多细胞动物的起源学说

多细胞动物的起源学说
多细胞动物的起源学说

多细胞动物的起源学说

(一)群体学说

大多数学者认为,多细胞动物起源于群体鞭毛虫类似的祖先。对此也有两种假说:

1、原肠虫学说

赫克尔提出和团藻相似的群体单细胞动物一端内陷,形成了有原肠和两胚层的原始多细胞动物。把此祖先称为原肠虫。

2、吞噬虫学说

梅契尼可夫提出,具有单层细胞的单细胞群体内,一部分细胞摄取食物后进入群体之内,形成了两胚层的实心的原始多细胞动物。把此祖先称为吞噬虫。

因现存的较低等的动物,多由细胞移入而形成两胚层。内陷法到后来才有。因此,吞噬虫学说可能更接近于事实。

(二)合胞体学说

认为多细胞动物起源于多核纤毛虫的原始类群,后生动物的祖先是具合胞体结构的多核细胞。

生物发生率(biogenetic law)

也叫重演律(recapitulation law),是德国人赫克尔(E.H.Haeckel)用生物进化论的观点总结了当时胚胎学方面的工作提出来的。当时在胚胎发育方面已揭示了一些规律,

如在动物胚胎发育过程中,各纲脊椎动物的胚胎都是由受精卵开始发育的,在发育初期极为相似,以后才逐渐变得越来越不相同。达尔文曾作过一些论证,认为胚胎发育的相似性,说明它们彼此有亲缘关系,起源于共同的祖先,个体发育的渐进性是系统发展中渐进性的表现。达尔文还指出了胚胎结构重演其过去祖先的结构,“它重演了它们祖先发育中的一个形象”。海克尔明确地论述了生物重演律。1866年他在《有机体普通形态学》书中说:“生物发展史可分为2个相互密切联系的部分,即个体发育和系统发育,也就是个体的发育历史和由同一起源所产生的生物群的发展历史。个体发育史是系统发展史的简单而迅速的重演。”如青蛙的个体发育,由受精卵开始,经过囊胚、原肠胚、三胚层的胚,无腿蝌蚪、有腿蝌蚪,到成体青蛙。这反映了它在系统发展过程中经历了像单细胞动物、单细胞的球状群体、腔肠动物、原始三胚层动物、鱼类动物,发展到有尾两栖到无尾两栖动物的基本过程。说明了蛙个体发育重演了其祖先的进化过程,也就是个体发展简短重演了它的系统发展,即其种族发展史。

生物重演律对了解各动物类群的亲缘关系及其发展线索极为重要。因而对许多动物的亲缘关系和分类位置不能确定时,常由胚胎发育得到解决。生物重演律是一条客观规律,它不仅适用于动物界,而且适用于整个生物界,包括人类在内。

简而言之,生物发生率揭示了个体发育是系统发育快速的重演

群落 community 亦称生物群落(biological community)。

生物群落是指具有直接或间接关系的多种生物种群的有规律的组合,具有复杂的种间关系。我们把在一定生活环境中的所有生物种群的总和叫做生物群落,简称群落。组成群落的各种生物种群不是任意地拼凑在一起的,而有规律组合在一起才能形成一个稳定的群落。如在农田生态系统中的各种生物种群是根据人们的需要组合在一起的,而不是由于他们的复杂的营养关系组合在一起,所以农田生态系统极不稳定,离开了人的因素就很容易被草原生态系统所替代。

结构

任何群落都有一定的空间结构。构成群落的每个生物种群都需要一个较为特定的生态条件;在不同的结构层次上,有不同的生态条件,如光照强度、温度、湿度、食物和种类等。所以群落中的每个种群都选择生活在群落中的具有适宜生态条件的结构层次上,就构成了群落的空间结构。群落的结构有水平结构和垂直结构之分。群落的结构越复杂,对生态系统中的资源的利用就越充分,如森林生态系统对光能的利用率就比农田生态系统和草原生态系统高得多。群落的结构越复杂,群落内部的生态位就越多,群落内部各种生物之间的竞争就相对不那么激烈,群落的结构也就相对稳定一些。

群落有其结构。大多数群落中,由一两种占优势的植物生长型决定整个群落的外貌,群落也常以此得名,如阔叶落叶林、针叶常绿林、草原等。植物还可以按更新芽的位置而分为不同生活型,如地上芽、地下芽植物等。一个群落的生活型组成可以反映环境特征。群落还常表现垂直分层现象,如地面上高树、矮树、灌木、草本的分层与光照有密切关系。地下和水中生物亦如是。除光照外,氧气、压力等亦有关。以植物为栖息地和食物的动物亦有相应的分层。在水平方向,不同生物可因要求类似环境条件或互相依赖而聚集在一起。群落中各物种常随时间而变化,如植物的开花闭花和动物的穴外行动具有昼夜节律,而整个温寒带群落呈现明显季节节律。群落中生物总处在不断的交互作用中。按生物吸取营养的方式,有营光合作用的植物、靠摄食为生的动物和经体表吸收的微生物。它们之间形成复杂的食物关系。两物种可以是互相竞争,也可是共生,视相互间利害关系而有寄生、偏利共生和互利之分。一个群落的进化时间越长、环境越有利且稳定,则所含物种越多。如两物种利用相同资源(生态位重叠)则必然竞争而导致一方被排除。但如一方改变资源需求(生态位分化)则可能共存。生物群落的发展趋势是生态位趋向分化和物种趋向增多。

植物通过光合作用制造的有机物质总量称为总初级生产力,这是整个群落一切生命活动的能量基础。除去植物呼吸消耗之後的剩馀称为净初级生产力,这是群落中全部异营生物(亦称异养生物)赖以生存的能源。群落中现存的有机物质量称为生物量,各种类型的群落的生物量和生物量积累比率很不相同。群落中生物组成包括植物、食植动物到食肉动物各营养级的食物连锁关系。由于能量的种种消耗,生产力逐级递减。初级生产力只占阳光能中的0.1~1%,而动物所代表的各次级生产力只占前一级生产力的10%。土壤上下的细菌、真菌在群落中亦占重要地位。森林中被动物摄食者,不到枝干量的1%和树叶量的10%,绝大部分朽木落叶被微生物分解。有机物质被分解为简单成分後,可再为根系所利用从而完成营养物循环。森林中这种循环可以很紧密,丢失很少。但海洋中浮游生物沉积海底,却使一部分营养物(如磷)难以再重复利用。

一片山坡上的丛林可因山崩全部毁坏,暴露出岩石面。但又可经地衣、苔藓、草类、灌木和乔木等阶段逐步再发育出一片森林,包括重新孕育出土壤。当一个群落的总初级生产力大于总群落呼吸量,而净初级生产力大于动物摄食、微生物分解以及人类采伐量时,有机物质便要积累。于是,群落便要增长直达到一个成熟阶段而积累停止、生产与呼吸消耗平衡为止。这整个过程称为演替(succession),而其最後的成熟阶段称为顶极(climax)。顶极群落生产力并不最大,但生物量达到极值而净生态系生产量很低或甚至达到零;物种

多样性可能最後又有降低,但群落结构最复杂而稳定性趋于最大。不同于个体发育,群落没有个体那样的基因调节和神经体液的整合作用,演替道路完全决定于物种间的交互作用以及物流、能流的平衡。因此顶极群落的特征一方面取决于环境条件的限制,一方面依赖于所含物种。

垂直结构

形成原因:群落中,各个生物种群分别占据了不同的空间。

概念:垂直结构是指在群落生境的垂直方向上,群落具有的明显分层现象。

以森林的群落结构为例。在植物的分层上,由上至下依次是乔木层、灌木层和草本植物层。动物的分层亦呈这种垂直结构:鸟类分为林冠层,中层和林下层。林冠层包括鹰,伯劳,杜鹃,黄鹂等。中层包括山雀,莺,啄木鸟等。林下层包括画眉,八色鹊等。水体分层也是如此。水体分为上层,中层和底层。上层主要是藻类。中层主要为浮游动物。底层主要为软体动物,环节动物和蟹类。

