半导体代工厂韩国东部高科的公司介绍

半导体产业介绍

半导体整个生态链 主要分为:前端设计(design),后端制造(mfg)、封装测试(package),最后投向消费市场。 不同的厂商负责不同的阶段,环环相扣,最终将芯片集成到产品里,销售到用户手中。半导体厂商也分为2大类,一类是IDM (Integrated Design and Manufacture),包含设计、制造、封测全流程,如Intel、TI、Samsung这类公司;另外一类是Fabless,只负责设计,芯片加工制造、封测委托给专业的Foundry,如华为海思、展讯、高通、MTK(台湾联发科)等。 前端设计是整个芯片流程的“魂”,从承接客户需求开始,到规格、系统架构设计、方案设计,再到Coding、UT/IT/ST(软件测试UT:unit testing 单元测试IT: integration testing 集成测试ST:system testing 系统测试),提交网表(netlist或称连线表,是指用基础的逻辑门来描述数字电路连接情况的描述方式)做Floorplan,最终输出GDS(Graphics Dispaly System)交给Foundry做加工。由于不同的工艺Foundry提供的工艺lib库不同,负责前端设计的工程师要提前差不多半年,开始熟悉工艺库,尝试不同的Floorplan设计,才能输出Foundry想要的GDS。 后端制造是整个芯片流程的“本”,拿到GDS以后,像台积电,就是Foundry 厂商,开始光刻流程,一层层mask光刻,最终加工厂芯片裸Die。 封装测试是整个芯片流程的“尾”,台积电加工好的芯片是一颗颗裸Die,外面没有任何包装。从晶圆图片,就可以看到一个圆圆的金光闪闪的东西,上面横七竖八的划了很多线,切出了很多小方块,那个就是裸Die。裸Die是不能集成到手机里的,需要外面加封装,用金线把芯片和PCB板连接起来,这样芯片才能真正的工作。 台积电是目前Foundry中的老大,华为麒麟系列芯片一直与台积电合作,如麒麟950就是16nm FF+工艺第一波量产的SoC芯片。 半导体行业的公司具主要分为四类: 集成器件制造商IDM (Integrated Design and Manufacture):指不仅设计和销售微芯片,也运营自己的晶圆生产线。Intel,SAMSUNG(三星),东芝,ST(意法半导体),Infineon(英飞凌)和NXP(恩智浦半导体)。 无晶圆厂供应商Fabless:公司自己开发和销售半导体器件,但把芯片转包给独立的晶圆代工厂生产。例如:Altera(FPL),爱特(FPL),博通(网路器件),CirrusLogicCrystal(音频,视频芯片),莱迪思(FPL),英伟达(FPL),

2019年晶圆代工行业华虹半导体分析报告

2019年晶圆代工行业华虹半导体分析报告 2019年7月

目录 一、全球领先的特色工艺纯晶圆代工企业 (5) 二、Fabless长期增长属性更强,下半年产业景气度上行压力仍存.. 9 1、Fabless长期增长属性更强,公司受产业周期影响相对较小 (9) 2、行业周期底部已过,然下半年产业景气度上行压力仍存 (12) 三、专注特色工艺,定位细分市场 (17) 1、嵌入式非易失性存储器:下游需求稳步增长 (18) (1)工艺不断改善,有望持续受益智能卡市场的稳步增长 (18) (2)MCU:持续受益物联网的应用以及汽车电动化与智能化的逐步渗透 (23) 2、功率分立器件:快速增长趋势有望继续保持 (33) 3、模拟与电源管理:汽车电子产品占比有望逐步提高 (41) 四、折旧与研发占比相对平稳,毛利率改善助推利润率稳步提升 . 45 1、Foundry市场格局:公司全球排名第十 (45) 2、收入(供给端):产能稳步增长,利用率处相对低点,ASP 逐季攀升 .. 46 3、收入(需求端-按制程):专注特色工艺,加权平均制程较高 (48) 4、收入(需求端-按下游应用):公司来源于消费电子的收入占比较高 (49) 5、收入(需求端-按地域):本土收入占比最高 (50) 6、盈利能力:折旧与研发占比相对平稳,毛利率改善助推利润率稳步提升 (52) 7、无锡项目有望于4Q量产,收入占比有望逐步提升 (55) 五、盈利预测 (56) 六、主要风险 (58)

1、中美贸易格局改变的风险 (58) 2、全球宏观经济不及预期的风险 (58) 3、公司无锡项目折旧政策的不确定性风险 (59) 4、无锡项目获得政府补助不及预期的风险 (59)

半导体FAB里基本的常识简介

半导体F A B里基本的 常识简介精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

CVD 晶圆制造厂非常昂贵的原因之一,是需要一个无尘室,为何需要无尘室 答:由于微小的粒子就能引起电子组件与电路的缺陷 何谓半导体? 答:半导体材料的电传特性介于良导体如金属(铜、铝,以及钨等)和绝缘和橡胶、塑料与干木头之间。最常用的半导体材料是硅及锗。半导体最重要的性质之一就是能够藉由一种叫做掺杂的步骤刻意加入某种杂质并应用电场来控制其之导电性。 常用的半导体材料为何 答:硅(Si)、锗(Ge)和砷化家(AsGa) 何谓VLSI 答:VLSI(Very Large Scale Integration)超大规模集成电路 在半导体工业中,作为绝缘层材料通常称什幺 答:介电质(Dielectric) 薄膜区机台主要的功能为何 答:沉积介电质层及金属层

