p a p p S ---=;⑥pr S =(其中2 a b c p ++=,r 为内切圆半径) (四)三角形内切圆的半径:2S r a b c ? =++,特别地,2a b c r +-=斜直 (五)△ABC 射影定理:A c C a b cos cos ?+?=,… (六)三角边角关系: (1)在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - cos 2A B +=sin 2C ; 2 cos 2sin C B A =+ (2)边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b ; (3)大边对大角:B A b a >?> ◆考点剖析 (一)考查正弦定理与余弦定理的混合使用 例1、在△ABC 中,已知A>B>C,且A=2C, 8,4=+=c a b ,求c a 、的长. 例1、解:由正弦定理,得 C c A a sin sin = ∵A=2C ∴C c C a sin 2sin = ∴C c a cos 2= 又8=+c a ∴ c c cocC 28-= ①

解答题专题复习---解三角形

解答题专题复习---解三角形 一、考情分析 解三角形是每年高考的热点,大题主要考查以一个三角形或四边形为背景的利用正弦、余弦定理及三角形面积公式求解三角形的边长、角以及面积问题,或考查将两个定理与三角恒等变换相结合的解三角形问题。试题难度多为中等。 二、题型归类 类型一:三角形基本量的求解问题 【典例分析】(2017北京理数)在△ABC 中,A =60°,c = 3 7 a . (1)求sin C 的值;(2)若a =7,求△ABC 的面积.

【归类巩固】(2018北京理数)在△ABC中,a=7,b=8, 1 cos 7 B=-. (1)求∠A;(2)求AC边上的高. 类型二:已知一边一对角求范围问题 【典例分析】(2018·广州模拟)△ABC的内角A,B,C的对边分别为a,b,c,且满足a=2, a cos B=(2c-b)cos A. (1)求角A的大小;(2)求△ABC的周长的最大值. 【归类巩固】△ABC的内角,, A B C的对边分别为,, a b c,已知cos sin a b C c B =+. (1)求B;(2)若2 b=,求△ABC面积的最大值.

类型三:以平面几何为载体的解三角形问题 此类问题的本质还是考查利用正、余弦定理求解三角形的边长或角度问题. 【典例分析】如图,在△ABC 中,3 B π ∠=,8AB =,点D 在BC 边上,且2CD =,1 cos 7 ADC ∠= . (1)求sin BAD ∠; (2)求BD ,AC 的长.. 【归类巩固】如图,在平面四边形ABCD 中,1AD =,2CD =,AC =(1)求cos CAD ∠的值; (2)若cos sin BAD CBA ∠=∠=,求BC 的值. 三、专题总结

高考解三角形专题(一)及答案

解三角形专题 1.在ABC ?中,角,,A B C 的对边分别是,,a b c ,若1,3 a b B π ===,则A = ( ) A. 12π B. 6π C. 3π D. 2 π 2.在ABC ?中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC ?的面积,若 () 2 2214 S b c a = +-,则A ∠=( ) A. 90? B. 60? C. 45? D. 30? 3.在ABC ?中,若sin 2sin cos A B C =,且 ()()3b c a b c a bc +-++=,则该三角形的形状是( ) A. 直角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等边三角形 4. 在 中,内角为钝角, , , ,则 ( ) A. B. C. D. 5.在中,若,,则的周长为( )C A . B . C. D . 6. 在锐角中,角、、所对的边分别为,且、、成等差数列, 则面积的取值范围是 7.已知锐角的内角 的对边分别为 ,且 ,则 的最大值为 __________. 8.在中,角,,所对的边分别为,,,且,,则的最小值为 . 9.在 中,内角,,所对的边分别为,,,已知 . (1)求角的大小; (2)若的面积,为边的中点,,求. ABC △23 C π = 3AB =ABC △6sin 33A π?? + + ?? ?6sin 36A π??++ ???33A π??++ ???36A π? ?++ ?? ?ABC ?A B C ,,a b c A B C b =ABC ?ABC ?A B C a b c 2sin cos 2sin sin C B A B =+3c ab =ab

