电源适配器 充电器 开关电源的区别

电源适配器 充电器 开关电源的区别
电源适配器 充电器 开关电源的区别

充电器

电器附件

充电器,英文名称Charger,通常指的是一种将交流电转换为低压直流电的设备。充电器在各个领域用途广泛,特别是在生活领域被广泛用于手机、相机等等常见电器。

充电器是采用电力电子半导体器件,将电压和频率固定不变的交流电变换为直流电的一种静止变流装置。在以蓄电池为工作电源或备用电源的用电场合,充电器具有广泛的应用前景。

电源适配器

电源适配器是小型便携式电子设备及电子电器的供电电源变换设备,一般由外壳、电源变压器和整流电路组成,按其输出类型可分为交流输出型和直流输出型;按连接方式可分为插墙式和桌面式。广泛配套于电话子母机、游戏机、语言复读机、随身听、笔记本计算机、蜂窝电话等设备中。

多数笔记本电脑的电源适配器可以自动检测100~240V交流电(50/60Hz)。基本上所有的笔记本电脑都把电源外置,用一条线和主机连接,这样可以缩小主机的体积和重量,只有极少数的机型把电源内置在主机内。

在电源适配器上都有一个铭牌,上面标示着功率,输入输出电压和电流量等指标,特别要注意输入电压的范围,这就是所谓的“旅行电源适配器”

开关电源:

开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC(IC,即集成电路)和MOSFET(属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在类比电路与数位电路的场效晶体管(field-effect transistor)。MOSFET依照其“通道”的极性不同,可分为n-type 与p-type的MOSFET,通常又称为NMOSFET与PMOSFET)构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。

开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

开关电源中应用的电力电子器件主要为二极管、IGBT(绝缘栅双极型晶体管)和MOSFET。

SCR在开关电源输入整流电路及软启动电路中有少量应用,GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。

开关电源的三个条件

1、开关:电力电子器件工作在开关状态而不是线性状态

2、高频:电力电子器件工作在高频而不是接近工频的低频

3、直流:开关电源输出的是直流而不是交流

通过以上的定义及内容,可以看到第二个问题的答案;个人认为,标称一样的充电器一般不可以直接用于电源,就像我们的手机充电器一样,它用于给手机充电而不是接根线直接连到手机上当电池用;电源适配器一般不但可以用于电源,也可一个电器充电,就像笔记本的电源适配器一样,它可以给电脑充电,可以给电脑供电。

母线系统和接触器

维纳尔母线系统的技术精髓就是母线不打孔挂接,系统全封闭。同时,整个系统的配电等级提高,所用空间减小。解决大电流,多回路的布线连接工艺,是维纳尔产品的强项。 母线系统优点: 1、封闭的母线挂接技术 断路器、接触器通过母线转接器可挂接在母线上,熔断器开关等产品直接挂接在母线上,所以母线起到导电和固定安转的双重作用,大大节省柜内空间;同时母线系统的其他元件保证母线系统全封闭,既安全又美观; 2、不打孔连接 完美解决用户电源进线问题,柜内的电缆总进线和母线系统,或者电缆和开关、断路器等元件的连接,均不用做线鼻子,只需剥掉外皮直接压接连接。 3、大电流、多回路,配电等级高 对于配电、控制回路比较多,电流比较大,同时要求系统稳定安全运行的应用场合,维纳尔产品用母线系统技术解决的淋漓尽致。 维纳尔产品在低压领域的优势: 1、电气性能提高,安装工艺提高,防护等级提高; 2、节省空间,节省时间,节省资金; 3、布线灵活性大,增容能力强; 4、高品质,免维护。 交流和直流接触器(contactor)区别 1.交流接触器在应急时可以代用直流接触器,吸合时间不能超过2小时(因为交流线圈散热比直流差,这是由它们的结构不同决定的),真的要长时间使用最好在交流线圈中串一电阻,反过来直流却不能代用交流接触器 2.交流接触器的线圈匝数少,直流接触器的线圈匝数多,从线圈的体积可以区分了对于主电路电流过大的情况(Ie>250A)的情况下,接触器采用串联双绕组线圈 3.直流继电器的线圈的电抗大,电流小。如果说接上交流电是不会损坏的,时合时放。可是交流继电器的线圈的电抗小,电流就大了,如果说接上直流电就会损坏线圈。 4.交流接触器在铁芯上有短路环,直流接触器上从原理上应无 5、交流接触器的铁芯是由许多层硅钢片叠加而成,因为要减小涡流损耗直流的铁芯则是整块的 6、交流接触器用来控制交流负载,直流接触器用来控制直流负载,但控制线圈的可以是交流电也可以是直流电交流接触器的铁芯有硅钢片冲制成型后叠压而成的双E形磁铁,而直流接触器的铁心多是有整块软磁钢制成的,多为U形. 直流接触器的电磁机构无涡流和磁滞损耗,铁心由整块软钢组成,端面上无需装短路环。直流接触器采用磁吹式灭弧装置。交流接触器起动电流大,不适于频繁吸合和分断的场合。而直流接触器的操作频率较高。直流接触器的固有动作时间和固有释放时间要长。交流接触器的线圈圈数少,阻抗大,电流小,燥音大直流接触器线圈圈数多、内阻大,电流相对大,但燥音小 交流接触器和直流接触器的不同主要有以下几点: 1、灭弧装置交流接触器触头间产生的电弧在电流过零时能自然熄灭,而直流电弧不存在这个自然过零点,只能靠拉长电弧和冷却电弧来灭弧。因此在同样的电气参数下,熄灭直流电弧比熄灭交流电弧要困难得多,所以直流接触器的灭弧装置一般比交流接触器的灭弧装置复杂。直流接触器一般采用磁吹式灭弧装置结合其他灭弧方法灭弧。 2、触头系统

