概率论期中考试题目与答案

概率论期中考试题目与答案
概率论期中考试题目与答案

北方工业大学

《概率论与数理统计II 》课程试卷答案及评分标准

A 卷

2013年春季学期

开课学院: 理学院

考试方式:闭卷

考试时间:120 分钟

班级 姓名 学号 注意事项:最后一页可以撕下作稿纸,但不能把试卷撕散,撕散试卷作废。

一、单项选择题(每题3分,共15分)

1. 设随机变量X 服从正态分布()21

1

,σμN

,Y 服从正态分布()22

2

,σμN ,且

12{||1}{||1},P X P Y μμ-<>-<则 ( C )

(A )21μμ<

(B )21μμ>

(C )21σσ<

(D )21σσ>

2. 随机变量)4,1(~),1,0(~N Y N X 且相关系数1=XY ρ则(D ) (A ){}112=--=X Y P (B ){}112=-=X Y P (C ){}112=+-=X Y P (D ){}112=+=X Y P

3. 设在一次试验中事件A 发生的概率为p,现重复进行n 次独立试验,则事件A 至多发生一次的概率为(D)

A.n

p -1

B. n

p

C. n

p )1(1--

D. 1

)

1()1(--+-n n p np p

4. (13)设随机变量()Y X ,的概率分布为:

已知随机事件{}0=X 与{}1=+Y X 相互独立,则(B )

线

(A ) 3.0,2.0==b a (B ) 1.0,4.0==b a (C ) 2.0,3.0==b a . (D ) 4.0,1.0==b a

5. 设两个随机变量X 和Y 的标准差分别为3和2,且它们的相关系数为0.1,则随机变量Y X 34-的方差是(C )

(A ) 36 (B ) 144.6 (C ) 165.6 (D ) 180

二、填空题(每空3分,共15分)

1. 设事件B A ,至少发生一个的概率为0.7,且P(A)+P(B)=1.2,则B A ,至少有一个不发生的概率为___ 0.5____.

2. 某人投篮命中率为

5

4

,直到投中为止,所用投球数为4的概率为 4/625 。 3. 随机地从区间(0,1)中任取两个数x 和y ,则|x -y|大于0.5的概率是 1/4 。 4.已知)1,2(~),1,3(~N Y N X -,且Y X ,相互独立,记,72+-=Y X Z 则~Z N(0,5) 。 5. 随机变量X 服从参数为1的泊松分布,则{}P X DX == 1

e - 。

三、计算题(共5小题,前4小题每题15分,最后1题10分,共70分)

1、某人下午6:00下班,他所累积资料表明:

某日他抛一枚均匀硬币决定乘地铁还是乘汽车,结果他是6:42到家的。试求他是乘汽车回家的概率?

解:设“抛掷一枚均匀硬币出国徽一面乘汽车”记为事件A ,那么出另一面就乘地铁记为事件A ,他是6:42到家的记为事件B ,则:

()()

2

1

=

=A P A P ,()35.0=A B P ,()

25.0=A B P ()()()

()()()()

5833.012

7

25.05.035.05.035.05.0≈=?+??=

+=

A

B P A P A B P A P A B P A P B A P

2、 设随机变量X 的概率密度为

1,10,()1,01,0,.ax x f x x x +-≤

=-≤≤???

其他

试求: (1) 常数a ; (2) P{0< X <2}; (3) Y = X 2 + 1的密度函数.

解 (1) +-()d 1f x x ∞

=?

,易得a = 1.

(2) P{0< X <2}2

1

1()d (1)d 2

f x x x x =

=-=

?

?. (3) 先求Y 的分布函数

22()()(1)(-1).

Y F y P Y y P X y P X y =≤=+≤=≤

当y <1时,F Y (y )=0;

当1≤y <2

时,()Y F y P X =≤≤

()d )d )d 1;

f x x x x x x y ==++=+?

当y ≥2时,F Y (y )=1. 从而

0,

1,()1,12,

1,2,Y y F y y y y

=+≤

故Y 的密度函数为

1,12,()()0,.Y Y y f y F y -<<'==?