何谓CVD(Chemical Vapor Dep.) 答:CVD是一种利用气态的化学源材料在晶圆表面产生化学沉积的制程CVD分那几种? 答:PE-CVD(电浆增强型)及Thermal-CVD(热耦式) 为什幺要用铝铜(AlCu)合金作导线? 答:良好的导体仅次于铜 介电材料的作用为何? 答:做为金属层之间的隔离 何谓PMD(Pre-Metal Dielectric) 答:称为金属沉积前的介电质层,其界于多晶硅与第一个金属层的介电质何谓IMD(Inter-Metal Dielectric) 答:金属层间介电质层。 何谓USG? 答:未掺杂的硅玻璃(Undoped Silicate Glass) 何谓FSG? 答:掺杂氟的硅玻璃(Fluorinated Silicate Glass)

晶圆代工厂排名

2010年全球十大晶圆代工厂 新公司是做晶圆代工的,作为新知识补充或者纪念新工作,就爱Top10特别整理了一下2010年全球十大晶圆代工厂,也算帮助大家了解一下高科技时代很重要的一个组成部分。 IC Inghts 2010年全球前十大晶圆代工排名出炉,台积电继续稳居第一,联电依然排行第二,合并特许半导体后的全球晶圆(Globalfoundries)挤入第三,但营收与联电才差4亿多美元,三星屈居第十。 IC Insights指出,三星多年以来一直希望成为晶圆代工领域的重要企业,虽然去年获得了苹果、高通和赛灵思等重要客户,仍仅位居全球第十大晶圆代工厂。但三星今年有新的晶圆厂计划,近期还传出三星将跨入模拟晶圆代工,未来三星排名仍有机会攀升。

以下是2010年的前十大晶圆代工具体排名: Top1 台积电,收入133.07亿美元,同比增长48% 台湾集成电路制造股份有限公司 (LSE:TMSD),简称台积电或台积,英文简写“TSMC”,为世界上最大的独立半导体晶圆代工企业,与联华电子并称“晶圆双雄”。本部以及主要营业皆设于台湾新竹市新竹科学工业园区。台积公司目前总产能已达全年430万片晶圆,其营收约占全球晶圆代工市场的百分之六十。 Top2 台联电,收入 39.65亿美元,同比增长41% UMC---联华电子公司,简称台联电。是世界著名的半导体承包制造商。该公司利用先进的工艺技术专为主要的半导体应用方案生产各种集成电路(IC)。联华电子拥有先进的承包生产技术,可以支持先进的片上系统(SOC)设计,其中包括0.13 微米 (micron)铜互连、嵌入式 DRAM、以及混合信号/RFCMOS。 Top3 Globalfoundries,收入35.1亿美元,同比增长219% GlobalFoundries是从美国AMD公司分拆出的半导体晶圆代工公司,成立于2009年3月2日,母公司分别为AMD及阿布达比的Advanced Technology Investment Company(ATIC),其中ATIC占公司股权65.8%,两公司均享有均等投票权。2010年1月13日,GlobalFoundries收购了新加坡特许半导体。 公司除会生产AMD产品外,也会为其它公司(如ARM、Broadcom、NVIDIA、高通公司、意法半导体、德州仪器等)担当晶圆代工。现时投产中的晶圆厂为德国德

半导体FAB里基本的常识简介

CVD 晶圆制造厂非常昂贵的原因之一,是需要一个无尘室,为何需要无尘室 答:由于微小的粒子就能引起电子组件与电路的缺陷 何谓半导体?; I* s# N* v8 Y! H3 a8 q4 a1 R0 \- W 答:半导体材料的电传特性介于良导体如金属(铜、铝,以及钨等)和绝缘和橡胶、塑料与干木头之间。最常用的半导体材料是硅及锗。半导体最重要的性质之一就是能够藉由一种叫做掺杂的步骤刻意加入某种杂质并应用电场来控制其之导电性。 常用的半导体材料为何' u* k9 `+ D1 v1 U# f5 [7 G 答:硅(Si)、锗(Ge)和砷化家(AsGa): j* z$ X0 w& E4 B3 m. M( N( _; o4 D 何谓VLSI' b5 w; M# }; b; @; \8 g3 P. G 答:VLSI(Very Large Scale Integration)超大规模集成电路5 E3 U8 @- t& \ t9 x5 L4 K% _2 f 在半导体工业中,作为绝缘层材料通常称什幺0 r7 i, `/ G1 P! U" w! I 答:介电质(Dielectric). w- j" @9 Y2 {0 L0 f w 薄膜区机台主要的功能为何 答:沉积介电质层及金属层 何谓CVD(Chemical Vapor Dep.) 答:CVD是一种利用气态的化学源材料在晶圆表面产生化学沉积的制程 CVD分那几种? 答:PE-CVD(电浆增强型)及Thermal-CVD(热耦式) 为什幺要用铝铜(AlCu)合金作导线?4 Z* y3 A, G f+ z X* Y5 ? 答:良好的导体仅次于铜 介电材料的作用为何?% Y/ W) h' S6 J, l$ i5 B; f9 [ 答:做为金属层之间的隔离 何谓PMD(Pre-Metal Dielectric) 答:称为金属沉积前的介电质层,其界于多晶硅与第一个金属层的介电质5 |3 X. M$ o; T8 Y, N7 l5 q+ b 何谓IMD(Inter-Metal Dielectric)9 u9 j4 F1 U! Q/ ?" j% y7 O/ Q" m; N, b 答:金属层间介电质层。1 X8 g' q a0 h3 k4 r" X$ l. l 何谓USG? 答:未掺杂的硅玻璃(Undoped Silicate Glass): u0 F0 d! A M+ U( w/ Q 何谓FSG? 答:掺杂氟的硅玻璃(Fluorinated Silicate Glass) 何谓BPSG?& ~- I3 f8 i( Y! M) q, U 答:掺杂硼磷的硅玻璃(Borophosphosilicate glass)6 f/ g4 U& D/ }5 W 何谓TEOS? 答:Tetraethoxysilane用途为沉积二氧化硅 TEOS在常温时是以何种形态存在? 答:液体" q) ]0 H- @9 p7 C8 P; D8 Y. P) X 二氧化硅其K值为3.9表示何义( Y! @1 J! X+ P; b* _$ g 答:表示二氧化硅的介电质常数为真空的3.9倍6 H9 v' O5 U U" R9 w! o$ ` 氟在CVD的工艺上,有何应用 答:作为清洁反应室(Chamber)用之化学气体4 Z& Z5 a* E6 m+ F 简述Endpoint detector之作用原理.6 [2 d$ j" l7 p4 V. f 答:clean制程时,利用生成物或反应物浓度的变化,因其特定波长光线被detector 侦测