(新高考)2021届高考二轮复习专题六 三角函数与解三角形 学生版

1.高考对三角函数的考查主要在于三角函数的定义、图象和性质、三角恒等变换,主要考查三角函数图象的变换、三角函数的性质(单调性、奇偶性、周期性、对称性及最值),三角恒等变换通常还与解三角交汇命题. 2.解三角形的考查主要在具体面积、角的大小、面积与周长的最值或范围的考查,本部分要求对三角恒等变换公式熟悉. 一、三角函数 1.公式 (1)扇形的弧长和面积公式 如果半径为r 的圆的圆心角α所对的弧的长为l ,那么角α的弧度数的绝对值是l r α=. 相关公式:①l =|α|r ②211 22 S lr r α== (2)诱导公式: 正弦 余弦 正切 α+k ?2π sin α cos α tan α α+π ?sin α ?cos α tan α ?α ?sin α cos α ?tan α π?α sin α ?cos α ?tan α 2 π α+ cos α ?sin α 2 π α- cos α sin α 命题趋势 考点清单 专题 6 ×× 三角函数与解三角形

(3)同角三角函数关系式: sin 2α+cos 2α=1,sin tan cos α αα = (4)两角和与差的三角函数: sin(α+β)=sin αcos β+cos αsin β sin(α?β)=sin αcos β?cos αsin β cos(α+β)=cos αcos β?sin αsin β cos(α?β)=cos αcos β+sin αsin β tan tan tan()1tan tan αβ αβαβ++= - tan tan tan()1tan tan αβ αβαβ --= + (5)二倍角公式: sin 22sin cos ααα= 2222cos 2cos sin 12sin 2cos 1ααααα=-=-=- 2 2tan tan 21tan α αα = - (6)降幂公式: 21cos 2sin 2αα-= ,21cos 2cos 2 α α+= 2.三角函数性质

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形知识点及题型总结复习过程

基础强化(8)——解三角形 1、①三角形三角关系:A+B+C=180°;C=180°-(A+B); ②. 三角形三边关系:a+b>c; a-bB>C 则6090,060A C ?≤

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

三角函数与解三角形 专题复习

专题一 三角函数与解三角形 一、任意角、弧度制及任意角的三角函数 1、弧度制的定义与公式: 定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 弧度记作rad. 公式角错误!未找到引用源。的弧度数公式 r 角度与弧度的换算 错误!未找到引用源。 ①rad 180 1 ② 错误!未找到引用源。 弧长公式 扇形面积公式 2 第一定义:设错误!未找到引用源。是任意角,它的终边与单位圆交于点P(x,y),则错误!未找到引用源。 第二定义:设错误!未找到引用源。是任意角,它的终边上的任意一点P(x,y),则错误!未找到引用源。. 考点1 三角函数定义的应用 例1 .已知角 的终边在直线043 y x 上,则 tan 4cos 5sin 5 . 变式:(1)已知角 的终边过点)30sin 6,8( m P ,且5 4 cos ,则m 的值为 . (2)在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. (3)4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 考点2 扇形弧长、面积公式的应用 例2.已知扇形的半径为10cm,圆心角为 120,则扇形的弧长为 面积为 . 变式:已知在半径为10的圆O 中,弦AB 的长为10,则弦AB 所对的圆心角 的大小为 , 所在的扇形弧长 为 ,弧所在的弓形的面积S 为 . 二、同角三角函数的基本关系及诱导公式 1、1cos sin 2 2 cos sin tan

例1.已知 是三角形的角,且.5 cos sin (1)求 tan 的值; (2)把 2 2sin cos 1 用 tan 表示出来,并求其值. 变式:1、已知 是三角函数的角,且3 1 tan ,求 cos sin 的值. 2、已知.3 4tan (1)求 cos 2sin 5cos 4sin 的值;(2)求 cos sin 2sin 2 的值. 3.若cos α+2sin α=-5,则tan α=________.