水平结构

水平结构是指在群落生境的水平方向上,群落具有的明显分层现象。由于在水平方向上存在的地形的起伏、光照和湿度等诸多环境因素的影响,导致各个地段生物种群的分布和密度的不相同。

同样以森林为例。在乔木的基部和被其他树冠遮盖的位置,光线往往较暗,这适于苔藓植物等喜阴植物的生存;在树冠下的间隙等光照较为充足的地段,则有较多的灌木与草丛。

分类

生态学研究中常将群落分类并加以排序,但因物种单独适应环境而群落间是逐渐过渡,故分类缺乏明确界线。选择不同分类标准得出不同结果。一般生物群落分类藉用植物群落分类系统。详细研究特定地区内的植物群落,常以群丛为基本单位,根据特征种定出群丛,再顺次组成群属、群目、群纲等。在大陆范围上,则主要按优势顶极画分成不同生物群系,它们反映不同的气候地质条件。常见群系类型如海洋、淡水、沼泽、森林、荒漠、冻原等等。

热带雨林分布在高温多雨的热带地区。物种丰富,层次多,最复杂。热带雨林主要分布于赤道南北纬 5 ~ 10度以内的热带气候地区。这里全年高温多雨,无明显的季节区别,年平均温度 25 ~30 ℃,最冷月的平均温度也在18 ℃ 以上,极端最高温度多数在36 ℃ 以下。年降水量通常超过 2 000mm ,有的竟达 6 000mm ,全年雨量分配均匀,常年湿润,空气相对湿度 90 %以上。热带雨林为热带雨林气候及热带海洋性气候的典型植被。大多数热带雨林(Tropical zone rain forest)都位于北纬23.5度和南纬23.5度之间。在热带雨林中,通常有三到五层的植被,上面还有高达150英尺到180英尺的树木像帐篷一样

支盖着。下面几层植被的密度取决于阳光穿透上层树木的程度。照进来的阳光越多,密度就越大。热带雨林主要分布在南美、亚洲和非洲的丛林地区,如亚马逊平原和云南的西双版纳。每月平均温度在华氏64.5度以上(摄氏温度约为18度),平均降水量每年80英寸(1英寸=2.54厘米)以上,超过每年的蒸发量。

常绿阔叶林分布在温暖多湿的亚热带地区。常绿阔叶林是亚热带海洋性气候条件下的森林,大致分布在南、北纬度22°~34°(40°)之间。主要见于亚洲的中国长江流域南部、朝鲜和日本列岛的南部,非洲的东南沿海和西北部,大西洋的加那利群岛,北美洲的东端和墨西哥,南美洲的智利、阿根廷、玻利维亚和巴西的部分地区,大洋洲东部以及新西兰等地。其中以中国长江流域南部的常绿阔叶林最为典型,面积也最大。由常绿阔叶树种组成的地带性森林类型。

针叶林(taiga forest regions)分布:寒温带及中、低纬度亚高山地区植物:冷杉,云杉,红松

热带草原(savanna or savannah)分布:干旱地区。特点:年降水量少,群落结构简单,受降雨影响大;不同季节或年份种群密度和群落结构常发生剧烈变化,景观差异大。

荒漠(desert)分布:南北纬15°~50°之间的地带。特点:终年少雨或无雨,年降水量一般少于250mm,降水为阵性,愈向荒漠中心愈少。气温、地温的日较差和年较差大,多晴天,日照时间长。风沙活动频繁,地表干燥,裸露,沙砾易被吹扬,常形成沙暴,冬季更多。荒漠中在水源较充足地区会出现绿洲,具有独特的生态环境。

冻原(tundra)分布:欧亚大陆和北美北部边缘地区,包括寒温带和温带的山地与高原。特点:冬季漫长而严寒,夏季温凉短暂,最暖月平均气温不超过14℃。年降水200~300mm。沼泽分布于低洼地和排水不良地段,可分为草本沼泽和森林沼泽

静息电位

静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。它是一切生物电产生和变化的基础。当一对测量微电极都处于膜外时,电极间没有电位差。在一个微电极尖端刺入膜内的一瞬间,示波器上会显示出突然的电位改变,这表明两个电极间存在电位差,即细胞膜两侧存在电位差,膜内的电位较膜外低。该电位在安静状态始终保持不变,因此称为静息电位。几乎所有的动植物细胞的静息电位膜内均较膜外低,若规定膜外电位为零,则膜内电位即为负值。大多数细胞的静息电位在-10~100mV之间。

动作电位

动作电位是指可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。动作电位由峰电位(迅速去极化上升支和迅速复极化下降支的总称)和后电位(缓慢的电位变化,包括

负后电位和正后电位)组成。峰电位是动作电位的主要组成成分,因此通常意义的动作电位主要指峰电位。动作电位的幅度约为90~130mV,动作电位超过零电位水平约35mV,这一段称为超射。神经纤维的动作电位一般历时约0.5~2.0ms,可沿膜传播,又称神经冲动,即兴奋和神经冲动是动作电位意义相同。

DNA变性

(DNAdenatur)

DNA变性是指核酸双螺旋碱基对的氢键断裂,双链变成单链,从而使核酸的天然构象和性质发生改变。变性时维持双螺旋稳定性的氢键断裂,碱基间的堆积力遭到破坏,但不涉及到其一级结构的改变。凡能破坏双螺旋稳定性的因素,如加热、极端的pH、有机试剂甲醇、乙醇、尿素及甲酰胺等,均可引起核酸分子变性。

变性DNA常发生一些理化及生物学性质的改变: 1)溶液粘度降低。DNA双螺旋是紧密的刚性结构,变性后代之以柔软而松散的无规则单股线性结构,DNA粘度因此而明显下降。? 2)溶液旋光性发生改变。变性后整个DNA分子的对称性及分子局部的构性改变,使DNA溶液的旋光性发生变化。 3)增色效应(hyperchromic effect)。指变性后DNA溶液的紫外吸收作用增强的效应。DNA分子中碱基间电子的相互作用使DNA分子具有吸收260nm 波长紫外光的特性。在DNA双螺旋结构中碱基藏入内侧,变性时DNA双螺旋解开,于是碱基外露,碱基中电子的相互作用更有利于紫外吸收,故而产生增色效应。

增色效应或高色效应(hyperchromic effect)。由于DNA变性引起的光吸收增加称增色效应,也就是变性后DNA 溶液的紫外吸收作用增强的效应。DNA 分子具有吸收250 -280nm 波长的紫外光的特性,其吸收峰值在260nm 。DNA 分子中碱基间电子的相互作用是紫外吸收的结构基础, 但双螺旋结构有序堆积的碱基又" 束缚" 了这种作用。变性DNA 的双链解开, 碱基中电子的相互作用更有利于紫外吸收, 故而产生增色效应。一般以260nm 下的紫外吸收光密度作为观测此效应的指标, 变性后该指标的观测值通常较变性前有明显增加, 但不同来源DNA 的变化不一, 如大肠杆菌DNA 经热变性后, 其260nm 的光密度值可增加40% 以上, 其它不同来源的DNA 溶液的增值范围

多在20 -30% 之间。

糖酵解是指在氧气不足条件下,葡萄糖或糖原分解为乳酸的过程,此过程中伴有少量ATP的生成。这一过程是在细胞质中进行,不需要氧气,每一反应步骤基本都由特异的酶催化。在缺氧条件下丙酮酸则可在乳酸脱氢酶的催化下,接受磷酸丙糖脱下的氢,被还原为乳酸。

而有氧条件下的糖的氧化分解,称为糖的有氧氧化,丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O。

糖的有氧氧化和糖酵解在开始阶段的许多步骤是完全一样的,只是分解为丙酮酸以后,由于供氧条件不同才有所分歧。

糖酵解总共包括10个连续步骤,均由对应的酶催化。

总反应为:葡萄糖+2ATP+2ADP+2Pi+2NAD+ ——>2丙酮酸+4ATP+2NADH+2H++2H2O 丙酮酸(CH3COCOOH)+2NADH —可逆—>乳酸(CH3CHOHCOOH)+2NAD+