开关电源中的磁性元件

安森美半导体 Magnetics in Switched-Mode Power Supplies 开关电源中的磁性元件

Outline 纲要
Block Diagram of a Typical AC-DC Power Supply 一个典型的交流-直流电源的框图 Specification of the Power Supply 电源的技术规格 Key Magnetic Elements in a Power Supply 电源中的关键磁性元件 Review of Magnetic Concepts 磁概念的回顾 Magnetic Materials 磁性材料 Inductors and Transformers 电感和变压器 References 参考文献

Block Diagram of an AC-DC Power Supply 交流-直流电源框图
Input Filter 输入滤波器 Rectifier 整流器 PFC 功率因数
AC Input 交流 输入
Power Stage 原边电源
TransFormer 变压器
Output Circuits 输出电路
DC Outputs (to loads) 直流输出 (至负载)

Specifications (Abbreviated) 技术规格(精简版)
100-Watt Three-Output Power Supply 100瓦3输出电源
Input Voltage: 输入电压: Input Current: 输入电流: Input Harmonics: 输入谐波: Hold-up Time: 保持时间: Inrush Current: 浪涌电流: Outputs: 输出:
OUTPUT VOLTAGE (V) 输出电压(v) 5 3.3 12
90 – 264 Vac, 47-63 Hz 90-264V交流,47-63Hz 2 A maximum. 最大2A。 Meets IEC1000-3-2 A14 for all load conditions. 在所有负载条件下均符合IEC1000-3-2 A14。 20 ms minimum. 最少20ms。 40 A peak at 264 V (cold start) 在264V时40A峰值(冷启动)
OUTPUT CURRENT (A) 输出电流(v) MIN.最小值 MAX.最大值 1.5 10 0.3 5 0.3 3 TOTAL REGULATION 总调整率 2.0% 2.0% 2.0%
RIPPLE (mV pp) 纹波(mV pp) 50 50 100

交流接触器和直流接触器有什么区别修订稿

交流接触器和直流接触 器有什么区别 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

交流接触器和直流接触器有什么区别 为什么不能不能互换 区别: 1、铁心不一样:交流接触器的铁心有彼此绝缘的硅钢片叠压而成,并做成双E形;直流接触器的铁芯多由整块软铁制成,多为U形; 2、灭弧系统不一样:交流接触器采用删片灭弧,而直流接触器采用磁吹灭弧装置。 3、线圈匝数不一样:交流接触器线圈匝数少通入的是交流电,而直流接触器的线圈匝数多通入的是直流电,交流接触器分断的是交流电路,直流接触器分断的是直流电路。交流接触器操作频率最高为600次/小时,使用成本低.而直流接触器操作频率可高达2000次/小时,使用成本高. 为何不能互换: 1、交流接触器在应急时可以代用直流接触器,吸合时间不能超过2小时(因为交流线圈散热比直流差,这是由它们的结构不同决定的),真的要长时间使用最好在交流线圈中串一电阻,反过来直流却不能代用交流接触器 2、交流接触器的线圈匝数少,直流接触器的线圈匝数多,从线圈的体积可以区分了对于主电路电流过大的情况(Ie>250A)的情况下,接触器采用串联双绕组线圈