世界五大高新科技园区简介

世界五大高新科技园区简介 高科技园区在北美称“大学研究园区”,在其它英语国家叫“科学园”,在日本叫“科学城”,我国则称为高新技术产业开发区。最早的高科技园区诞生于本世纪中叶美国的硅谷,它在很短时间内创造了加速科技成果转化、促进高技术产业集中发展的奇迹,其独特的发展模式和旺盛的生命力很快受到许多国家和地区政府的高度重视。到了八十年代,高科技园区不仅在欧洲,而且在亚洲蓬勃发展起来。至今世界比较规范的高科技园区已经有900多个,从业人员数百万人,成为本世纪最具生命力的社会经济细胞,并日益显示出广阔的发展前景。最近,党中央和国务院在《关于加强技术创新发展高科技实现产业化的决定》中提出,要加强国家高新技术产业开发区建设,形成高新技术产业化基地。认真研究、积极借鉴国外不同类型科技园区的发展经验,总结其成长的内在规律,将有助于加快我国技术创新和高科技产业化进程。 1.依托大学发展高技术产业的奇迹——美国硅谷 硅谷位于美国旧金山以南,北起斯坦福大学所在地帕拉奥托市,南至加利福尼亚州圣何塞市,长48公里,宽16公里,有4000余家高技术公司,雇员总数超过100万人。硅谷是美国微电子工业的发祥地,集中了全美90%的半导体公司,生产电子工业所需的最基本材料——硅片。

硅谷原是一个连名字也没有的果园,1891年美国参议员斯坦福在此建立了斯坦福大学。1951年,在该校一位校长提议下,在其周围创建了一个高科技工业园。由于斯坦福大学的技术资源、风险资本和创业精神为新兴的半导体企业发展创造了良好的外部条件,1955年著名的贝尔实验室将研制和生产晶体管的公司迁至帕拉奥托市,致使该市成为美国电子工业的发祥地。此后,大批创业人才从东部和中西部涌来,纷纷成立了自己的公司,很快以晶体管和硅片为主的半导体技术和产业迅速发展起来。1956年IBM公司在圣何塞市开设研究与开发中心,为半导体进入计算机创造了条件。到80年代,以斯坦福科学研究园为核心,形成了一个以研究生产电子工业、半导体工业为主的基地,高技术公司数量一度曾高达5000余家,成为袖珍计算器、电子玩具、家用电脑、无线电话、激光技术、微处理机、电子表等新型电子产品和技术的诞生地。近年来,几乎与电子工业沾边的所有新产品都出自硅谷,全区年营业额达2000亿美元。 硅谷成功的经验主要有:毗邻斯坦福大学及其研究机构;市场、厂房及设备等基础结构好;人才素质高,管理能力强;生活环境好。硅谷是多种因素的自然产物,并没有一个硅谷发展规划,政府只是一个间接的支持者。 2.高技术企业集中发展的代表——美国128公路高技术产业带:硅路 波士顿第128号公路始建于1915年,位于美国波士顿郊区,

半导体制造基本概念

半导体制造基本概念 晶圆(Wafer) 晶圆(Wafer)的生产由砂即(二氧化硅)开始,经由电弧炉的提炼还原成冶炼级的硅,再经由盐酸氯化,产生三氯化硅,经蒸馏纯化后,透过慢速分解过程,制成棒状或粒状的「多晶硅」。一般晶圆制造厂,将多晶硅融解后,再利用硅晶种慢慢拉出单晶硅晶棒。一支85公分长,重76.6公斤的8?? 硅晶棒,约需2天半时间长成。经研磨、??光、切片后,即成半导体之原料晶圆片。 光学显影 光学显影是在光阻上经过曝光和显影的程序,把光罩上的图形转换到光阻 下面的薄膜层或硅晶上。光学显影主要包含了光阻涂布、烘烤、光罩对准、曝光和显影等程序。小尺寸之显像分辨率,更在IC 制程的进步上,扮演着最关键的角色。由于光学上的需要,此段制程之照明采用偏黄色的可见光。因此俗称此区为黄光区。 干式蚀刻技术 在半导体的制程中,蚀刻被用来将某种材质自晶圆表面上移除。干式蚀刻(又称为电浆蚀刻)是目前最常用的蚀刻方式,其以气体作为主要的蚀刻媒介,并藉由电浆能量来驱动反应。 电浆对蚀刻制程有物理性与化学性两方面的影响。首先,电浆会将蚀刻气体分子分解,产生能够快速蚀去材料的高活性分子。此外,电浆也会把这些化学成份离子化,使其带有电荷。 晶圆系置于带负电的阴极之上,因此当带正电荷的离子被阴极吸引并加速向阴极方向前进时,会以垂直角度撞击到晶圆表面。芯片制造商即是运用此特性来获得绝佳的垂直蚀刻,而后者也是干式蚀刻的重要角色。 基本上,随着所欲去除的材质与所使用的蚀刻化学物质之不同,蚀刻由下列两种模式单独或混会进行:

1. 电浆内部所产生的活性反应离子与自由基在撞击晶圆表面后,将与某特定成份之表面材质起化学反应而使之气化。如此即可将表面材质移出晶圆表面,并透过抽气动作将其排出。 2. 电浆离子可因加速而具有足够的动能来扯断薄膜的化学键,进而将晶圆表面材质分子一个个的打击或溅击(sputtering)出来。 化学气相沉积技术 化学气相沉积是制造微电子组件时,被用来沉积出某种薄膜(film)的技术,所沉积出的薄膜可能是介电材料(绝缘体)(dielectrics)、导体、或半导体。在进行化学气相沉积制程时,包含有被沉积材料之原子的气体,会被导入受到严密控制的制程反应室内。当这些原子在受热的昌圆表面上起化学反应时,会在晶圆表面产生一层固态薄膜。而此一化学反应通常必须使用单一或多种能量源(例如热能或无线电频率功率)。 CVD制程产生的薄膜厚度从低于0.5微米到数微米都有,不过最重要的是其厚度都必须足够均匀。较为常见的CVD薄膜包括有: ■二气化硅(通常直接称为氧化层) ■氮化硅 ■多晶硅 ■耐火金属与这类金属之其硅化物 可作为半导体组件绝缘体的二氧化硅薄膜与电浆氮化物介电层(plasmas nitride dielectrics)是目前CVD技术最广泛的应用。这类薄膜材料可以在芯片内部构成三种主要的介质薄膜:内层介电层(ILD)、内金属介电层(IMD)、以及保护层。此外、金层化学气相沉积(包括钨、铝、氮化钛、以及其它金属等)也是一种热门的CVD应用。 物理气相沉积技术 如其名称所示,物理气相沉积(Physical Vapor Deposition)主要是一种物理制程而非化学制程。此技术一般使用氩等钝气,藉由在高真空中将氩离子加速以撞击溅镀靶材后,可将靶材原子一个个溅击出来,并使被溅击出来的材质(通常为铝、钛或其合金)如雪片般沉积在晶圆表面。制程反应室内部的高温与高真空环境,可使这些金属原子结成晶粒,再透过微影图案化(patterned)与蚀刻,来得到半导体组件所要的导电电路。 解离金属电浆(IMP)物理气相沉积技术

SMIC员工漫谈半导体代工企业内幕

SMIC员工漫谈半导体代工企业内幕(转载) 最近有不少的弟兄谈到半导体行业,以及SMIC、Grace等企业的相关信息。 在许多弟兄迈进或者想要迈进这个行业之前,我想有许多知识和信息还是需要了解的。正在半导体制造业刚刚全面兴起的时候,我加入了SMIC,在它的Fab里做了四年多。历经SMIC生产线建立的全部过程,认识了许许多多的朋友,也和许许多多不同类型的客户打过交道。也算有一些小小的经验。就着工作的间隙,把这些东西慢慢的写出来和大家共享。 阅读下文之前可以先参看后面的词汇表,便于理解本文内容。 从什么地方开始讲呢?就从产业链开始吧。有需求就有生产就有市场。 市场需求(或者潜在的市场需求)的变化是非常快的,尤其是消费类电子产品。这类产品不同于DRAM,在市场上总是会有大量的需求。也正是这种变化多端的市场需求,催生了两个种特别的半导体行业——Fab和Fab Less Design House。 我这一系列的帖子主要会讲Fab,但是在一开头会让大家对Fab周围的东西有个基本的了解。像Intel、Toshiba这样的公司,它既有Design的部分,也有生产的部分。这样的庞然大物在半导体界拥有极强的实力。同样,像英飞凌这样专注于DRAM的公司,活得也很滋润。至于韩国三星那是个什么都搞的怪物。这些公司,他们通常都有自己的设计部门,自己生产自己的产品。有些业界人士把这一类的企业称之为IDM。 但是随着技术的发展,要把更多的晶体管集成到更小的Chip上去,Silicon Process的前期投资变得非常的大。一条8英寸的生产线,需要投资7~8亿美金;而一条12英寸的生产线,需要的投资达12~15亿美金。能够负担这样投资的全世界来看也没有几家企业,这样一来就限制了芯片行业的发展。准入的高门槛,使许多试图进入设计行业的人望洋兴叹。 这个时候台湾半导体教父张忠谋开创了一个新的行业——foundry。他离开TI,在台湾创立了TSMC,TSMC不做Design,它只为做 Design的人生产Wafer。这样,门槛一下子就降低了。随便几个小朋友,只要融到少量资本,就能够把自己的设计变成产品,如果市场还认可这些产品,那么他们就发达了。同一时代,台湾的联华电子也加入了这个行当,这就是我们所称的UMC,他们的老大是曹兴诚。——题外话,老曹对七下西洋的郑和非常钦佩,所以在苏州的UMC友好厂(明眼人一看就知道是 UMC在大陆偷跑)就起名字为“和舰科技”,而且把厂区的建筑造的非常有个性,就像一群将要启航的战船。 ----想到哪里就说到哪里,大家不要见怪。 在TSMC和UMC的扶植下,Fab Less Design House的成长是非常可观的。从UMC中分离出去的一个小小的Design Group成为了著名的“股神”联发科。当年它的VCD/DVD相关芯片红透全世界,股票也涨得令人难以置信。我认识一个台湾人的老婆,在联发科做Support 工作,靠它的股票在短短的四年内赚了2亿台币,从此就再也不上班了。 Fab Less Design House的成功让很多的人大跌眼镜。确实,单独维持Fab的成本太高了,所以很多公司就把自己的Fab剥离出去,单独来做Design。 Foundry专注于Wafer的生产,而Fab Less Design House专注于Chip的设计,这就是分工。大家都不能坏了行规。如果Fab Less Design House觉得自己太牛了,想要自建Fab来生产自己的Chip,那会遭到Foundry的抵制,像UMC就利用专利等方法强行收购了一家Fab Less Design House辛辛苦苦建立起来的Fab。而如果Foundry自己去做Design,那么 Fab Less Design House就会心存疑惑——究竟自己的Pattern Design会不会被对方盗取使用?结果导致Foundry的吸引力降低,在产业低潮的时候就会被Fab Less Design House抛弃。 总体来讲,Fab Less Design House站在这个产业链的最高端,它们拥有利润的最大头,