糖酵解可分为二个阶段,活化阶段和放能阶段。

意义

1.糖酵解是存在一切生物体内糖分解代谢的普遍途径

2.通过糖酵解使葡萄糖降解生成ATP,为生命活动提供部分能量,尤其对厌氧生物是获得能量的主要方式

3.糖酵解途径为其他代谢途径提供中间产物(提供碳骨架),如6-磷酸葡萄糖是磷酸戊糖途径的底物;磷酸二羟丙酮?a-磷酸甘油 ?合成脂肪

4.是糖有氧分解的准备阶段

5.由非糖物质转变为糖的异生途径基本为之逆过程

糖异生(Gluconeogenesis gluco-指糖, neogenesis是希腊语νεογ?ννηση, neojénnissi - 重新生成):又称为葡糖异生。由简单的非糖前体(乳酸、甘油、生糖氨基酸等)转变为糖(葡萄糖或糖原)的过程。糖异生不是糖酵解的简单逆转。虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。糖异生保证了机体的血糖水平处于正常水平。糖异生的主要器官是肝。肾在正常情况下糖异生能力只有肝的十分之一,但长期饥饿时肾糖异生能力可大为增强。非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。糖异生作用的生理意义

1. 糖异生作用的主要生理意义是保证在饥饿情况下,血糖浓度的相对恒定。

血糖的正常浓度为3.89-11mmol/L,即使禁食数周,血糖浓度仍可保持在3.40mmol/L 左右,这对保证某些主要依赖葡萄糖供能的组织的功能具有重要意义,停食一夜(8-10小时)处于安静状态的正常人每日体内葡萄糖利用,脑约125g,肌肉(休息状态)约50g,血细胞等约50g,仅这几种组织消耗糖量达225g,体内贮存可供利用的糖约150g,贮糖量最多的肌糖原仅供本身氧化供能,若只用肝糖原的贮存量来维持血糖浓度最多不超过12小时,由此可见糖异生的重要性

2. 糖异生作用与乳酸的作用密切关系

在激烈运动时,肌肉糖酵解生成大量乳酸,后者经血液运到肝脏可再合成肝糖原和葡萄糖,因而使不能直接产生葡萄糖的肌糖原间接变成血糖,并且有利于回收乳酸分子中的能量,更新肌糖原,防止乳酸酸中毒的发生。

3. 协助氨基酸代谢

实验证实进食蛋白质后,肝中糖原含量增加;禁食晚期、糖尿病或皮质醇过多时,由于组织蛋白质分解,血浆氨基酸增多,糖的异生作用增强,因而氨基酸成糖可能是氨基酸代谢的主要途径。?

4. 促进肾小管泌氨的作用

长期禁食后肾脏的糖异生可以明显增加,发生这一变化的原因可能是饥饿造成的代谢性酸中毒,体液pH降低可以促进肾小管中磷酸烯醇式丙酮酸羧激酶的合成,使成糖作用增加,当肾脏中α?酮戊二酸经草酰乙酸而加速成糖后,可因α-酮戊二酸的减少而促进谷氨酰胺脱氨成谷氨酸以及谷氨酸的脱氨,肾小管细胞将NH3分泌入管腔中,与原尿中H+结合,降低原尿H+的浓度,有利于排氢保纳作用的进行,对于防止酸中毒有重要作用。

一、生物氧化的概念、特点和部位

1.概念:有机物质在生物体细胞内氧化分解产生二氧化碳、水,并释放出大量能量的过程称为生物氧化(biological oxidation)。又称细胞呼吸或组织呼吸。

2.特点:生物氧化和有机物质体外燃烧在化学本质上是相同的,遵循氧化还原反应的一般规律,所耗的氧量、最终产物和释放的能量均相同。

(1)在细胞内,温和的环境中经酶催化逐步进行。

(2)能量逐步释放。一部分以热能形式散发,以维持体温,一部分以化学能形式储存供生命活动能量之需(约40%)。

(3)生物氧化生成的H2O是代谢物脱下的氢与氧结合产生,H2O也直接参与生物氧化反应;CO2由有机酸脱羧产生。

(4)生物氧化的速度由细胞自动调控。

3.部位:在真核生物细胞内,生物氧化都是在线粒体内进行,原核生物则在细胞膜上进行。

物质体外氧化(燃烧)与生物氧化的比较

(1)物质体内、体外氧化的相同点:

物质在体内外氧化所消耗的氧量、最终产物、和释放的能量均相同。

(2)物质体内、体外氧化的区别:

体外氧化:体外氧化(燃烧)产生的二氧化碳、水由物质中的碳和氢直接与氧结合生成;

能量的释放是瞬间突然释放。

体内氧化:生物氧化是生物体内的一种高效的,有序的,缓和的氧化过程。这个过程是由生物催化剂(酶)的参与的。像细胞呼吸的过程就是一个生物氧化的过程,虽然细胞呼吸也放出热量,但是它是有序的,缓和的,不像体外氧化反应的那样剧烈。

限性遗传(sex-limited inheritance):是指常染色体上的基因只在一种性别中表达,而在另一种性别完全不表达。

限性遗传 sex-limited inheritance 起初用来指体性遗传,现则仅指在雌雄某一方表现型上显示出来的遗传(T.H.Morgan,1914)例如位于Y染色体上的基因所支配的父系性状只能出现在雄性后代等。 Lebistes reticulatus背鳍上决定大块黑斑的基因M系位于Y染色体上,X染色体上没有这一基因,因此杂交后总是只有雄体表现黑斑(O.Winge,1931)。

从性遗传:从性遗传又称性控遗传。从性遗传是指由常染色体上基因控制的性状,在表现型上受个体性别影响的现象。如绵羊的有角和无角受常染色体上一对等位基因控制,有角基因H为显性,无角基因h为隐性,在杂合体(Hh)中,公羊表现为有角,母羊则无角,这说明在杂合体中,有角基因H的表现是受性别影响的。原发性血色病是一种常染色体显性遗传病,本病是由于铁质在各器官广泛沉积造成器官损害所致。但患者大多数为男性,究其原因主要是由于女性月经、流产、妊娠等经常失血以致铁质丢失较多,减轻了铁质的沉积,故不易表现症状。又如遗传性斑秃是一种以头顶为中心向周围扩展的进行性、弥漫性、对称性脱发,一般从35岁左右开始。男性显著多于女性,女性病例仅表现为头发稀疏、极少全秃。男性杂合子(Bb)会出现早秃;而女性杂合子(Bb)不出现早秃,只有纯合子(BB)才出现早秃。从大量系谱分析表明,本病为常染色体显性遗传病(连续数代表现,男女均可患病,并且可以男传男)。这种性别差异可能是由于性激素等的影响,使得女性杂合子不易表现,而女性纯合子才得以表现,即女性外显率低于男性,故男女性比率表现为男多于女。属于这类疾病的还有:遗传性草酸尿石症、先天性幽门狭窄、痛风等。也有些从性遗传病表现为女多于男,如甲状腺功能亢进症、遗传性肾炎、色素失调症等。

数量性状(quantitative characters)是指在一个群体内的各个体间表现为连续变异的性状,如动植物的高度或长度等。数量性状较易受环境的影响,在一个群体内各个个体的差异一般呈连续的正态分布,难以在个体间明确地分组。

概述

生物界的另一类性状如红与白、有与无等称质量性状。质量性状比较稳定,不易受环境条件的影响,它们在群体内的分布是不连续的,杂交后代的个体可以明确地分组,因而可以计算杂交子代各组个体数目的比率,分析基因分离、基因重组以及基因连锁等遗传行为。

数量性状在生物全部性状中占有很大的比重,一些极为重要的经济性状(如作物产量、生育期、籽粒重、乳牛泌乳量、羊毛长度等)都是数量性状。研究数量性状遗传规律的学科称为数量遗传学。