高中数学复习提升-解三角形复习专题(教师)

平远中学高一数学自主探究学案 第一章 解三角形 第 6 课时 内容: 正、余弦定理的复习 班级 姓名 小组 【学习目标】 1.复习和巩固正、余弦定理求任意三角形的边、角、判断三角形的形状的方法 2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择. 【自主学习】 1.正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径. 由正弦定理可以变形为: (1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin A ,b =2R sin B ,c =2R sin C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C . 余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3.三角形面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B 4.(1)关于ABC ?:设ABC ?中角,,A B C 的对边分别为,,a b c . ①A B C π++=; ②a b A B . 5.根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 【合作探究】 探究一:求边

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

北京高三理科解三角形大题专题带答案

实用文档 解三角形大题专题 20141513 分)(.(本小题满分石景山一模)B,Ca,b,cA,ABCca?b?Asin2b3a?中, 角.,的对边分别为,且在△B的大小;(Ⅰ)求角c ABC2a?7?b的面积.,求边的长和△(Ⅱ)若, 13201415分)(.(本小题满分西城一模)222 aBACbcABC bca?b?c?.在△中,角,,所对的边分别为.已知,,A的大小;(Ⅰ)求6b?2?Bcos ABC 的面积.,(Ⅱ)如果,求△3 标准文案. 实用文档 (2014海淀二模)15.(本小题满分13分)

A7sina?2ABC?b?21. 且在锐角中,B的大小;(Ⅰ)求c c3a?的值(Ⅱ)若. ,求 20151513 分)西城二模)(.(本小题满分 b 3 a C ABC AB ab c 7,,=,所对的边分别为=在锐角△中,角,,,,已知 .A 的大小;(Ⅰ)求角ABC 的面积.(Ⅱ)求△ 标准文案. 实用文档 (2013丰台二模)15.(13分) 2(B?C)?32sinsin2A.的三个内角分别为已知A,B,C,且ABC?(Ⅰ)求A的度数; BC?7,AC?5,求(Ⅱ)若的面积S. ABC?

20141513 分)(.(本小题满分延庆一模)?3c,a,b,AB,C?C?Bcos2ABCa?.在三角形中,角,且所对的边分别为,,45Asin的值;(Ⅰ)求ABC?的面积.(Ⅱ)求 标准文案. 实用文档 (2015顺义一模)15.(本小题满分13分) ?6ABC??32,sinBb?B?A?c,a,bA,B,C. 在已知,中角,所对的边分别为, 32a; (I)求的值Ccos. 的值(II)求

解三角形专项练习(含解答题)

解三角形专练 1.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为 2.在ABC ?中,若0 120,2==A b ,三角形的面积3= S ,则三角形外接圆的半径为( )A . B .2 C ..4 3.边长为8,7,5的三角形的最大角与最小角的和是( ) A . 120 B . 135 C . 90 D . 150 4.在△ABC 中,已知a =4,b =6,C =120°,则边C 的值是( ) A .8 B . C . D . 5.在三角形ABC 中,若1tan tan tan tan ++=B A B A ,则C cos 的值是 B. 22 C. 21 D. 21- 6.在△ABC 中,若22 tan tan b a B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形 7.在△ABC 中,角,,A B C 所对的边分别为,,a b c .若 2226 5b c a bc +-=,则 sin()B C +=( )A .-45 B.45 C .-35 D.3 5 8.设△ABC 的三内角A 、B 、C 成等差数列,sinA 、sinB 、 sinC 成等比数列,则这个三角形的形状是( ) A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形 9.在ABC ?中,内角C B A ,,的对边分别为c b a ,,,若18=a ,24=b ,?=45A ,则这样的三角形有( )A.0个 B. 两个 C. 一个 D. 至多一个 10.已知锐角A 是ABC ?的一个内角,,,a b c 是三角形中各角的对应边,若221 sin cos 2A A -= ,则下列各式正确的是 ( ) A. 2b c a += B. 2b c a +< C. 2b c a +≤ D. 2b c a +≥ 11.在ABC ?中,已知 30,4,34=∠==B AC AB ,则ABC ?的面积是 A .34 B .38 C .34或38 D .3 12.在ABC ?中,角角,,A B C 的对边分别为,,a b c ,若22 a b -=且sin C B =,则A 等于A .6π B .4 π C .3π D .2 3π 13.若?ABC 的三角A:B:C=1:2:3 ,则A 、B 、C 分别所对边a :b :c=( ) A.1:2:3 B.2 D. 1:2: 14.△ABC 的三个内角A,B,C 的对边分别a ,b ,c ,且a cosC,b cosB,c cosA 成等差数列,则角B 等于( )A 30 B .60 C 90 D.120 15.在?ABC 中,三边a ,b,c 与面积S 的关系式为 2221 () 4S a b c =+-,则角C 为 ( ) A .30 B 45 C .60 D .90 16.△ABC 中,a b sin B = 2 ,则符合条件的三角形有( ) A .1个 B .2个 C .3个 D .0个 17.设?ABC 的内角A,B ,C 所对边的长分别为a,b,c ,若b+c= 2a,.3sinA=5sinB ,则角C=