其他

3、 设随机变量X 和Y 的联合概率分布,是在直线x y =和曲线2x y =所围封闭区域上的均匀分布,试求

(1) 概率{}6.0,5.0≤≤Y X P ;

(2) 随机变量X 和Y 的概率密度()X f x 和()Y f y . (3) 随机变量X 关于Y y =的条件概率密度|(|)X Y f x y 。 解 设G 是直线x y =和曲线2x y =所围区域,其面积为

6

1

d )(1

2=

-=?x x x S

因此X 和Y 的联合概率密度为

?

?

?=?∈.,,

,若若G y x G y x y x f ),(),(06),( (1) 所求概率

{};

5.0d d 6d d 6

6.0,5.05

.00

2

===≤≤????x

x G

y x y x Y X P (2) 当)1,0(?x 时()0X f x =,对于)1,0(∈x ,有

2

2()(,)d 6d 6()x

X x f x f x y y y x x ∞

-∞

=

==-??;

当)1,0(?y 时()0Y f y =,对于)1,0(∈y ,有

()(,)d 6d 6(y

Y f y f x y x y y ∞

-∞

=

=

=?

于是,X 和Y 的概率密度()X f x 和()Y f y 为

26()(0,1)6((0,1)() () 0 (0,1) 0 (0,1)X Y x x x y y f x f y x y ??-∈∈?==???????

,若,,若,

,若;,若.

(3) 当0

时,|(,)(|)()X Y Y f x y f x y f y =

=。 4、设随机变量()Y X ,的联合分布律为

求:(1)常数a 、E (X ) 、E (Y 、、; (

2

)X 与Y 的相关系数XY ρ;

(3)判断X 与Y 的相关性与独立性,并说明理由。 解:(1)易得a =1/4.

Y X ,的边缘分布为:

3113()211208888i i i E X x p ?==-?+-?+?+?=∑, 25214211)(=?+?==?∑j j

j p y Y E ,

222222311313

()(2)(1)1288884i i i E X x p ?==-?+-?+?+?=

∑,

2213()()4

D X EX EX =-=

。 2

17

214211)(222=?+?

==?∑j j

p y Y E j ,2217259()()()244D Y E Y EY =-=-= 。 (2)0)(==∑∑i

j

ij j i p y x XY E

0)()()(),(=-=∴Y E X E XY E Y X COV 0)

()()

,(==

Y D X D Y X C o v XY ρ

(3)0=XY ρ因为,X ∴与Y 不相关。 又3(2)8

P X =-=

因为,,21)1(==Y P

13

(2,1)(2)(1)816

P X Y P X P Y =-==

≠==-?=。 X ∴与Y 不独立。

5 (10分)设随机变量X 和Y 的联合密度为,

??

???<<=-,若不然,,

,若 0 0e ),(2x y y x f x λλ

求随机变量Y X Z +=的概率密度()Z f z .

解 随机变量Y X Z +=的值域显然为),0(∞.利用二随机变量之和的密度公式

2

2

2

2 ()(,)d e

d e (e e )z z z

x

Z z x z z f z f x z x x x

λλλλλ

λλ∞

--∞

---=

-==-=-?

?,

其中,由x x z <-<0,可见z x z <<2,故积分区间为),2(z z .

随机变量Y X Z +=的概率密度为

2 (e e ) 0() 0 0z z Z z f z z λλλ--?->=?

≤?,若,

,若.

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1A2B.21A A C.21A A D.21A A 2.某人每次射击命中目标的概率为p(0

6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,2 1),则D(X-Y)=( ) A .1- B .74 C .54- D .12 - 二、填空题(本题共9小题,每小题2分,共18分) 7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= . 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度 f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ???, 则相关系数,X Y ρ= ________. 13. 二维随机变量(X ,Y ) (1,3,16,25,0.5)N -:,则X : ;Z X Y =-+: . 14. 随机变量X 的概率密度函数为 51,0()50,0x X e x f x x -?>?=??≤?,Y 的概率密度函数为1,11()20,Y y f y others ?-<