特征

①个体间的差异是连续的,例如用穗长有差别的两个玉米品种进行杂交,则子一代(F1)

植株的穗长介于两亲本之间,子二代(F2)植株的变异幅度扩大,子代各个植株的穗长

呈连续的变异,因而无法求出穗长的分离比率而只能用一定尺度测量性状的表型值,再

用统计学方法加以分析(见图);

②容易受环境的影响,甚至纯合的亲本或基因型一致的子一代的表型也呈现连续变异。所以

子二代的变异一方面来自基因重组,另一方面则来自环境的影响。

细菌的繁殖方式

细菌一般进行无性繁殖。它是通过二分裂方式增加细胞的数目。在一般条件下,由二分裂形成的子细胞大小相等。

据研究,细菌分裂可分4步:第一步是核复制,细胞延长;第二步是形成横隔膜;第

三步是形成明显的细胞壁;第四步是细胞分裂,子细胞分离。

球菌可沿一个平面或几个平面分裂,所以可以出现多种排列形态;杆菌一般沿横轴进行分裂。除无性繁殖外,已证明细菌存在着有性繁殖,不过频率很低。

病毒的定义:

病毒是一类比较原始的、有生命特征的、能够自我复制和严格细胞内寄生的非细胞生物。

病毒的特点:

1)形体微小,具有比较原始的生命形态和生命特征,缺乏细胞结构;

2)只含一种核酸,DNA或RNA;

3)依靠自身的核酸进行复制,DNA或RNA含有复制、装配子代病毒所必须的遗传信息;

4)缺乏完整的酶和能量系统医`学教育网搜集整理;

5)严格的细胞内寄生,任何病毒都不能离开寄主细胞独立复制和增殖。

非特异性免疫与特异性免疫

特异性免疫又称获得免疫,是获得免疫经后天感染(病愈或无症状的感染)或人工预防接种(菌苗、疫苗、类毒素、免疫球蛋白等)而使机体获得抵抗感染能力。一般是在微生物等抗原物质刺激后才形成的(免疫球蛋白、免疫淋巴细胞),并能与该抗原起特异性反应。特异性免疫具有特异性,能抵抗同一种微生物的重复感染,不能遗传。

特点

1、具有特异性(或称专一性):机体的二次应答是针对再次进入机体

的抗原,而不是针对其他初次进入机体的抗原;

2、有免疫记忆:免疫系统对初次抗原刺激的信息可留下记忆。在再次与进入机体的相同抗原相遇时,会产生与其相应的抗体,避免第二次得相同的病。

3、有正反应和负反应:在一般情况下,产生特异性抗体或(和)致敏淋巴细胞以发挥免疫功能的称为正反应。在某些情况下,免疫系统对再次抗原刺激不再产生针对该抗原的抗体或(和)致敏淋巴细胞,这是特异性的一种低反应性或无反应性,称为负反应,又称免疫耐受性;

4、有多种细胞参与:针对抗原刺激的应答主要是T细胞和B细胞,但在完成特异性免疫的过程中,还需要其他一些细胞(巨噬细胞、粒细胞等)的参与;

5、有个体的特征:特异性免疫是机体出生后,经抗原的反复刺激而在非特异性免疫的基础上建立的一种保护个体的功能,这种功能有质和量的差别,不同于非特异性免疫。

非特异性免疫又称天然免疫或固有免疫。它和特异性免疫一样都是人类在漫长进化过程中获得的一种遗传特性,但是非特异性免疫是人一生下来就具有,而特异性免疫需要经历一个过程才能获得。比如猪瘟在猪群中传播很快,但和人类无缘。这是因为人类天生就不会得这种病;还有炎症反应也是人一生下来就有的能力。固有免疫对各种入侵的病原微生物能快速反应,同时在特异性免疫的启动和效应过程也起着重要作用。

特点

①作用范围广。机体对入侵抗原物质的清除没有特异的选择性。

②反应快。抗原物质一旦接触机体,立即遭到机体的排斥和清除。

③有相对的稳定性。既不受入侵抗原物质的影响,也不因入侵抗原物质的强弱或次数而有所增减。但是,当机体受到共同抗原或佐剂的作用时,也可增强免疫的能力。

④有遗传性。生物体出生后即具有非特异性免疫能力,并能遗传给后代。因此,非特异性免疫又称先天性免疫或物种免疫。

⑤是特异性免疫发展的基础。从种系发育来看,无脊椎动物的免疫都是非特异性的,脊椎动物除非特异性免疫外,还发展了特异性免疫,两者紧密结合,不能截然分开。从个体发育来看,当抗原物质入侵机体以后,首先发挥作用的是非特异性免疫,而后产生特异性免疫。因此,非特异性免疫是一切免疫防护能力的基础。

生态系统的定义及基本含义

生态系统(ecosystem)指由生物群落与无机环境构成的统一整体。生态系统的范围可大可小,相互交错,最大的生态系统是生物圈;最为复杂的生态系统是热带雨林生态系统,人类主要生活在以城市和农田为主的人工生态系统中。生态系统是开放系统,为了维系自身的稳定,生态系统需要不断输入能量,否则就有崩溃的危险;许多基础物质在生态系统中不断循环,其中碳循环与全球温室效应密切相关,生态系统是生态学领域的一个主要结构和功能单位,属于生态学研究的最高层次。

生物部分和非生物部分,生物部分:生产者、消费者、分解者。非生物部分:空气、水、土壤等。

生态系统维持相对稳定.当生态系统中某一成分发生变化的时候,它必然会引起其它成分出现一系列相应变化最终又会影响最初发生变化的那种成分,这个过程就叫做反馈。负反馈是抑制和减弱最初发生变化的那种成分的变化。

胆固醇在体内转变为哪些活性物质

胆固醇与糖,脂肪和蛋白质不同,他在体内既不能彻底氧化成二氧化碳和水,也不能作为能源物质提供能量,他在体内能转变成某些重要的生理活性物质。胆固醇在体内除构成膜的组分外还有四条代谢去路:

1.转变为胆汁酸:为胆固醇在体内的主要代谢去路,正常人每天合成的胆固醇约有40%在肝中转变为胆汁酸。

2.转变为维生素D3:人体皮肤细胞内的胆固醇经酶促脱氢氧化生成7-脱氢胆固醇,7-脱氢胆固醇经紫外光照射后转变成胆钙化醇,也就是维生素D3。

3.转变为类固醇激素:胆固醇是肾上腺皮质,睾丸及卵巢等内分泌腺合成类固醇激素的原料。

4.胆固醇排泄:还有就是排泄出去了。

抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代谢产物,能干扰其他生活细胞发育功能的化学物质。现临床常用的抗生素有微生物培养液液中提取物以及用化学方法合成或半合成的化合物。目前已知天然抗生素不下万种。

脊椎动物亚门Vertebrata的分类和主要特征

(1)圆口纲(Cyclostomata):无颌,又称无颌类(Agnatha);无成对

附肢。脊索终生存在,并出现雏形脊椎骨。

(2)鱼纲(Pisces):又分为软骨鱼亚纲(Chondrichthyes)硬骨鱼亚纲(Osteichthyes)和辐鳍鱼亚纲 (Actinopterygii)前者出现上下颌,体被盾鳞,出现成对的鳍,鳃裂直接开口于体外;后者骨骼一般为硬骨,体被硬鳞、圆鳞或栉鳞,鳃裂不直接开口于体表。(3)两栖纲(Amphibia):由水上陆的过渡种类,幼体鱼形,以鳃呼吸,成体出现5指(趾)型四肢,皮肤裸露,以肺和皮肤呼吸。与其他更高等脊椎动物共称为四足类(Tetrapoda)。(4)爬行纲(Reptilia):完全陆生。皮肤干燥,被以角质鳞、角质骨片或骨板。肺呼吸。胚胎发育中出现羊膜,与鸟类、哺乳类共称为羊膜类(Amniotes)。其他各纲脊椎动物称为无羊膜动物(Anomniotes)。