直流继电器的线圈的电抗大,电流小。如果说接上交流电是不会损坏的,时合时放。可是交流继电器的线圈的电抗小,电流就大了,如果说接上直流电就会损坏线圈。 4、交流接触器的线圈匝数少,电阻较小,当线圈通入交流电时,将产生一个较大的感抗,此感抗远远大于线圈的电阻,线圈的励磁电流主要取决于感抗的大小。如果将直流电通入,则线圈就成为纯电阻负载,此时流过线圈的电流会很大,使线圈发热,甚至烧坏。所以,不能将交流接触器作为直流接触器使用。

(完整word版)电源适配器检验标准.doc

深圳市小樱桃实业有限公公司 电源适配器检验标准 文件编号:XYT-WI-QCD-24 版本号:A0 生效日期:2014年5月 15日 编制人:编制日期: 审核人:审核日期: 批准人:批准日期:

文件号 :XYT-WI-QCD-24 深圳市小樱桃实业有限公司 工作文件 题目:电源适配器来料检验标准生效日期 : 2014 年5月15日版本 : A0 页数 :第2页(共5页) 文件修订目录表 次序原版本新版本文件修改栏修订人生效日期 1A0第一版本发放(ISO9001:2008版)郭华2014年 5月 15日 部门评审 /发放管理栏: 行政人事部业务部采购部生产部 开发部品质部工程部财务部 计划部仓库

深圳市小樱桃实业有限公司 工作文件 题目:电源适配器来料检验标准文件号 :XYT-WI-QCD-24 生效日期 : 2014 年5月15日版本 : A0 页数 :第3页(共5页) 1.目的 本文件针对来料电源适配器提供检验标准及判定依据,并为保证适配器符合本公司品质要 求和客户需求。 2.适用范围 适用于本公司生产使用的电源适配器。 3.定义 3.1 CR-致命缺陷:危及人身安全的缺陷,国家明令禁止的缺陷; 3.2 MAJ- 主要缺陷:影响到产品的性能及严重损坏外观效果的缺陷; 3.3 MIN- 次要缺陷:不影响客户使用或对外观效果伤害不大的缺陷, 4.检验方法及条件 4.1准备工作: 4.1.1. 准备样品、承认书( IQC)、工作文件、; 4.1.2. 准备好不良标识的贴纸及检验记录表; 4.1.3. 准备好检验工装。测试仪。 4.2检验环境: 灯光亮度大于 400LUX(大概 1米高度的一盏 40瓦的日光灯)。 4.3检验设备: 4.3.1耐压测试仪,用于测试耐压性能(条件不允许时由供方提供测试报告)。 4.3.2带温度测试的万用表或温湿度计 4.3.3游标卡尺 5.检验标准 序号不良现象不良描述判定 5.1 包装部分 5.1.1 规格 / 料 外箱标识与实物不相符 , 规格写错或盖错章或贴错标签等MAJ 号错 5.1.2 产品混装产品混有其他规格型号的产品MAJ 5.1.3 数量错包装数量不符(多或少)MAJ 5.2 尺寸

开关电源之软开关技术在开关电源中的应用阐述

开关电源之软开关技术在开关电源中的应用阐述 开关电源中的硬开关和软开关是针对开关晶体管而言的。硬开关是不管 开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造 成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交 越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 ?若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高, 关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 ?若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体 管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式 全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的 过热损坏。 ?另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反 向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然 频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 ?最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。 随着频率的提高和电路中的di/dt和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 ?上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的 提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢

USB接口手机充电器故障维修及改进方法12V-5V,12v-28V

USB接口手机充电器故障维修及改进方法12V-5V,12v-28V USB接口手机充电器故障维修及改进方法 USB手机充电器的原理是从电脑的USB口取得+5V的电压,再供给充电电压为+5V的手机。但它存在兼容性问题:不能对许多手机(以诺基亚系列居多,也包括其他品牌的某些型号)充电或充不满电。一。故障现象:几乎无法对所有的NOKIA手机充电插入充电器数秒(或者是充了一段时间后),手机液晶屏显示“未能充电”(图1),宣告充电失败。诺基亚手机具有统一的标准充电接口:插头规格相同、充电电压为5.2V(ACP-8C型)或5.7V(ACP-12C型)。USB充电器不能对其充电的原因在于输出电压偏低。USB接口为+5V输出(比标准充电电压略低),加之传输过程中的衰减,最终手机得到的充电电压要小于5V(实测仅为4.95V)。电压值达不到充电要求,自然诺基亚手机要对USB充电器说NO!二。解决之道:提升充电器输出电压值要实现充电的目的,必须将低于5V的输出电压提升至5V以上,就要用到DC-DC变换电路。利用易购且价格低廉(仅10元)的车载手机充电器,可以实现业余条件下提升USB电压的目的。图2就是我们将要改造的车载手机充电器(连接汽车+12V电源一端),它的另一端通过不同的转换插头可以接不同的手机。车载充电器里面有一块DC-DC转换电路板(图

3),用于将+12V电压降为+5V(实测为5.7V)。该车载充电器使用了8脚封装的DC-DC变换专用IC B34063,它由华越微电子公司生产,与最常见的MC34063封装形式、引脚定义相同并可以互换。根据外围电路的不同,34063既可以接成降压方式(如汽车充电器),也可以接成升压方式。[1][2][3]下一页笔者根据实物画出的汽车充电器DC-DC降压电路如图4(图中元件标号与电路板相同)。现在我们所需要的是升压,好在34063的外围元件不多,只需对图4略作改动,我们就可以不“降”反“升”。图5是IC厂家给出的MC34063升压电路图。对照图4、5,我们可以得出二者的主要区别(注:两图中相关元件的标注可能不同,但作用一样)在于:1)升压时,34063第7脚与8脚之间需接一只180欧的电阻,而降压电路中7、8脚直接相连,因此首先要增加一只阻值为180欧的电阻;2)储能电感(图4中的L和图5中的L1)的大小和接法不同,L接在34063第2脚和输出之间,而L1接在1脚和7脚之间,且L大于L1;在改动时只需改接图4中的L,其值维持不变(220uH取值可以获得更好的滤波效果)。3)限流电阻(图4中的R1、图5中的Rsc)取值不一样。限流值等于0.3V除以限流电阻值。图4为536MA,图5为1.36A,输入电流超过限流值,电路开始保护直至切断输出。由于USB接口能够提供的最大电流不超过500MA (0.5A),因而此处无需变动。4)定时电容(图4中的C2、

开关电源中的光耦的作用

开关电源中的光耦的作用 开关电源的光耦主要是隔离、提供反馈信号和开关作用。开关电源电路中光耦的电源是从高频变压器次级电压提供的,当输出电压低于稳压管电压是给信号光耦接通,加大占空比,使得输出电压升高;反之则关断光耦减小占空比,使得输出电压降低。旦高频变压器次级负载超载或开关电路有故障,就没有光耦电源提供,光耦就控制着开关电路不能起振,从而保护开关管不至被击穿烧毁。 通常光耦与TL431一起使用。下面是led电源驱动芯片(开关电源芯 片)TMG0321/TMG0165/TMG0265/TMG03655的部分电路。两电阻串联取样到431R端与内部比较器进行比较.然后根据比出的信号再控制431K端(阳极接光耦那一端)对地的电阻,然后达到控制光耦内部发光二极管的亮度.(光耦内部一边是一发光二极管,一边是一光敏三极管)通过发光的强度.控制另一端三极管的CE端的电阻也就是改变了led电源驱动芯片(开关电源芯 片)TMG0321/TMG0165/TMG0265/TMG0365检测脚的电流(1脚:电压反馈引脚,通过连接光耦到地来调整占控比).根据电流的大小,led电源驱动芯片(开关电源芯 片)TMG0321/TMG0165/TMG0265/TMG0365就会自动调整输出信号的占空比,达到稳压的目的 TMG0321/TMG0165/TMG0265/TMG0365芯片是一款高集成度、高性能的PWM+MOSFET 管二合一的电流型离线式开关电源控制器。适用于充电器、电源适配器、LED驱动电源等各类小功率的开关电源。采用DIP8 封装,无需加散热器可输出0~36W 的功率(加散热可以做到更大)。电路结构简单,成本低。具有完善的保护功能,包括过压、欠压、过温、过载及短路等保护。固定振荡频率及抖频功能,可以降低EMI。待机功率低,在待机时进入跳周期模式,符合“能源之星”等待机功耗标准要求。 光耦在开关电源中有两个作用。 1;隔离,把进线220V的强电和电路板电路隔离开来,也就是常说的…冷底板?。 2;同时把后面工作电路中变化的电压信号通过光耦的原端发光二极管转变成光信号照射到次端的光敏二极管从而改变光敏二极管的电阻,在通过这个电阻的变化去控制开关电源,完成了隔离和反馈控制的作用。