半导体厂GAS系统基础知识解读

GAS 系 统 基 础 知 识

概述 HOOK-UP专业认知 一、厂务系统HOOK UP定义 HOOK UP 乃是藉由连接以传输UTILITIES使机台达到预期的功能。HOOK UP是将厂务提供的UTILITIES ( 如水,电,气,化学品等),经由预留之UTILITIES连接点( PORT OR STICK),藉由管路及电缆线连接至机台及其附属设备( SUBUNITS)。 机台使用这些UTILITIES,达成其所被付予的制程需求并将机台使用后,所产生之可回收水或废弃物( 如废水,废气等),经由管路连接至系统预留接点,再传送到厂务回收系统或废水废气处理系统。HOOK UP 项目主要包括∶CAD,MOVE IN ,CORE DRILL,SEISMIC ,VACUU,GAS,CHEMICAL, D.I ,PCW,CW,EXHAUST,ELECTRIC, DRAIN. 二、GAS HOOK-UP专业知识的基本认识 在半导体厂,所谓气体管路的Hook-up(配管衔接)以Buck Gas (一般性气体如CDA、GN2、PN2、PO2、PHE、PAR、H2等)而言,自供气源之气体存贮槽出口点经主管线(Main Piping)至次主管线(Sub-Main Piping)之Take Off点称为一次配(SP1

Hook-up),自Take Off出口点至机台(Tool)或设备(Equipment)的入口点,谓之二次配(SP2 Hook-up)。以Specialty Gas(特殊性气体如:腐蚀性、毒性、易燃性、加热气体等之气体)而言其供气源为气柜(Gas Cabinet)。自G/C出口点至VMB(Valve Mainfold Box.多功能阀箱)或VMP(Valve Mainfold Panel多功能阀盘)之一次测(Primary)入口点,称为一次配(SP1 Hook-up),由VMB或VMP Stick之二次侧(Secondary)出口点至机台入口点谓之二次配(SP2 Hook-up)。

高科技概念产品

高科技概念产品 所谓概念产品(Conceptual Product)指具备独特的销售主张(USP)的产品或是具备独特消费观念的产品。成功的概念产品推广,不仅能够提升品牌形象,更能够给企业带来巨大的经济效益,因此为各企业所采用。 目录 简介 市场推广 投放方式 选择原则 开发原则 宣传原则 销售原则 简介 市场推广 投放方式 选择原则 开发原则 宣传原则 销售原则 简介 所谓概念产品(Conceptual Product)指具备独特的销售主张(USP)的产品或是具备独特消费观念的产品。成功的概念产品推广,不仅能够提升品牌形象,更能够给企业带来巨大的经济效益,因此为各企业所采用。以家电行业为例,各种新概念层不出穷,.即为很好的例证。推广“概念产品”是一种对市场的投资,具备很大的风险。很多企业因一个产品概念而成功,也有很多企业因一个“概念产品”而大伤元气。 市场推广 推广要点 1.概念点——直接向消费者说明了它是什么,与其他有什么不同,概念点必须新颖、独特、能够引起消费者的兴趣。

产品的概念点,要好记忆、易传播。并且能代表产品发展趋势,或代表新的一种生活方式(消费观念)。产品概念不是技术意义上的概念,而是消费意义上的概念。产品的技术含量最高的点不一定就是概念点而最能体现出与竞争对手差异的点通常会成为概念点。 2.利益点——向消费者表明它能给你带来什么 利益点必须是消费者所关心的,而对手不能或较难提供的。 3.支持点——让消费者相信概念产品的理由 支持产品概念成立的是一个系统,包括企业有实力开发具备此技术的产品,该技术能够给消费者带来某种利益,这种利益得到了证实认可,并且竞争对手不能提供。行业不同该支持系统的重点(支持点)亦不相同。但整个支持系列必须成立,一个环节被竞争对手攻破,则整个概念产品的推广有失败的可能。 4.记忆点——概念产品给消费者一个代表性符号 该记忆符号必须易接受、易记忆、易传播,并且最好是能够将概念与企业(品牌)锁定在一起。 推广流程 1.造势阶段——造势是为消费者描绘出一个光明的前景,揭露出现在的危机。 造势的手段通常是通过一个公关活动,制造一个热点或利用某一热点,影响广大目标消费者的视听,为下一步导入概念做好辅垫。 概念产品的不同,采用方式也各不相同,通常办法是经过多方论证指出,现在行业及产品存在哪些不足,这些不足会给消费带什么样的危害,而没有这种危害,符合发展趋势的产品是什么。 在造势阶段,最怕的不是有反对的声音,而是悄无声息。如果没有任何反应,说明了该概念产品不会引起竞争者和消费者的重视,不能制造出舆论。因此许多企业在开展公关活动时,请来专家或其他机构进行评论或者其他宣传用以扩大影响。有的企业甚至故意制造反面论调,然后用更有力的正面论调去压倒它,以造成更大的影响,引起消费者更大的观注。 在造势阶段的宣传手段,以新闻、行业评论,市场分析、消费者调查等软性文章为主。同时,在电视媒体上以新闻访谈等方式进行舆论造势,或者直接在中央级媒体上广告造势。 2.解释阶段——导入概念阶段,给消费者解释如何达到光明的前景,解决现在的危机。 为了展示概念产品的优越性通常大力宣传该概念产品的技术、设备、工艺、市场前景、效果等,通常采用的是对比宣传的手法。 在该阶段的宣传手段通常是通过硬性广告将概念产品直接宣传给消费者,同时辅助以