(5)鸟纲(Aves):全身被羽,前肢变为翼,适应空中飞翔生活。血液循环为完全双循环,恒温,卵生。与哺乳类共称为恒温动物(Endotherm)。其他脊椎动物均为变温动物(Ectotherm)。

(6)哺乳纲(Mammalia):体外被毛,恒温,胎生(单孔类除外),哺乳(具乳腺)。

生物分类学是研究生物分类的方法和原理的生物学分支。分类就是遵循分类学原理和方法,对生物的各种类群进行命名和等级划分.瑞典生物学家林奈将生物命名后,而后的生物学家才用域、界( Kingdom)、门( Phylum)、纲 (Class)、目 (Order)、科( Family)、属( Genus)、种 (Species)加以分类。最上层的界,由怀塔克所提出的五界,比较多人接受;分别为原核生物界、原生生物

界、菌物界、植物界以及动物界。从最上层的“界”开始到“种”,愈往下层则被归属的生物之间特征愈相近。

小肠在吸收中的作用

一、小肠是吸收的主要部位

食物经过在小肠内的消化作用,已被分解成可被吸收的小分子物质。食物在小肠内停留的时间较长,一般是3~8小时,这提供了充分吸收时间。小肠是消化管中最长的部份,小肠是主要的吸收器官,小肠绒毛是吸收营养物质的主要部位。小肠全长5~7米,小肠粘膜形成许多环形皱褶和大量绒毛突入肠腔,每条绒毛的表面是一层柱状上皮细胞,柱状上皮细胞顶端的细胞膜又形成许多细小的突起,称微绒毛。小肠黏膜上的环状皱襞、小肠绒毛和每个小肠绒毛细胞游离面上的1000~3000根微绒毛,使小肠粘膜的表面积增加600倍,达到200平方米左右。小肠的巨大吸收面积有利于提高吸收效率。

绒毛内部有毛细血管网、毛细淋巴管、平滑肌纤维和神经网等组织(图8-8)。平滑肌纤维的舒张和收缩可使绒毛作伸缩运动和摆动,绒毛的运动可加速血液和淋巴的流动,有助于吸收。

二、小肠对三种营养物质和水份的吸收

小肠内的营养物质和水通过肠粘膜上皮细胞,最后进入血液和淋巴的过程中,必须通过肠上皮细胞的腔面膜和底膜(或侧膜)。物质通过这些膜的机制,即吸收机制,包括简单扩散、易化扩散、主动转运、入胞和出胞转运等。

小肠内大部分的甘油、脂肪酸被小肠绒毛内的毛细淋巴管吸收,经淋巴循环送入血液。

其余的各种营养成分都被小肠绒毛内的毛细血管吸收,直接进入血液。

动脉血压的形成原理及其影响因素

1)动脉血压的形成。

动脉血压的形成有赖于心射血和外周阻力两种因素的相互作用。心舒缩是按一定时间顺序进行的,所以在心动周期的不同时刻,动脉血压的成因不尽相同,数值也不同。

心每收缩一次,即有一定量的血液由心室射入大动脉,同时也有一定量的血液由大动脉流至外周。但是,由于存在外周阻力,在心缩期内,只有大约1/3的血液流至外周,其余2/3被贮存在大动脉内,结果大动脉内的血液对血管壁的侧压力加大,从而形成较高的动脉血压。由于大动脉管壁具有弹性,所以当大动脉内血量增加时,迫使大动脉被动扩张,这样,心室收缩作功所提供的能量,除推动血液流动和升高血压外,还有一部分转化为弹性势能贮存在大动脉管壁之中。

心室舒张时,射血停止,动脉血压下降,被扩张的大动脉管壁发生弹性回缩,将在心缩期内贮存的弹性势能释放出来,转换为动能,推动血液继续流向外周,并使动脉血压在心舒期内仍能维持一定高度。由此可见,大动脉管壁的弹性在动脉血压形成中起缓冲作用。

(2)影响动脉血压的因素

①每搏输出量:当每搏输出量增加时,收缩压必然升高,舒张压力亦将升高,但是舒张压增加的幅度不如收缩压大。这是因为收缩压增高使动脉中血液迅速向外周流动,到舒张期末动脉中存留的血液量虽然比每搏输出量增加以前有所提高,但不如收缩压提高的明显。这样由于收缩压提高明显而舒张压增加的幅度不如收缩压大,因而脉压增大。如每搏输出量减少,则主要使收缩压降低,脉压减小。因此,收缩压主要反映心室射血能力。

②心率:若其他因素不变,心跳加快时,舒张期缩短,在短时间内通过小动脉流出的血液也减少,因而心舒期末在主动脉内存留下的血液量就较多,以致舒张压也较高,脉压减小。反之,心率减慢时,舒张压较低,脉压增大。因此,心率改变对舒张压影响较大。

③外周阻力:如果其它因素不变,外周阻力加大,动脉血压升高,但主要使舒张压升高明显。因为血液在心舒期流向外周的速度主要取决于外周阻力,因外周阻力加大,血液流向外周的速度减慢,致使心舒期末存留在大动脉内的血流量增多,舒张压升高,脉压减小。反之,外周阻力减小时,主要使舒张压降低。脉压增大。因此,舒张压主要反映外周阻力的大小。外周阻力过高是高血压的主要原因。

④循环血量与血管容量:正常机体循环血量与血管容积的适应,使血管内血液保持一定程度的充盈,以显示一定的压力。如在大失血时,循环血量迅速减小,而血管容量未能相应减少,可导致动脉血压急剧下降,危及生命。故对大失血患者,急救措施主要是应给予输血以补充血量。若血管容量增大而血量不变时,如药物过敏或细菌毒素的作用,使全身小血管扩张,血管内血液充盈度降低,血压急剧下降,对这种患者的急救措施是应用血管收缩药物使小血管收缩,减少血管容量,才能使血压回升。

⑤大动脉管壁的弹性:大动脉管壁的弹性具有缓冲动脉血压变化的作用,即有减小脉压的作用。大动脉的弹性在短时间内不可能有明显变化。在老年人血管硬化时,大动脉弹性减退,因而使收缩压升高,舒张压降低,脉压增大。但由于老年人小动脉常同时硬化,以致外周阻力增大,使舒张压也常常升高。

细胞革兰氏染色的机制是什么

革兰氏染色法是细菌学中广泛使用的一种鉴别染色法,1884年由丹麦医师Gram创立。

细菌先经碱性染料结晶染色,而经碘液媒染后,用酒精脱色,在一定条件下有的细菌此色不被脱去,有的可被脱去,因此可把细菌分为两大类,前者叫做革兰氏阳性菌(G+),后者为革兰氏阴性菌(G—)。为观察方便,脱色后再用一种红色染料如碱性蕃红等进行复染。阳性菌仍带紫色,阴性菌则被染上红色。有芽胞的杆菌和绝大多数和球菌,以及所有的放线菌和真菌都呈革兰氏正反应;弧菌,螺旋体和大多数致病性的无芽胞杆菌都呈现负反应。

革兰氏阳性菌和革兰氏阴性菌在化学组成和生理性质上有很多差别,染色反应不一样。现在一般认为革兰氏阳性菌体内含有特殊的核蛋白质镁盐与多糖的复合物,它与碘和结晶紫的复合物结合很牢,不易脱色,阴性菌复合物结合程度底,吸附染料差,易脱色,这是染色反应的主要依据。另外,阳性菌菌体等电点较阴性菌为低,在相同PH条件下进行染色,阳性菌吸附碱性染料很多,因此不易脱去,阴性菌则相反。所以染色时的条件要严格控制。例如,在强碱的条件下进行染色,两类菌吸附碱性染料都多,都可呈正反应;PH很低时,则可都呈负反应。此外,两类菌的细胞壁等对结晶紫—碘复合物的通透性也不一致,阳性菌透性小,故不易被脱色,阴性菌透性大,易脱色。所以脱色时间,脱色方法也应严格控制。