交直流接触器区别

交流接触器与直流接触器的异同及代换使用 摘要:接触器分交流接触器和直流接触器,分别专门用于交流电路和直流电路中,在特定的条件下,增设辅助电路后两者可代换使用。关键词:接触器;交流;直流中图分类号:TM572 文献标识码:A 接触器是电力拖动中最主要的控制元件,也是自动化控制常用的执行元件。常见的接触器分交流接触器和直流接触器两类。它们分别用于交流和直流电路中,远距离分断与接通电路。一般情况下,两类接触器不可直接代换使用。 1 交流接触器与直流接触器的异同交流接触器与直流接触器结构大体相同,都有电磁动作机构、触点系统和灭弧装置三大部分构成;其工作原理完全相同,均是通过电磁机构带动触点系统动作实施主电路通断;另外,控制方式也完全相同,都是通过线圈回路小电流控制负载回路大电流。 但从具体结构和用途讲存在如下不同: 1.1 电磁机构不同: 交流接触器电磁铁由一个分体E型铁芯和线圈构成,如图(一)。因为铁芯中通过交变磁通,铁芯中有磁滞损耗和涡流损耗,所以会产生热量。为此,一方面铁芯用硅钢片叠压而成,以减少铁芯损耗。另一方面将线圈制成短粗形状,并用骨架将线圈与铁芯隔离,以免铁芯的热量传给线圈。另外,交流接触器的动铁芯端面处装有分磁环(短路环),其作用是消除铁芯振动,降低噪声。直流接触器电磁部分如图(二)所示,它与交流接触器电磁部分有如下差别: (1)交流接触器动铁芯(衔铁)沿直线动作属直动式,而直流接触器动铁芯动作是转动式。 (2)铁芯中磁通恒定,没有磁滞损耗和涡流损耗,工作中不产生热量。为此,铁芯用软铁直接做成。 (3)线圈绕成细长形状且与铁芯接触较紧密,不用骨架,目的是将线圈的热量通过铁芯散发出去。 1.2 灭弧方式不同。交流接触器的触点系统特别是主触点均采用双断口桥式触点,这种双断口结构形式在有限空间内可增大触点间距。因此,对触点处电弧的形成和持续有一定削弱作用。容量20A以上的交流接触器都装有陶瓷灭弧罩, 200A以上的交流接触器装有栅片结构灭弧罩, 其灭弧方式采用窄缝灭弧和栅片灭弧。 1 磁吹线圈 2 绝缘套 3 铁心 4 引弧角 5 导磁夹板 6 灭弧罩 7 动触头 8 静触头对于直流接触器而言,主触点断开电路的瞬间,触点处的电弧更强烈也更稳定。如果不采取措施,仅有交流接触器的结构完全达不到灭弧的目的。为此,直流接触器中又增加了灭弧线圈,如图(三)所示。在触点电路中串入一个磁吹线圈。负载电流产生的磁场方向如图所示,当触头断开产生电弧时,在电动力作用下,电弧被拉长并吹入—7—灭弧罩6中,电弧立即冷却且被熄灭。这种灭弧方式的主要动力来源于负载电流,电流越大吹弧能力越强。 1.3 选用方法不同选用接触器一般是依据电源电压和负载电流选择。选交流接触器时在电压参数合适的前提下,接触器电流参数选择越大,电路工作越可靠,寿命越长。但选择直流接触器时,电流参数应等于或接近负载电流数值,不可降容太多。否则,触点处灭弧效果不能保证。 1.4 自身耗能的差异接触器耗能是由线圈本身阻抗决定的。对于交流接触器来讲,线圈电流为: i=u R2 KM+X2 KM式中Rkm为线圈直流电阻,Xkm= 2 πfL是线圈交流感抗,该数值受铁芯气隙影响很大,在线圈刚通电瞬间,气隙最大,其感抗值Xkm很小,电流i很大。而吸合后,感抗Xkm增大,电流减小,如图(四)曲线1所示。刚通电瞬间的电流称起动电流,吸合后的电流称维持电流。对于直流接触器,线圈通稳定直流电,因f=0,x=0线圈电流I=U/Rkm恒定不变。如图(四)中曲线 2 。该电流数值能满足起动和维持双重需要。因此,直流接触器自身耗能大于交流接触器。