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率论与数理统计期末考试试题及解答

《概率论与数理统计》期末试题 一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.9 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(的概率密 度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤=- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F =

概率论与数理统计期中试卷(1-4章)附答案及详解

X,

23π+=X Y 5.设随机变量1X ,2X ,3X 相互独立,1X 在)5,1(-服从均匀分布,)2, 0(~22N X ,)2(~3Exp X (指数分布),记32132X X X Y +-=,则)(Y E )(Y D 6. 设二维正态分布的随机变量)0,3,4,2 ,1( ),(2 2-N ~Y X ,且知8413.0)1(=Φ,则 -<+)4(Y X P 7. 已知随机变量X 的概率密度2 01()0 a bx x f x ?+<<=??其他, 且41)(=X E ,则a b ) (X D 8. 设4. 0,36)(,25)(===XY Y D X D ρ,则=+)(Y X D =-)(Y X D 二. (10分) 某车间有甲乙两台机床加工同一种零件,甲机床加工的零件数量比乙机床多一倍,甲乙机床加工零件的废品率分别为0.03,0.02. 两机床加工出的零件放在一起. 试求 (1)任取一个零件是合格品的概率; (2)任取一个零件经检验是废品,试求它是由乙机床生产的概率. 解:设“从放在一起的零件中任取一件发现是甲/乙机床加工的”分别记为事件,A .A 再记“从放在一起的零件中任取一件发现是废品”为事件.B 由已知得 .02.0)(,03.0)(;3 1 )(,32)(====A B P A B P A P A P …… 3’ (1)由全概率公式知 027.075 2 02.03103.032)()()()()(≈=?+?= +=A B P A P A B P A P B P . …… 3’ 故任取一个零件是合格品的概率73 ()1()0.973.75 P B P B =-= ≈ …… 1’ (2)由贝叶斯公式知 .4 102.03 103.03202.031 )()()()()()()(=?+??=+=A B P A P A B P A P A B P A P B A P …… 3’

《概率统计》期末考试题(有答案)

《概率论》期末 A 卷考试题(免费) 一 填空题(每小题 2分,共20 分) 1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为( ). 2.设()0.3,()0.6P A P A B == ,则()P A B =( ). 3.设随机变量X 的分布函数为??? ? ? ????> ≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ), ()6 P X π > =( ). 4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2 X E ( ). 5.若随机变量X 的概率密度为2 36 ()x X p x -= ,则(2)D X -=( ) 6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( ). 7.设二维随机变量(X,Y )的联合分布律为 X Y 1 2 ?i p 0 a 12 1 6 1 1 3 1 b 则 ( ), ( ).a b == 8.设二维随机变量(X,Y )的联合密度函数为? ? ?>>=--其它 00,0),(2y x ae y x f y x ,则 =a ( ) 9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数X Y ρ=( ). 10.设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ). 二.选择题(每小题 2分,共10 分) 1.设当事件C B 和同时发生时事件A 也发生,则有( ).

) ()()(1 )()()()(1)()()()() ()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥= 2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ? (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ). (a )sin 0()20 x x p x π? <=( ). 1 11() 1 () () ()4 28 a b c d 三、解答题(1-6小题每题9分,7-8小题每题8分,共70分) 1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三 车间的正品率分别为0.95, 0.96, 0.98. 现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。 2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数X 的概率分布 ;(2)求X 的分布函数()F x . 3.设随机变量X 的密度函数为(1) 01()0 A x x f x -<. 4.设随机变量X 的密度函数为sin 0()20 x x f x π? <

概率论期中考试试卷及答案

将 个不同的球随机地放在 个不同的盒子里,求下列事件的概率 个球全在一个盒子里 恰有一个盒子有 个球 解 把 个球随机放入 个盒子中共有45 种等可能结果 ( ) 个球全在一个盒子里 共有 种等可能结果 故 个盒子中选一个放两个球,再选两个各放一球有 30 2 415=C C 种方法 个球中取 个放在一个盒子里,其他 个各放在一个盒子里有 种方法 因此, 恰有一个盒子有 个球 共有 × 种等可能结果 故 12572 625360)(= = B P 某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为 小时和 小时,设甲、乙在 小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。 解: 设 分别为两船到达码头的时刻。 由于两船随时可以到达,故 分别等可能地在 上取值,如 厦门大学概统课程期中试卷 ____学院___系___年级___专业 考试时间