革兰氏染色原理:

G+菌:细胞壁厚,肽聚糖网状分子形成一种透性障,当乙醇脱色时,肽聚糖脱水而孔障缩小,故保留结晶紫-碘复合物在细胞膜上。呈紫色。

Gˉ菌:肽聚糖层薄,交联松散,乙醇脱色不能使其结构收缩,其脂含量高,乙醇将脂溶解,缝隙加大,结晶紫-碘复合物溶出细胞壁,沙黄复染后呈红色。

革兰氏染色法一般包括初染、媒染、脱色、复染等四个步骤,具体操作方法是:

1)涂片固定。

2)草酸铵结晶紫染1分钟。

3)自来水冲洗。

4)加碘液覆盖涂面染1分钟。

5)水洗,用吸水纸吸去水分。

6)加95%酒精数滴,并轻轻摇动进行脱色,30秒后水洗,吸去水分。

7)蕃红染色液(稀)(或沙黄)染10秒钟后,自来水冲洗。干燥,镜检。

染色的结果,革兰氏正反应菌体都呈紫色,负反应菌体都呈红色。

详述人类染色体畸变发生的机理及常见的类型

人类染色体畸变的主要类型:(1) 结构畸变:断裂(b),缺失(del),重复(dup),倒位(inv),等臂(i),易位(t),双微体(DM),环形染色体(r),无着丝点片段(ace)等。(2) 数目异常:染色体多(+)或少(-),或嵌合体(/)、亚二倍体、超二倍体、多倍体、非整倍体、假二倍体(psu)。(一)结构畸变

①缺失染色体臂发生断裂并丢失一部分遗传物质的结果。一个染色体臂发生了断裂,而这种断裂端未能与别的断裂端重接,那么就形成一个带有着丝粒的片段和一个没有着丝粒的片段。

②重复一个染色体上某一部分出现两份或两份以上的现象。首尾相接的重复称为衔接重复或串接重复;首尾反方向连接的重复称为颠倒衔接重复或倒重复。

③倒位一个染色体上同时出现两处断裂,中间的片断扭转180°,再重新连接起来

④易位一个染色体臂的一段移接到另一非同源染色体的臂上的结构畸变。两个非同源染色体间相互交换染色体片段称为相互易位。

整臂易位是整个臂(或几乎是整个臂)之间的易位,这种易位的结果可以产生结构不同的两个新的染色体。

(二)数目异常

①单体性二倍体细胞的某同源染色体只有一个而不是两个的现象,即2n-1

②缺体性二倍体生物的体细胞缺失了某一对同源染色体的现象,即2n-2。

③三体性二倍体细胞的某同源染色体为三个的现象,即2n+1

④多体性二倍体细胞的某同源染色体的数目在三个以上的现象。例如人类染色体病中见到的48,XXXX四体或49,XXXXX五体等都是。

超二倍性和亚二倍性是指二倍体生物的体细胞多了若干个或少了若干个染色体的现象,也属于非整倍性畸变

原核微生物和真核微生物基因重组的途径分别有哪些?

原核微生物中,自然发生的基因重组方式主要有结合、转导、转化和原生质融合等方式。

真核微生物中,有有性杂交、准性杂交、酵母菌 2 m m 质粒转移等等。还有人为的基因重组方式,主要是基因工程

相同点:生物细胞或作为基因供体向其他微生物细胞提供基因,或作为基因受体接受其他微生物细胞提供的基因进而整合到受体细胞的染色体或质粒上并表达,使受体细胞具有新的性状。

不同点:结合是通过供体菌和受体菌完整细胞间性菌毛的直捷接触而传递大段 DNA 的。

转导是通过缺陷型噬菌体的媒介,把供体细胞的 DNA 片断携带到受体细胞中,从而使后者获得前者部分遗传性状。

转化是受体菌接受供体菌的 DNA 片断,经过交换将它组合到自己的基因组中,从而获得了供体菌部分遗传性状的现象。

有性杂交,一般指性细胞间的接合和随之发生的染色体重组,并产生新遗传型后代的一种育种技术。凡能发生有性孢子的酵母菌或霉菌,原则上都可应用与高等动、植物杂交育种相似的有性杂交方法进行育种。

准性生殖是一种类似于有性生殖,但比有性生殖更为原始的一种生殖方式,它可使同种生物两个不同菌株的体细胞发生融合,且不经过减数分裂的方式而导致低频率基因重组并产生重组子。准性生殖常见于某些丝状真菌,尤其是半知菌中。

1mol软脂酸(16:0)彻底氧化成二氧化碳和水时,净生成ATP的mol数量?

1分子软脂酸含16个碳原子,靠7次β氧化生成7分子NADH+H+,7分子FADH2,8分子乙酰CoA,而所有脂肪酸活化均需耗去2分子ATP。

故1分子软脂酸彻底氧化共生成:7×2+7×3+8×12-2=129分子ATP

比较软体动物三个类群的形态特点对不同生活方式的适应

1瓣鳃纲适应于底埋、2腹足纲适应于爬行、3头足纲适应于快速游泳

头足纲(Cephalopoda) 软体动物门的一纲。因足环列于头部而得名。现生种类有43科146属约600种,全部海生。头足纲体左右对称,头部、足部和胴部分明。足特化,主要环列于头前和口周,形成数十只、10只或8只腕;也有一部分位于头部和胴部之间的腹面,成为主要的行动器官——漏斗。多数种类为内壳;许多种类已具有软骨组织,包围脑、颈、眼、腕等;脑反应灵敏。眼的结构分化复杂。雌雄异体,直接发生。

瓣鳃纲贝壳一对,一般左右对称,也有不对称的(不等蛤Anomia 及牡蛎Ostrea等)。壳的形态为分类的重要依据、贝壳中央特别突出的一部分,略向前方倾斜,称为壳顶(umbo),这是壳中最老的部分。壳顶所在处,为壳的前方。相反的一端为后方。以壳顶为中心,有同心环状排列的生长线,有的种类有自壳顶向腹缘有放射的肋或沟。壳顶前方常有一小凹陷称小月面,壳顶后的为盾而、壳的背缘较厚,于此处常有齿和齿槽,左右壳的齿及齿槽相互吻合,构成绞合部(hinge)。

绞合齿的数目和排列不一,为鉴定双壳类种类的主要特征。绞合齿中正对壳顶的为主齿,其前的齿称前侧齿,其后为后侧齿。在绞合部连结两壳的背缘有一角质的、具弹性的韧带(ligament),其作用可使二壳张开。壳自背至腹为其高度,自前至后为其长度,两壳左右最宽处为其宽度。

一些种类(贻贝、蚶、扇贝等)在足的腹中线稍后处有一孔,称为足丝孔,通人足丝囊内,其上皮细胞的分泌物遇水即变硬成贝壳素的丝状物,集合成足丝(byssus),用以固着外物。

口为上下二唇间的横缝,唇多为三角形,具纤毛,可摄食。胃肠间有晶杆(crystalline style),细长棒状。胃中有胃盾(gastric shield),有保护胃的作用。

鳃在原始种类(湾锦蛤Nucula)为盾状;有的为丝状或瓣状;有的鳃瓣互相愈合,且退化,形成一有孔的隔膜,为隔鳃(孔螂类Poromyacea),已无呼吸作用。

心脏为一心室二心目构成,开管式循环;排泄器官为一对肾;神经节有脑、足、脏3对(湾锦蛤类尚有侧神经节),感官不发达、多数雌雄异体,少数雌雄同体(牡蛎),个体发生中有担轮幼虫及面盘幼虫、淡水蚌有特有的钩介幼虫。