第三代半导体材料发展面临的机遇和挑战

第三代半导体材料发展面临的机遇和挑战 半导体材料是半导体产业发展的基础,20世纪30年代才被科学界所认可。随着半导体产业的发展,半导体材料也从一代、二代发展到现在的第三代,本文着重分析第三代半导体材料的特性、应用,以及我国第三代半导体材料发展面临的机遇和挑战。作为一种20世纪30年代才被科学界所认可的材料—半导体,其实它的定义也很简单。众所周知,物资存在的形式多种多样,固体、液体、气体、等离子体等,其中导电性差或不好的材料,称为绝缘体;反之,导电性好的称为导体。因此,半导体是介于导体和绝缘体之间的材料。 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。 由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。 硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。 中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 随着半导体产业的发展,半导体材料也在逐渐发生变化,迄今为止,半导体材料大致经历了三代变革。现在跟随芯师爷,一起去看看第一代半导体材料。 1、第一代半导体材料 第一代半导体材料主要是指硅(Si)、锗(Ge)元素半导体。它们是半导体分立器件、集

全球前5大封测代工厂排名一览

全球前5大封测代工厂排名一览 2014-05-20 11:05:00来源:元器件交易网 新加坡封测大厂星科金朋(STATS ChipPAC)传出「待价而沽」消息,股价3个交易日大涨约57%,根据业内人士透露,日月光是最有机会成功并购的潜在买家之一。对此,日月光表示,不对市场传言进行评论。 全球前5大 封测代工厂 排名一览 日月光董事长张虔生图/本报资料照片 高阶产能满载可纾解 业界评估,一旦日月光出手并购星科金朋,除了可望通吃苹果系统封装(SiP)及A8应用处理器 封测订单,也直接掌控星科金朋在台子公司台星科,由于日月光目前高阶测试产能满载,并购后将解除台星科资本支出限制,同时可望扩大转单给台星科。 星科金朋是由金朋(ChipPAC)及新科测试(STATS)于2004年合并成立,2007年时,具新加坡官方色彩的私募基金淡马锡(Temasek)透过全资子公司 新加坡技术半导体公司(STSPL)以现金收购星科金朋股权,至去年底为止,已持有星科金朋高达83.8%股权。 星科金朋自淡马锡收购入主以来,虽然去年稳坐全球第4大封测厂宝座,但过去几年营运表现都是在小赚小赔局面,去年全年更出现约4,151万美元亏损,今年第1季仍交出亏损1,581 万美元成绩单。因此,近2年,市场不时传出STSPL有意出售星科金朋持股的消息。

星科金朋于本月14日发布声明指出,收到来自第三方的无约束力收购意向书,有意收购星科金朋全数股权,星科金朋在新加坡交易所挂牌股价大涨,过去3个交易日中,股价已由0.335新币飙涨至0.525新币,涨幅高达57%左右。 星科金朋潜在买家多 外资圈及半导体业界则传出,星科金朋「待价而沽」,包括格罗方德(GlobalFoundries )、日月光、中国私募基金等均是可能的买家,其中,又以日月光的动作最为积极,是最有可能成功并购星科金朋的潜在买家之一。不过,日月光对此表示,不对单一公司及市场传言进行评论。 法人指出,但以短期效益来看,日月光可透过并购案扩大封测产能,拉高经济规模,特别是可以直接接手星科金朋台湾子公司台星科,透过扩大转单到台星科,来解决高阶测试产能供不应求的燃眉之急。工商时报 (编辑:和讯网站)

高科技企业里的文化

首屈一指的企业文化 下面介绍的两家杰出的高科技企业里,其主要产品既不是顾客所要购买的、也不是员工所制造的东西,而是顾客和员工全都融于其中的企业文化。 只要问一问任何一家一流的高科技企业,什么使这些企业引以自豪,十家有八家或许会告诉你,它们引以自豪的是自己的产品或服务。剩下的两家则会举出一系列的东西,如它们的业务流程、它们的业务伙伴关系、它们的员工等等。总之,概括起来就是:企业文化。 什么是企业文化呢?Terence E. Deal(特伦斯)和Allan A. Kennedy(阿伦)合著了一部颇具影响的专著,《企业文化》(Corporate Culture)。书中给企业文化的定义是,"用以规范企业人多数情况下行为的一个强有力的不成文规则体系。" 《电子精英的经营智慧》(Business Wisdom of the Electric Elite)一书的作者Geoffrey James(詹姆斯)将企业文化比作河岸。"企业里的行为如同在两岸间奔流的河水。随着时间的推移,奔泻的河水将河道冲刷得更深,从而加强了企业文化,不断重复过去曾使企业走向成功的行为。" 如此说来,我们在前面假设的十家企业中的两个特例,即台湾积体电路制造股份有限公司和Infosys Technologies Ltd.(编者译:信息系统技术有限公司)已经做好充分准备,即将迈向不断成功。在