右图 方形区域,记为Ω。设 为“两船不碰面”,则表现为阴影部分。 222024,024024,024,2111 ()24576,()2322506.522 () ()0.8793 ()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===?+?===Ω={(x,y)}, A={(x,y)或},有所以, 设商场出售的某种商品由三个厂家供货,其供应量之比是 : : ,且第一、二、三厂家的正品率依次为 、 、 ,若在该商场随机购买一件商品,求: 该件商品是次品的概率。 该件次品是由第一厂家生产的概率。 解 1231122331, (1) ()()(|)()(|)()(|) =60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024 (2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++= 设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知 111()()(|)60%*(1-98%) ()()0.024 =0.5P AB P B P A B P A P A == 甲乙丙三台机床独立工作,在同一时间内他们不需要工人照顾的概率分别为 ,求在这段时间内,最多只有一台机床需人照顾的概率。 解: 设123A A A 、、分别代表这段时间内甲、乙、丙机床需要照管,i B 代表这段时

概率论基础(第三版)-李贤平-试题+答案-期末复习

第一章 随机事件及其概率 一、选择题: 1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( ) A .A B A C + B .()A B C + C .ABC D .A B C ++ 2.设B A ? 则 ( ) A .()P A B I =1-P (A ) B .()()()P B A P B A -=- C . P(B|A) = P(B) D .(|)()P A B P A = 3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一 定独立 A .()()()P A B P A P B =I B .P (A|B )=0 C .P (A|B )= P (B ) D .P (A|B )= ()P A 4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( ) A .a-b B .c-b C .a(1-b) D .b-a 5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( ) A .A 与 B 互不相容 B .A 与B 相互独立 C .A 与B 互不独立 D .A 与B 互不相容 6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ?,则一定成立的关系式是( ) A .P (A| B )=1 B .P(B|A)=1 C .(|A)1p B = D .(A|)1p B = 7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )

A .()A B B A -=U B .()A B B A -?U C .()A B B A -?U D .()A B B A -=U 8.设事件A 与B 互不相容,则有 ( ) A .P (A B )=p (A )P (B ) B .P (AB )=0 C .A 与B 互不相容 D .A+B 是必然事件 9.设事件A 与B 独立,则有 ( ) A .P (A B )=p (A )P (B ) B .P (A+B )=P (A )+P (B ) C .P (AB )=0 D .P (A+B )=1 10.对任意两事件A 与B ,一定成立的等式是 ( ) A .P (A B )=p (A )P (B ) B .P (A+B )=P (A )+P (B ) C .P (A|B )=P (A ) D .P (AB )=P (A )P (B|A ) 11.若A 、B 是两个任意事件,且P (AB )=0,则 ( ) A .A 与 B 互斥 B .AB 是不可能事件 C .P (A )=0或P (B )=0 D .AB 未必是不可能事件 12.若事件A 、B 满足A B ?,则 ( ) A .A 与 B 同时发生 B .A 发生时则B 必发生 C .B 发生时则A 必发生 D .A 不发生则B 总不发生 13.设A 、B 为任意两个事件,则P (A-B )等于 ( ) A . ()()P B P AB - B .()()()P A P B P AB -+ C .()()P A P AB - D .()()()P A P B P AB -- 14.设A 、B 、C 为三事件,则AB BC AC U U 表示 ( ) A .A 、 B 、 C 至少发生一个 B .A 、B 、C 至少发生两个 C .A 、B 、C 至多发生两个 D .A 、B 、C 至多发生一个 15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( ) A .A 与 B 互不相容 B .A 与B 相互独立

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( ) A .A 1A 2 B .21A A C .21A A D .21A A 2 345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=. 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度

2 f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ??? ,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+. (-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律; (5)相关系数,X Y ρ