腹足纲腹足类多营活动性生活,头部发达,具眼、触角。足发达,叶状,位腹侧,故称腹足类。足具足腺,为单细胞粘液腺。

体外多被一个螺旋形贝壳,故又称单壳类(Univalvia)或螺类,有些种类为内完或无壳。腹足类的贝壳形态为分类的重要依据。壳呈螺旋形,多数种类为右旋(dextral)少数左旋(senistral)。壳可分为两部分,含卷曲内脏器官的螺旋部(Spire)和完的最后一层,容纳头和足的体螺层(body whorl)。螺旋部一般由许多螺层(spiral whorl)构成,有的种类退化(鲍、宝贝等)。壳顶端称壳顶(apexex),为最早形成的一层,各螺层间的界限为缝合线(suture),深浅不一。体螺层的开口称壳口(aperture),壳口内侧为内唇,外侧为外唇。壳口常有一盖,称厣(Oper culum),角质或石灰质,为足的后端分泌形成,可封闭壳口。有些种类无厣(肺螺类)。螺轴为整个贝壳旋转的中轴,位贝壳内部中央,轴的基部遗留的小窝为脐(umbilicus),深浅不一。有的种类由于内唇外转而形成假脐(如红螺Rapana)。

口腔内常具齿舌和颚片;消化腺有唾液腺,是一种粘液腺,无消化作用;肝脏发达,为重要消化腺,可分泌酸酶及蛋白酶。有的种类肝脏尚有排泄功能(肺螺类)。

鳃一般呈栉状,一个,但原始种类为盾鳃〔如鲍);有些本鳃消失。生有次生鳃;陆生种类无鳃以肺呼吸。

心脏具一心室,一或二心耳;肾一个,原始类型为一对。

雌雄异体或雌雄同体。完全均等卵裂,属螺旋型,经有腔囊胚,以外包或内陷法形成原肠胚,有担轮幼虫和面盘幼虫。

神经系统由脑、足、侧、脏4对神经节组成,感觉器官有触角、眼、嗅检器(osphradium)、味蕾、平衡囊等,寄生种类无明显神经系统,感官极度退化或消失。

为什么说三羧酸循环是糖,脂和蛋白质的共同通路?

三羧酸循环的底物是乙酰辅酶A,而糖和脂类在进行分解时的最终底物正是这个乙酰辅酶A。

同时,三羧酸循环中间还有10步反应,每一步都可以接受外来的正确分子进入循环,这就为脱去氨基的氨基酸(即蛋白质分解后的产物)的进一步氧化提供了途径。

需要进一步理解的是,这三类物质的代谢终产物都是二氧化碳和水(蛋白质要加上尿素),而这正是三羧酸循环的作用:将含碳骨架氧化成二氧化碳和水。使用共同的途径,就可以减少参加不同反应所需要的酶,不仅可以减少细胞内蛋白质成分的混乱程度(实际上已经非常混乱了),还可以减少表达这些蛋白质的压力(即需要的原料和酶),更可以减小基因组的大小。

所以,可以说,三羧酸循环是糖、脂、蛋白质的代谢共同通路。

多细胞生物的起源

多细胞动物的起源 姓名:王园 学号:20117319 专业:生物科学 学院:农生院 时间:2012.3.3

随着科学的进步和人类的进一步探索,越来越多的例子和研究证明多细胞动物起源于单细胞动物。在未来的日子里,揭开多细胞的起源将不会成为难题。如:“多细胞生物起源或可追溯至寒武纪前”的发表证明人类的研究已经取得一定的成就,谜底解开之日将不会远。 一、多细胞动物起源于单细胞动物 动物由单细胞演变为多细胞是动物发展史的一个重要阶段。一切高等生物,包括动物、植物,都是多细胞的。但多细胞动物的进化发展远较植物的快。这是因为多细胞动物在进化过程中发展了两侧对称的体型,进而身体各部分明显分工,出现了头部,使得神经、感官等大大发展,而这些发展都是由于多细胞动物长期适应于活跃的、主动的生活方式而形成的。 原生动物——单细胞动物虽然也能完成起生命的各种活动,并有些单细胞动物结构上有一定程度的复杂化,但由各种细胞器来完成的各种不同的功能,这仅仅是一个细胞内的分化。原生动物也有一些多细胞群体,它们只是以群体的方式存在,一般仍是以一个个细胞为独立的生活单位的,彼此之间并不发生密切联系。 多细胞动物我们称之为Metozoa,即后生动物,这是相对于原生动物(prot-ozoa)而言的。后生动物包括除原生动物以外的绝大多数的多细胞动物。 也有学者认为在原生动物和后生动物之间存在着一个小类群-- 中生动物Mesozoa,这类动物寄生在海洋无脊椎动物的体内,个体细胞数目20-30个。

二、由单细胞动物发展到多细胞动物的证据 现在公认多细胞动物起源与单细胞动物,证据主要如下三个方面: 1、古生物学方面 从不同地层中的化石种类来判断。化石---古代动、植物的遗体或遗迹。化石研究发现,越是古老的地层,化石种类越简单。在太古代(地质史最古老的年代),距今32亿到距今18亿年的中生代的地层中有大量有孔虫的化石。而晚近地层中的化石种类则较复杂,并且动物杂交的程度是一个渐进的变化过程。说明动物是有简单到复杂逐渐进化的,也就是有单细胞到多细胞逐渐发展的。 2、形态方面 从现存的动物种类来看,有最原始的单细胞动物——原生动物,还有处于不同发展水平的多细胞动物,形成了一个由简单到复杂、由低等到高等的序列。特别是在原生动物中出现了群体鞭毛虫,比如团藻、盘藻等界于单细胞和多细胞之间的类群。有人认为这些群体鞭毛虫就是由单细胞--多细胞的过度类型。有由此推断单细胞动物通过这一过渡类群变为多细胞动物。 3、胚胎方面 胚胎的发育是由受精卵经过卵裂、囊胚、原肠胚、中胚层及体腔形成以及胚层分化等一系列过程发育为一个个体的,无论是哪一种多细胞动物,它的早期胚胎发育是极为相似的。 三、单细胞到多细胞的学说得到了许多学者

第3章 多细胞动物的起源

第三章多细胞动物的起源 1.一般了解中生动物的简要特征以及对其分类地位的不同看法。 答:有些学者基于中生动物全部为寄生,且生活史较复杂,结构简单是适应寄生生活的退化现象,因此认为它是退化的扁形动物。还有一些学者基于其身体结构有体细胞和生殖细胞的分化,体表具纤毛,且其寄生历史较长,因此认为中生动物是原始的种类,是由最原始的多细胞动物进化而来的,或认为是早期后生动物的一个分支。近年来经生化分析表明,中生动物细胞核中鸟嘌呤和胞嘧啶的含量(23%)与原生动物纤毛虫类的含量相近,而低于其它多细胞动物者,包括扁形动物者(35%~50%)。因此认为中生动物和原生动物的纤毛虫类的亲缘关系较近,更可能是真正原始的多细胞动物。至于中生动物和后生动物是否各自独立地来于原生动物的祖先,或中生动物确是原始的或退化的扁虫?还很不清楚。因此,其分类地位尚难确定。 2.根据什么说多细胞动物起源于单细胞动物? 答:一般公认多细胞动物起源于单细胞动物。其证据是: (一)古生物学方面古代动、植物的遗体或遗迹,经过干百万年地壳的变迁 或造山运动等,被埋在地层中形成了化石。已经发现在最古老的地层中,化石种类也是最简单的。在太古代的地层中有大量有孔虫壳化石,而在晚近的地层中动物的化石种类也较复杂,并且能看出生物由低等向高等发展的顺序。说明最初出现单细胞动物,后来才发展出多细胞动物。从辩证唯物主义的观点来看,事物的发展是由简单到复杂、由低等到高等,生物的发展也不例外。(二)形态学方面从现有动物来看,有单细胞动物、多细胞动物,并形成了由简单到复杂、由低等到高等的序列。在原生动物鞭毛纲中有些群体鞭毛虫,如团藻,其形态与多细胞动物很相似,可推测这类动物是从单细胞动物过渡到多细胞动物的中间类型,即由单细胞动物发展成群体以后,又进一步发展成多细胞动物。 (三)胚胎学方面在胚胎发育中,多细胞动物是由受精卵开始,经过卵裂、 囊胚、原肠胚等一系列过程,逐渐发育成成体。多细胞动物的早期胚胎发育基本上是相似的。根据生物发生律,个体发育简短地重演了系统发展的过程,可以说明多细胞动物起源于单细胞动物,并且说明多细胞动物发展的早期所经历的过程是相似的。恩格斯说:“有机体的胚胎向成熟的有机体的逐步发育同植物和动物在地球历史上相继出现的次序之间有特殊的吻合。正是这种吻合为进化论提供了最可靠的根据。” 3.初步掌握多细胞动物胚胎发育的共同特征(从受精卵、卵裂、囊胚、原肠胚、 中胚层与体腔形成、胚层分化等方面)。 答:多细胞动物的胚胎发育比较复杂。不同类的动物,胚胎发育的情况不同,但是早期胚胎发育的几个主要阶段是相同的。 (一)受精与受精卵由雌、雄个体产生雌雄生殖细胞,雌性生殖细胞称为卵。 卵细胞较大,里面一般含有大量卵黄。根据卵黄多少可将卵分为少黄卵、中黄卵和多黄卵。卵黄相对多的一端称为植物极,另一端称为动物极。雄性生殖细胞称为精子,精子个体小,能活动。精子与卵结合为一个细胞称为受精卵,这个过程就是受精。受精卵是新个体发育的起点,由受精卵发育成新个体。(二)卵裂受精卵进行卵裂,它与一般细胞分裂的不同点在于每次分裂之后,新的细胞未长大,又继续进行分裂,因此分裂成的细胞越来越小。这