这两家高科技企业中,企业文化绝对是他们最重要的产品。这尤其要归功于企业的高层经理,因为他们不仅言传身教,而且很好地身体力行。 张忠谋是美国斯坦福大学(Stanford University)毕业的电气工程博士。自台湾积体电路制造股份有限公司创立以来,他一直担任这家硅晶圆制造厂家的董事长。去年五月,他又兼任总裁。此外,他还担任台湾另外两家高科技企业的董事长。 1995年,台湾积体电路在台湾大型企业中排行第22位,总收入超过了10亿美元。张忠谋由衷地赞同'电子精英'这一提法,并试图领导台湾积体电路沿着类似的道路前进。 他尤其赞赏将企业视为一个依靠共生关系生存的生态系统。他说:"在台湾积体电路,我们具有一种优势,因为我们的企业在本质上有助于培养合作精神、发展共生关系。" 台湾积体电路从一开始创建起,它的战略核心就是将企业办成一个全心全意为顾客生产、"专注尽心的铸造车间",而不是为了推销自己的品牌。这是世界上第一家采用这种经营模式的企业,完全是张忠谋的设想。因此,面对众多持怀疑态度者,张忠谋不得不一再为之辩解。 由于当前建立一个加工厂的成本高达近20亿美元,越来越多的半导体企业决定集中精力搞好设计和营销,将生产业务交给台湾积体电路这种工厂以及近年来才涌现出来的一些他们的对手。

蓝宝石晶体是第三代半导体材料GaN外延层生长最好的衬底材料之一

蓝宝石晶体是第三代半导体材料GaN外延层生长最好的衬底材料之一,其单晶制备工艺成熟。 GaN为蓝光LED制作基材。 一、GaN外延层的衬底材料 1、SiC 与GaN晶格失配度小,只有3.4%,但其热膨胀系数与GaN差别较大,易导致GaN外延层断裂, 并制造成本高,为蓝宝石的10倍。 2、Si 成本低,与GaN晶格失配度大,达到17%,生长GaN比较难,与蓝宝石比较发光效率太低。 3、蓝宝石 晶体结构相同(六方对称的纤锌矿晶体结构),与GaN晶格失配度大,达到13%,易导致GaN 外延层高位错密度(108—109/cm2)。为此,在蓝宝石衬底上AlN或低温GaN外延层或SiO2层等,先进方法可使GaN外延层位错密度达到106/cm2水平。 二、蓝宝石、GaN的品质对光致发光的影响 蓝宝石单晶生长技术复杂,获得低杂质、低位错、低缺陷的单晶比较困难。蓝宝石单晶质量对GaN外延层的质量有直接的影响,其杂质和缺陷会影响GaN外延层质量,从而影响器件质量(发 光效率、漏电极、寿命等)。 蓝宝石单晶的位错密度一般为104/cm2数量级,它对GaN外延层位错密度(108—109/cm2)影 响不大。 三、蓝宝石衬底制作 主要包括粘片、粗磨、倒角、抛光、清洗等,将2英寸蓝宝石衬底由350—450μm(4英寸600μm 左右)减到小于100μm(4英寸要厚一些) 四、蓝宝石基板 市场上2英寸蓝宝石基板的主要技术参数: 高纯度—— 99.99%以上(4—5N) 晶向——主要是C面,C轴(0001)±0.3° 翘曲度——20μm 厚度——330μm—430μm±25μm 表面粗糙度—— Ra<0.3nm 背面粗糙度——Ra<1μm(不是很严格) yq_chu666 at 2010-7-06 08:53:02 这是美国公司的要求吧? 如何降低翘曲、弯曲呀? ljw.jump at 2010-7-06 16:41:37 国内做蓝宝石的厂家我知道有个不错的,在安徽吧 qw905 at 2010-7-06 18:26:50 还是哈工大与俄罗斯合作的泡生法-钻孔取棒最成功! qw905 at 2010-7-06 18:29:06 一篇蓝宝石研发总结 藍寶石單晶生長技術研發Sapphire Crystal Instruction.pdf (2010-07-06 18:29:06, Size: 1.67 MB, Downloads: 28) HP-led at 2010-7-20 12:00:50 在云南,不过他去年不咋地,今年慢慢恢复生产

半导体产业链的状况分析

半导体产业链的分析 集成电路(IC)是由电晶体、二极管、电阻器、电容器等电路元件聚集在硅晶片上,形成完整的逻辑电路,用来计算、控制、判断或记忆资料等,是当今信息时代的核心技术产品。集成电路产业包括四个环节:IC设计、芯片制造、芯片封装、测试。 国际大厂多以上下游垂直整合的方式经营,而我国和台湾都是将资源集中于单一专业经营,再整合成完整的产业结构。 下面将从芯片制造(晶圆加工)、芯片封装两方面介绍目前国内外的发展情况。 一、全球IC(集成电路)产业的情况分析 1、晶圆加工 晶圆的制造是整个电子信息产业中最上游的部份,其发展的优劣,直接影响半导体工业。主要是通过涂膜、曝光、显影、蚀刻、离子植入、金属溅镀等反复步骤,在硅晶片上制作电路及电子元件,如晶体管、电容、逻辑开关等。 2006年底,全球代工厂共产出8英寸硅片2270万片,产能利用率为88.7%, 个别领先厂商可能达到95%-98%。 据gartnar 的统计,全球前10大晶圆代工厂的市场占有率达91%,具体见下。而前4大晶圆代工厂的市场占有率就达80%,显示整体晶圆代工市场集中度仍高。其中,中国的中芯SMIC及华虹NEC分别列于第4位、第9位。 2006年全球前10大晶圆代工厂