18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975. (1)求每次测量中误差绝对值大于19.6的概率p ; (2)问Y 服从何种分布,并写出其分布律;求E (Y ). 1取出的3件中恰有一件次品的概率为( ) A .601 B .457 C .51 D .15 7 2.下列选项不正确的是() A .互为对立的事件一定互斥 B .互为独立的事件不一定互斥 C .互为独立的随机变量一定是不相关的 D .不相关的随机变量一定是独立的 3.某种电子元件的使用寿命X (单位:小时)的概率密度为

概率论与数理统计期末试卷及答案

2016-2017学年第二学期期末考试课程试卷(A ) 警告、记过、留校察看,直至开除学籍处分! 一、 选择题(每题3分,共15分) 1. 设事件1A 与2A 同时发生必导致事件A 发生,则下列结论正确的是( B ). A .)()(21A A P A P = B. 1)()()(21-+≥A P A P A P C. )()(21A A P A P Y = D. 1)()()(21-+≤A P A P A P 2.假设连续型随机变量X 的分布函数为()F x ,密度函数为()f x .若X 与-X 有相同的分布函数,则下列各式中正确的是( C ). A .()F x =()F x - B .()F x =()F x -- C .()f x =()f x - D .()f x =()f x -- 3. 已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为( D )。 学号:________________ 姓名:________________ 班级:______________ 请考生将答案写在试卷相应答题区,在其他地方作答视为无效!

A. )2(2y f X - B. )2(y f X - C. )2(21y f X -- D. )2 (21y f X - 4. 设随机变量服从正态分布, 对给定的, 数满足, 若, 则等于( A )。 A. 12u α- B. 21u α- C. 2u α D. 1u α- 5. 12,,n X X X L 是来自正态总体()2,μσX N :的样本,其中μ已知,σ未知,则 下列不是统计量的是( C )。 A. 4 114i i X X ==∑ B. 142X X μ+- C. 4 2 211 ()i i K X X σ==-∑ D. 4 2 1 1()3i i S X X ==-∑ 二、 填空题(每题3分,共15分) 事件,则“事件,A B 发生但C 不发生”表示为 。 2. 三个人独立破译一份密码,各人能译出的概率分别为4 1 ,51,31,则密码能译出 的概率为 3/5 。

概率论期中考试试卷及答案

1.将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 解: 把4个球随机放入5个盒子中共有45=625种等可能结果. (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P(A)=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有 30 2415=C C 种方法 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故 12572 625360)(= =B P 2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。 解: 设x,y 分别为两船到达码头的时刻。 由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω。设A 为“两船不碰面”,则表现为阴影部分。 厦门大学概统课程期中试卷 ____学院___系___年级___专业 考试时间

222024,024024,024,2111 ()24576,()2322506.522 () ()0.8793 ()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===?+?===Ω={(x,y)}, A={(x,y)或},有所以, 3.设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求: (1) 该件商品是次品的概率。 (2) 该件次品是由第一厂家生产的概率。 解: 1231122331, (1) ()()(|)()(|)()(|) =60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024 (2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++= 设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知 111()()(|)60%*(1-98%) ()()0.024 =0.5P AB P B P A B P A P A == 4.甲乙丙三台机床独立工作,在同一时间内他们不需要工人照顾的概率分别为,08,,求在这段时间内,最多只有一台机床需人照顾的概率。 解: 设123A A A 、、分别代表这段时间内甲、乙、丙机床需要照管,i B 代表这段时间内恰有i 台机床需要照管,i=0、1. 显然,0B 与1B 互斥,123A A A 、、相互独立。并且:

概率论与数理统计期末试卷及答案(最新1)

概率论与数理统计期末试卷 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、,则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B) 取到1只白球 (C) 没有取到白球(D) 至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A) 随机事件(B) 必然事件 (C) 不可能事件(D) 样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B) 与不互斥 (C) (D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D)