多细胞动物的起源学说

多细胞动物的起源学说 (一)群体学说 大多数学者认为,多细胞动物起源于群体鞭毛虫类似的祖先。对此也有两种假说: 1、原肠虫学说 赫克尔提出和团藻相似的群体单细胞动物一端内陷,形成了有原肠和两胚层的原始多细胞动物。把此祖先称为原肠虫。 2、吞噬虫学说 梅契尼可夫提出,具有单层细胞的单细胞群体内,一部分细胞摄取食物后进入群体之内,形成了两胚层的实心的原始多细胞动物。把此祖先称为吞噬虫。 因现存的较低等的动物,多由细胞移入而形成两胚层。内陷法到后来才有。因此,吞噬虫学说可能更接近于事实。 (二)合胞体学说 认为多细胞动物起源于多核纤毛虫的原始类群,后生动物的祖先是具合胞体结构的多核细胞。 生物发生率(biogenetic law) 也叫重演律(recapitulation law),是德国人赫克尔(E.H.Haeckel)用生物进化论的观点总结了当时胚胎学方面的工作提出来的。当时在胚胎发育方面已揭示了一些规律, 如在动物胚胎发育过程中,各纲脊椎动物的胚胎都是由受精卵开始发育的,在发育初期极为相似,以后才逐渐变得越来越不相同。达尔文曾作过一些论证,认为胚胎发育的相似性,说明它们彼此有亲缘关系,起源于共同的祖先,个体发育的渐进性是系统发展中渐进性的表现。达尔文还指出了胚胎结构重演其过去祖先的结构,“它重演了它们祖先发育中的一个形象”。海克尔明确地论述了生物重演律。1866年他在《有机体普通形态学》书中说:“生物发展史可分为2个相互密切联系的部分,即个体发育和系统发育,也就是个体的发育历史和由同一起源所产生的生物群的发展历史。个体发育史是系统发展史的简单而迅速的重演。”如青蛙的个体发育,由受精卵开始,经过囊胚、原肠胚、三胚层的胚,无腿蝌蚪、有腿蝌蚪,到成体青蛙。这反映了它在系统发展过程中经历了像单细胞动物、单细胞的球状群体、腔肠动物、原始三胚层动物、鱼类动物,发展到有尾两栖到无尾两栖动物的基本过程。说明了蛙个体发育重演了其祖先的进化过程,也就是个体发展简短重演了它的系统发展,即其种族发展史。 生物重演律对了解各动物类群的亲缘关系及其发展线索极为重要。因而对许多动物的亲缘关系和分类位置不能确定时,常由胚胎发育得到解决。生物重演律是一条客观规律,它不仅适用于动物界,而且适用于整个生物界,包括人类在内。 简而言之,生物发生率揭示了个体发育是系统发育快速的重演 群落 community 亦称生物群落(biological community)。 生物群落是指具有直接或间接关系的多种生物种群的有规律的组合,具有复杂的种间关系。我们把在一定生活环境中的所有生物种群的总和叫做生物群落,简称群落。组成群落的各种生物种群不是任意地拼凑在一起的,而有规律组合在一起才能形成一个稳定的群落。如在农田生态系统中的各种生物种群是根据人们的需要组合在一起的,而不是由于他们的复杂的营养关系组合在一起,所以农田生态系统极不稳定,离开了人的因素就很容易被草原生态系统所替代。

第三章多细胞动物的起源

第3章多细胞动物的起源 第1节从单细胞到多细胞 一、知识点 I、理论:一切高等动物虽然都是多细胞的,但其发展是不平衡的 II、动物体复杂化的关键:对称体型和头部的形成 III、两侧对称的意义:有利于动物活动;促使身体分为前后、左右、背腹 IV、发展过程中3类动物:原生动物、中生动物、后生动物 V、中生动物:一类小型的内寄主动物。结构简单,分为菱形虫纲、直泳虫纲。 1、菱形虫纲:包括双胚虫、异胚虫。无性生殖或有性生殖。 2、直泳虫纲:寄生在多种海生无脊椎动物体内。成虫多雌雄异体,少数雌雄同体。没有轴细胞。 VI、原始的多细胞动物:一般认为是中生动物,因为它和原声动物的纤毛虫类的亲缘关系比较近 二、多细胞动物起源于单细胞动物的证据 I、古生物学方面:古代动植物的遗体或残骸。在最古老的地层中,化石种类是最简单的。II、形态学方面:简单——>复杂;低等——>高等 III、胚胎学方面:受精卵——>卵裂——>囊胚——>原肠胚 第2节胚胎发育的重要阶段 胚胎发育分为:受精与受精卵——卵裂——原肠胚的形成——中胚层及体腔的形成——胚层的分化 I、受精与受精卵:精子与卵子结合为一个细胞称为受精卵 II、卵裂: 1、完全卵裂:多见于少黄卵。a、等裂:海胆、文昌鱼;b、不等裂:海绵动物、蛙类。 2、不完全等裂:多见于多黄卵。受精卵只在不含卵黄的部位进行分裂。a、盘裂:乌贼、鸡卵;b、表面卵裂:昆虫卵 III、囊胚的形成:囊胚:囊胚腔、囊胚层。 IV、原肠胚的形成:内陷、内移、内转、外包、分层。最常见的是内陷和外包同时进行,分层和内移相伴而行 V、中胚层及体腔的形成:端细胞法(裂体腔法);体腔囊法:棘皮动物、毛鄂动物、半索动物、脊索动物 VI、胚层的分化:动物体的器官都是由内、中、外胚层发育而来 1、内胚层:分化为消化管的大部分上皮、肝、胰、呼吸器官、排泄和生殖器官的小部分 2、中胚层:分化为肌肉、结缔组织、生殖和排泄器官的大部分 3、外胚层:分化皮肤上皮、神经组织、感觉器官、消化管的两端 第3节生物发生律与多细胞起源学说 一、生物发生律 赫克尔在《普通形态学》中说:生物发展可分为2个密切联系的部分:个体发育和系统发展。也就是个体发育的历史和由同一起源所产生的生物群的发展历史。个体发育史是系统发展史简单而迅速的重演 二、多细胞起源学说 I、群体学说: 1、赫克尔的原肠虫学说:多细胞动物最早的祖先是由类团藻的球形群体,一面内陷形成多

相关文档
最新文档