解三角形大题专项训练

标准文档 1.在△ABC中,内角A,B,C的对边分别为a,b,c,已知. (Ⅰ)求cosA的值; (Ⅱ)的值. 2.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值; (2)若cosB=,△ABC的周长为5,求b的长. 3.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求; (Ⅱ)若C2=b2+a2,求B.

4.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值 (2)若a=1,,求边c的值. 5.在△ABC中,角A、B、C的对边分别为a,b,c (1)若,求A的值; (2)若,求sinC的值. 6.△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC= (I)求△ABC的周长; (II)求cos(A﹣C)的值.

7.在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=. (I)求sinC的值; (Ⅱ)当a=2,2sinA=sinC时,求b及c的长. 8.设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2﹣3a2=4bc. (Ⅰ)求sinA的值; (Ⅱ)求的值. 9.在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小; (Ⅱ)求sinB+sinC的最大值.

10.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且.(1)确定角C的大小; (2)若,且△ABC的面积为,求a+b的值. 11.在△ABC中,角A,B,C的对边分别为,. (Ⅰ)求sinC的值; (Ⅱ)求△ABC的面积. 12.设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:(Ⅰ)的值; (Ⅱ)cotB+cot C的值.

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

专题 三角函数及解三角形(解析版)

专题 三角函数及解三角形 1.【2019年高考全国Ⅰ卷理数】函数f (x )= 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 3.【2019年高考全国Ⅱ卷理数】下列函数中,以2 π为周期且在区间( 4 π, 2 π)单调递增的是 A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x | 4.【2019年高考全国Ⅱ卷理数】已知α∈(0, 2 π),2sin2α=cos2α+1,则sin α= A . 15 B . 5 C 3 D 5 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 2 sin cos ++x x x x

③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④ 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ω?ω?=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π ,且4g π?? = ???38f π??= ??? A .2- B . C D .2 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π 6,2,3 b a c B === ,则ABC △的面积为_________. 9.【2019年高考江苏卷】已知 tan 2π3tan 4αα=-??+ ?? ?,则πsin 24α? ?+ ???的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设 22(sin sin )sin sin sin B C A B C -=-. (1)求A ; (2 2b c +=,求sin C . 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=. (1)求B ;

解三角形专题练习【附答案】

解三角形专题(高考题)练习【附答案】 1、在ABC ?中,已知内角3 A π = ,边BC =设内角B x =,面积为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 13,4==c a ,求△ABC 的面积。 2、已知ABC ?中,1||=AC ,0120=∠ABC , θ=∠BAC , 记→ → ?=BC AB f )(θ, (1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域; 3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2 1 222ac b c a =-+ (1)求B C A 2cos 2 sin 2 ++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ?中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =, 2cos 2,2cos 12B n B ? ?=- ?? ?,且//m n 。 (I )求锐角B 的大小; (II )如果2b =,求ABC ?的面积ABC S ?的最大值。 5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=?,且22=b ,求c a 和b 的值. 6、在ABC ?中,cos 5A = ,cos 10 B =. (Ⅰ)求角 C ; (Ⅱ)设AB =,求ABC ?的面积. 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =u r ,(sin ,1cos ),//,.n A A m n b c =++=r u r r 满足 (I )求A 的大小;(II )求)sin(6π+B 的值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 A B C 120° θ