6. 设相互独立,则()。 (A) (B) (C) (D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D) 0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3 (B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D) 10. 设事件A与B同时发生时,事件C一定发生,则()。 (A) P(A B) = P (C) (B) P (A) + P (B) –P (C) ≤1 (C) P (A) + P (B) –P (C) ≥1 (D) P (A) + P (B) ≤P (C) 三、计算与应用题(每小题8分,共64分) 1. 袋中装有5个白球,3个黑球。从中一次任取两个。 求取到的两个球颜色不同的概率。 2. 10把钥匙有3把能把门锁打开。今任取两把。 求能打开门的概率。 3. 一间宿舍住有6位同学, 求他们中有4个人的生日在同一个月份概率。 4. 50个产品中有46个合格品与4个次品,从中一次抽取3个, 求至少取到一个次品的概率。

概率论与数理统计期末考试试题及答案

《概率论与数理统计》期末考试试题(A) 专业、班级: 姓名: 学号: 十二总成绩 、单项选择题(每题3分共18分) 1. D 2 . A 3 . B 4 . A 5 . (1) (2)设随机变量X其概率分布为X -1 0 1 2 P 则 P{X 1.5}() (A) (B) 1 (C) 0 (D) 设事件A与A同时发生必导致事件A发生,则下列结论正确的是( (A) P (A) P(A I A2) (B) P(A) P(A i) P(A2) (C) P(A) P(A1 A2) (D) P(A) P(A i) P(A2) 设随机变量X~N( 3, 1), Y ?N(2, 1),且X 与Y相互独 7,贝y z~(). (A) N(0, 5); (B) N(0, 3); (C) N(0, 46); (D) N(0, 54).

(5)设 X1X2, 未知,贝U( n (A) X i2 i 1 ,X n为正态总体N(, )是一个统计量。 (B) (C) X (D) (6)设样本X i,X2, 为H o: (A)U (C) 2)的一个简单随机样本,其中2, ,X n来自总体X ~ N( 0( 0已知) (n 1)S2 2 二、填空题(每空3分 xe x 1. P(B) 2. f(x) 0 (1) 如果P(A) 0, P(B) H1 : (B) (D) 共15分) 0, P(A B) 设随机变量X的分布函数为 F(x) 则X的密度函数f(x) 3e P(A) n (X i ) i 1 2), 2未知。统计假设 则所用统计量为( 3 . 1 4. 则P(BA) 0, 1 (1 x)e x, x 0, 0. n (X i 1 P(X 设总体X和丫相互独立,且都服从N(0,1) , X1,X2, 样本,丫1,丫2, Y9是来自总体丫的样本,则统计量 服从分布(要求给出自由度)。t(9 ) 2) )2 X9是来自总体X的 X1 U肩

概率论与数理统计期中考试试题1

概率论与数理统计期中考试试题1 一.选择题(每题4分,共20分) 1.设,,A B C 为三个随机事件,,,A B C 中至少有一个发生,正确的表示是( ) A. ABC B. ABC C. A B C D. A B C 2.一个袋子中有5个红球,3个白球,2个黑球,现任取三个球恰为一红,一白,一黑的概率为 ( ) A. 12 B. 14 C. 13 D. 15 3.设,A B 为随机事件,()0.5,()0.6,(|)0.8P A P B P B A ===,则()P A B =( ) A .0.7 B. 0.8 C. 0.6 D. 0.4 4. 一总机每分钟收到呼唤的次数服从参数为2的泊松分布,则某一分钟恰有4次呼唤的概率为( ) A. 423e - B. 223e - C. 212e - D. 312 e - 5.若连续性随机变量2 (,)X N μσ,则X Z μσ -= ( ) A .2(,)Z N μσ B. 2(0,)Z N σ C. (0,1)Z N D. (1,0)Z N 二. 填空题(每题4分,共20分) 6. 已知1 ()2 P A =,且,A B 互不相容,则()P AB = 7. 老今年年初买了一份为期一年的保险,保险公司赔付情况如下:若投保人在投保后一年因意外死亡,则公司赔付30万元;若投保人因其他原因死亡,则公司赔付10万元;若投保人在投保期末生存,则公司无需付给任何费用。若投保人在一年因意外死亡的概率为 0.0002,因其他原因死亡的概率为0.0050,则保险公司赔付金额为0元的概率为 8. 设连续性随机变量X 具有分布函数 0,1()ln ,11,x F x x x e x e