晶圆代工厂可以划分为三个阵营: (1)、第一阵营只有台积电(TSMC),台积电拥有全球第一的产能,也拥有全球公认的最佳品质,因此,IC设计大厂都以台积电为代工厂首选。 (2)、第二阵营是联电(UMC)、中芯国际(SMIC)、特许(CHARTERED)

和IBM,这四家晶圆代工厂通常是IC 设计大厂的第二选择,中型设计公司的第一选择。这四家公司都有自己稳定的大客户,如下: (3)、第三阵营的厂家都有自己特别专长的领域,同时依托该地区的产业链发挥地区优势。 2、IC封装业

第一章半导体基础知识(精)

第一章半导体基础知识 〖本章主要内容〗 本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。 首先介绍构成PN结的半导体材料、PN结的形成及其特点。其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。〖本章学时分配〗 本章分为4讲,每讲2学时。 第一讲常用半导体器件 一、主要内容 1、半导体及其导电性能 根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。 2、本征半导体的结构及其导电性能 本征半导体是纯净的、没有结构缺陷的半导体单晶。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。在热力学温度零度和没有外界激发时,本征半导体不导电。 3、半导体的本征激发与复合现象 当导体处于热力学温度0 K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。这一现象称为本征激发(也称热激发)。因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。 游离的部分自由电子也可能回到空穴中去,称为复合。 在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。 4、半导体的导电机理 自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。空穴导电的实质是:相邻原子中的价电子(共价键中的束缚电子)依次填补空穴而形成电流。由于电子带负电,而电子的运动与空穴的运动方向相反,因此认为空穴带正电。

第三代半导体面-SiC(碳化硅)器件及其应用

第三代半导体面-SiC(碳化硅)器件及其应用 作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料.特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件.因此,SiC器件和各类传感器已逐步成为关键器件之一,发挥着越来超重要的作用. 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展.在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用.发展迅速.经过近10年的发展,目前SiC器件工艺已经可以制造商用器件.以Cree为代表的一批公司已经开始提供SiC器件的商业产品.国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得厂可喜的成果.虽然SiC材料具有非常优越的物理化学特性,而且SiC器件工艺也不断成熟,然而目前SiC器件和电路的性能不够优越.除了SiC材料和器件工艺需要不断提高外.更多的努力应该放在如何通过优化S5C器件结构或者提出新型的器件结构以发挥SiC材料的优势方面. 1 SiC分立器件的研究现状 目前.SiC器件的研究主要以分立器件为主.对于每一种器件结构,共最初的研究部是将相应的Si或者GaAs器件结构简单地移植到SiC上,而没有进行器件结构的优化.由于SiC的本征氧化层和Si相同,均为SiO2,这意味着大多数Si器件特别是M帕型器件都能够在Si C上制造出来.尽管只是简单的移植,可是得到的一些器件已经获得了令人满意的结果,而且部分器件已经进入厂市场.S iC光电器件,尤其是蓝光发光二极管在20世纪90年代初期已经进入市场,它是第一种大批量商业生产的SiC器件.日前高电压SiC肖特基二极管、SiC射频功率晶体管以及SiC M OSFET和MESFET等也已经有商业产品.当然所有这些SiC产品的性能还远没有发挥SiC 材料的超强特性,更强功能和性能的SiC器件还有待研究与开发.这种简单的移植往往不能完全发挥SiC材料的优势.即使在SiC器件的一些优势领域.最初制造出来的SiC器件有些还不能和相应的Si或者CaAs器件的性能相比. 为了能够更好地将SiC材料特性的优势转化为SiC器件的优势,目前正在研究如何对器件的制造工艺与器件结构进行优化或者开发新结构和新工艺以提高SiC器件的功能和性能.1.1 SiC肖特基二极管 肖特基二极管在高速集成电路、微波技术等许多领域有重要的应用.由于肖特基二极管的制造工艺相对比较简单,所以对SiC肖特基二极管的研究较为成熟.普渡大学最近制造出了阻断电压高达4.9kV的4H-SiC肖特基二极管,特征导通电阻为43mΩ?c㎡,这是目前SiC 肖特基二极管的最高水平. 通常限制肖特基二极管阻断电压的主要因素是金—半肖特基接触边沿处的电场集中.所以提高肖特基二极管阻断电压的主要方法就是采用不同的边沿阻断结构以减弱边沿处的电场集中.最常采用的边沿阻断结构有3种:深槽阻断、介质阻断和pn结阻断.普放大学采用的方法是硼注入pn结阻断结构,所选用的肖特基接触金属有Ni,Ti.2000年4月Cree和K ansai联合研制出一只击穿电压高达12.3kV的SiC整流器,主要采用了新的外延工艺和改进的器件设计.该器件具有很低的导通电阻,正向导通电压只有4.9 V ,电流密度高,可以达到100A/c㎡,是同类Si器件的5倍多. 1.2 SiC功率器件 由于SIC的击穿电场强度大约为Si的8倍.所以SiC功率器件的特征导通电阻可以做得小到相应Si器件的1/400.常见的功率器件有功率MOSFET、IGBT以及多种MOS控制闸流管等.为了提高器件阻断电压和降低导通电阻,许多优化的器件结构已经被使用.表1给出了已报道的最好的SiC功率MOSFET器件的性能数据Si功率MOSFET的功率优值的理论极限

相关文档
最新文档