解三角形(复习课)教学设计

解三角形(专题课)教学设计 一、教材分析 本节课是高中数学课本必修5第一章《解三角形》,而在本章中,学生应该在已有的知识基础上,通过对任意三角形的边角关系的探究,发现并掌握三角形中的边长与角度之间的关系数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。本章知识是初中解直角三角形的继续,通过本章内容的学习,学生能够系统地掌握解任意三角形的完整实施。可以从数量的角度认识三角形,使三角形成为研究几何问题的重要工具。是中学许多数学知识的交汇点,如向量、平面几何、三角函数、解析几何、立体几何等。 二、学情分析 学生已经学习并掌握了任意角及任意角的三角函数,诱导公式、三角恒等变换、正余弦定理等相关的知识。学习本节内容是对以上知识内容的综合应用,尤其是对正弦定理与余弦定理的熟练运用。通过解三角形的方法解决有关的实际问题,可以培养学生的数学应用意识,提高学生运用数学知识解决实际问题的能力,使学生逐渐形成数学的思维方式去解决问题、认识世界的意识。 三、教学目标 知识与技能:引导学生准确理解正弦定理、余弦定理、三角形面积公式,会对正余弦定理会进行简单的变形;引导学生通过观察,推导,比较等出一些结论,如射影定理,三角形边角之间的关系;会运用所学知识解三角形以及与三角形有关的实际问题。 过程与方法:引导学生通过观察,推导,比较,由特殊到一半归纳出正余弦定理以及三角形面积公式等结论。培养学生的创新意识,观察能力,总结归纳的逻辑思维能力。让学生通过学习能体会用向量作为数形结合的工具,将几何问题转化为代数问题的数学思想方法。 情感态度与价值观:面向全体学生,创造平等的教学氛围,进行高效课堂教学,激情教育,通过学生之间,师生之间的交流与讨论、合作与评价,调动学生的主动性和积极性,让学生体验学习数学的的乐趣,感受成功的喜悦,增强学生学好数学的信心,激发学生学习的兴趣。 四、教学重难点 重点:正弦定理、余弦定理的内容及基本应用。 难点:正弦定理、余弦定理的内容及基本应用;正余弦定理的变形应用;用所学知识解决解三角形问题的题型归纳总结。 五、课堂结构设计 根据教材的内容和编排的特点,为更好有效地突出重点,攻破难点,以学生的发展为本,遵照学生的认知规律,本节主要以教师为主导,学生为主体,交流讨论,互助学习为主线的指导思想,采用“6+1”高效课堂教学模式,在教师的启发引导下,学生通过独立自主思考探究、同学之间相互交流讨论合作学习为前提,以“熟练运用正余弦定理解三角形”为基本

《解三角形》常见题型总结

《解三角形》常见题型总结 1、1正弦定理和余弦定理 1、1、1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形例1 在ABC中,已知 A:B:C=1:2:3,求a :b :c、 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。解: 【解题策略】 要牢记正弦定理极其变形形式,要做到灵活应用。例2在ABC 中,已知c=+,C=30,求a+b的取值范围。 【点拨】 此题可先运用正弦定理将a+b表示为某个角的三角函数,然后再求解。解:∵C=30,c=+,∴由正弦定理得:∴ a=2(+)sinA,b=2(+)sinB=2(+)sin(150-A)、 ∴a+b=2(+)[sinA+sin(150-A)]=2(+)2sin75cos(75-A)= cos(75-A)① 当75-A=0,即A=75时,a+b取得最大值=8+4;② ∵A=180-(C+B)=150-B,∴A<150,∴0<A<150,∴-75<75-A<75, ∴cos75<cos(75-A)≤1,∴> cos75==+、综合①②可得a+b的

取值范围为(+,8+4>考察点2:利用正弦定理判断三角形形状例3在△ABC中,tanB=tanA,判断三角形ABC的形状。 【点拨】 通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC的形状。解:由正弦定理变式a=2RsinA,b=2RsinB得:,即,,、∴为等腰三角形或直角三角形。 【解题策略】 “在△ABC中,由得∠A=∠B”是常犯的错误,应认真体会上述解答过程中“∠A=∠B或∠A+∠B=”的导出过程。例4在△ABC 中,如果,并且B为锐角,试判断此三角形的形状。 【点拨】 通过正弦定理把边的形式转化为角的形式,利用两角差的正弦公式来判断△ABC的形状。解:、又∵B为锐角,∴B= 45、由由正弦定理,得,∵代入上式得:考察点3:利用正弦定理证明三角恒等式例5在△ABC中,求证、 【点拨】 观察等式的特点,有边有角要把边角统一,为此利用正弦定理将转化为、证明:由正弦定理的变式得:同理 【解题策略】 在三角形中,解决含边角关系的问题时,常运用正弦定理进行边角互化,然后利用三角知识去解决,要注意体会其中的转化

相关文档
最新文档