《概率论》期末考试试题及答案

07级《概率论》期末考试试题B 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则(1)“第一卷出现在旁边”的概率为 5 2 。 5 2 !5!422=?= p 2.设,)(,)(,)(r AB P q B P p A P ===则=)(B A P r p - 。性质 r p AB P A P AB A P B A P B A P -=-=-=-=)()()][)()( 3.设随机变量ξ的密度函数为() 0 3,其它 ?? ?>=-x ce x x ?则c= 3 . 33 )(130 =?= ==-+∞ +∞ ∞ -? ? c c dx e c dx x x ? 4. 设ξ、η为随机变量,且D (ξ+η)=7,D (ξ)=4,D (η)=1, 则Cov(ξ,η)= 1 . 1 21 472)(),cov() ,cov(2)(=--=--+=++=+ηξηξηξηξηξηξD D D D D D 5.设随机变量ξ服从两点分布) 1 ,1(B ,其分布律为 则ξ的特征函数为= )(t f ξit e 3 132+。 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件恰好一个发生”为( ②. ). ① C B A ??. ② C B A C B A C B A ++ ③ ABC -Ω. ④ C B A C B A C B A C B A +++ 2.设随机变量ξ的分布函数为

00)(2 2 <≥?? ???+=-x x B Ae x F x 则其中常数为(① )。 ①A=-1,B=1 ②A=1,B=-1 ③ A=1,B=1 ④ A=-1,B =-1 B A B e A x F B B e A x F x x x x x x +=+===+==-→→- +∞ →+∞ →++2 2 22lim )(lim 0lim )(lim 1 解得1,1=-=B A 3设随机变量ξ的分布列为.,2,1,2 1 )2)1(( ==-=k k P k k k ξ则ξE ( ④ ) ①等于1. ② 等于2ln ③等于2ln - ④ 不存在 445111 =?==∑ ∞ =C C C i i ∑∑+∞=+∞ =+=?-11 1 1 4545) 1(i i i i i i i ,由调和级数是发散的知,EX 不存在 4.对于任意两个随机变量ξ与η,下面(④ )说法与0),cov(=ηξ不等价。 ①相关系数0,=Y X ρ ② )()()(ηξηξD D D +=+ ③ ηξξηE E E ?=)( ④ ξ 与η相互独立 5.设随机变量ξ服从二项分布)2 1 ,4(B ,由车贝晓夫不等式有 ( ② ). ①.31 )32(≤ ≥-ξP ②.91 )32(≤≥-ξP ③ 3 1 )32(≥<-ξP . ④ 9 1)32(≥ <-ξP 因为9 1 )32(,1,2≤≥-==ξξξP D E 三、(满分20分) (1)两人相约7点到8点在某地会面,试求一人要等另一人半小时以上的概率。 解:

武汉大学2010-2011概率论与数理统计B期末试卷

武汉大学 2010-2011第二学期 概率论与数理统计B 期末试题(54学时) 一、(12 分)若B 和 A 为事件, ()0.5,()0.6,(|)0.8 P A P B P B A === 求 ⑴ () P A B è ; ⑵ (()()) P A B A B -?è 。 二、(12 分) 某车间的零件来自甲、 乙、 丙三厂, 其各占比例为 5: 3: 2, 次品率分别为0.05,0.06,0.03; 现从中任取一件,求 :⑴它是次品的概率?⑵如果它是次品,它来自乙厂的概率? 三、(12 分)随机变量X 的密度函数为 1 0 sin () 2 x x f x p ì << ? = í ? ? 其他 。A 表示事件“ 3 X p 3 ” ⑴求 () P A ; ⑵对X 进行 4 次独立观测,记A 出现的次数为Y ,求其概率分布及 2 Y 的数学期望。 四、(14 分)若随机变量(,) X Y 的联合概率密度为 (2) 2 (,) 0 x y e f x y -+ ì = í ? 0,0 x y >> 其他 ; ⑴求随机变量X 和Y 的边缘概率密度 ()?() x y f x f y ; ⑵ X 和Y 是否独立 ?(3)求 2 Z X Y =+ 的概率密度。 五、(12 分) 若随机变量 (,) X Y 在区域 2 :01, D x x y x ££££ 上服从二维均匀分布, 求随机变量(,) X Y 的 相关系数 xy r 。 六、(14 分)若 12 , n X X X K 为来自 2 (0,) N s 的样本; X 为样本均值, i i Y X X =- 1,2 i n = K 求(1) i Y 的方差;(2) 1 ov(,) n C Y Y 。 (3)当a 为何值时, 2 1 222 23 n aX F X X X = +++ L 服从F 分布? 七、(12 分)若随机变量X 在区间(0,) q 服从均匀分布, 12 , n X X X K 是其样本, 求(1)q 的矩估计和极大似然估计。 (2) 判别他们的无偏性。 八、(12 分)设某次考试的学生成绩服从正态分布,从中任取 36 位学生的成绩,得平均分为68.5, 标准差为 6分;问:可否认为学生的平均分显著小于70 分? ( 0.05 a = ) 已知: 0.050.050.0250.025 (35) 1.690,(36) 1.688,(35) 2.030,(36) 2.028 t t t t ==== 0.050.025 1.65, 1.96 u u ==

概率论期末考试试题北京大学数学科学学院

《概率论》期末考试试题 1. 一本书共有1,000,000个印刷符号, 排版时每个符号被排错的概率为0.0001, 校对时每个排版错误被改正的概率为0.9, 求在校 对后错误不多于15个的概率. 2. 某赌庄有资产100,000元. 另有一赌徒拥有无穷大的赌资, 试图使该赌庄破产. 他每次压注1000元, 每次赢钱的概率为0.49而 输钱的概率为0.51. 问该赌徒能使赌庄破产的概率为多大? 3. 考虑[0,∞]上的Poisson 过程, 参数为λ. T 是与该Poisson 过程独立的随机变量,服从参数为μ的指数分布. 以T N 表示[0,T ] 中Poisson 过程的增量, 求T N 的概率分布. 4. 设ξ1ξ2……ξ n 是独立同分布随机变量, 且三阶中心矩等于零, 四阶矩存在,求∑==n k k n 11ξξ和21)(1ξξ-∑=n k k n 的相关系数. 5. 设X 是连续型随机变量,密度函数f X (x)= (1/2)exp(-|x|), -∞< x < ∞. a. 证明特征函数φX (t) = 1/(1+t 2). b. 利用上述结果和逆转公式来证明 dt t e dt t e e ixt ixt x ) 1(1)1(122||+=+= ??∞∞-∞∞---ππ 6. 设随机变量序列ξn 依概率收敛于非零常数a, 而且ξn ≠0. 证明1/ξn 依概率收敛于1/a. 7. 假设X 与Y 是连续型随机变量.记Var[Y|X=x]为给定X=x 的条件下Y 的方差. 如果E[Y|X=x]=μ与X 无关, 证明EY=μ而且 VarY=?∞ ∞-=dx x f x X Y Var X )(]|[. 8. 设{ξn }为独立随机变量序列, 且ξn 服从( -n, n)上的均匀分布, 证明对{ξn }中心极限定理成立. 9. 设X,Y 和Z 的数学期望均为0, 方差均为1. 设X 与Y 的相关系数为ρ1, Y 与Z 的相关系数为ρ2, X 与Z 的相关系数为ρ3. 证 明 213ρρρ≥211ρ--22 1ρ-. 10. 用概率方法证明如下Weierstrass 定理:对区间[0,1]上任何连续函数f(x), 必存在多项式序列{b n (x)}, 使在区间[0,1]上一致地有 b n (x) → f(x). 附: 常用正态分布函数值: Φ(1.28)= 0.9, Φ(2)= 0.977, Φ(2.33)= 0.99, Φ(2.58)= 0.995 Φ(1.64)= 0.95, Φ(1.96)= 0.975,

相关文档
最新文档