太阳能手机充电器

这是自网络搜集来的一篇自己制作太阳能手机充电器的文章,大家大可发扬diy精神,自己制作太阳能手机充电器。 所需要的元器件如下: (1)MAXl677从VCD上拆得,是一种专为LED提供电源的芯片、16脚双列QSOP封装,输入电压范围0.7V~5.5V,主要输出2.5V~5.5V可调电压和—1OV直流电压,最大输出电流可达350mA,电源效率可达95%. (2)L1、L2磁芯电感,从原液晶显示模块上拆得,型号是D01608C-103表贴磁芯电感。 (3)R1、R2普通贴片电阻。R1和R2的阻值决定了主输出电压值。R3、R4:电阻、普通贴片件,R5、R6电阻:普通贴片元件。 (4)D1、D2肖特基二极管,可用其他型号。 (5)C1、C4、C6陶瓷电容,C2、C3、C5电解电容。 将各元器件按附图焊接好后,并经查准确无误后即可接上太阳能电池组,给电路提供电源。本人使用的是UTstarcom 610Q小灵通、充电器输出5.2V 320mA电流,电池容量为480mA,完全可以给手机充电。光线越好,充电效果越好!若没有太阳能电池,也可以用两节1.5V 电池给电路供电,让手机在没市电的情况照样充电。这样,在阳光下你的手机也可以充电了,有兴趣的朋友不妨试试(笔者对大容量手机尚未测试过)。 太阳能手机充电器电路图 这篇文章没有说明的是用了多大的太阳能电池板,本人根据上文计算,要达到 5.2V 320mA 电流,至少需要2W的太阳能电池板,实际上可能要更大。

本站以前曾发布过有关太阳能手机充电器的一些相关信息,想起来,那已经是两年多的事情了。自从五年前的项目因为种种原因失败以后,由于生计奔波,一直没有再拿起相关的资料,内心很不服输,一直希望东山再起,现在很多太阳能手机充电器已经比较完善了,这些我在五年前就已经想到了,也许是执行力不行,也许是时机不好,不过失败没有借口,虽然我当时只职务低微,本不需要承担太多,很多事情,也是我所不能控制的。 现在深圳有很多厂家生产着各种各样,各种档次的太阳能手机充电器,价高的批价几百块,低的几十元。有黑心商人就拿一个低档太阳能手机充电器作为赠品,然后号称“永不断电”的“光能手机”、“太阳能手机”,其实纯粹是一个噱头。更有甚者拿到电视购物那里天天吹,真的很气愤,难怪人家说电视购物和骗局差不多。 那么,到底太阳能手机充电器实用吗?有没有实用价值? 稍为提一下太阳能手机充电器原理,学过物理的人都能看懂,就是太阳能电池接收光线转换成电能,经一定的电路处理后作为手机充电电源。以前简单的所谓太阳能手机充电器直接将太阳能电池的输出端接入手机,造成的问题很多,直接烧毁手机的都有,现在一般都有处理电路,将电压限制在一定范围内。现在多采用了内置二次电池的方式,即可将太阳能电池的电能先存储在内置二次电池中,然后利用二次电池的电能再对手机充电。 这里面需要区分一下,太阳能手机充电器也有很多种,不能一概而论。有一些所谓太阳能手机充电器的功率只有不到0.4W,这种基本是没有什么使用价值的,从手机耗能角度来看,太阳能板低于1W的意义都不大。我们看到的所谓光能手机所附送的太阳能手机充电器,大都只有0.3-0.4W,好一点的0.6-0.7W,这个批发价只有几十元的东西,加到一个手机上面就成了光能手机、太阳能手机,吹嘘“有光的地方就能通话”“环保节能”,我在这里再次提醒大家不要上当。 那么你也许会问:我去购买的时候,即便在灯光下面也显示充电呀,怎么说不能用呢? 这个是典型的被忽悠的例子,作为普通人对太阳能电池的特性不了解的缘故,让这种说法有了很多模糊说法。太阳能电池的重要特性是:太阳能电池(组件)的输出功率取决于太阳辐照度、太阳光谱分布和太阳能电池(组件)的工作温度。其输出电流取决于日照强度,一般来说,只有在正午,太阳能电池板和阳光成直角时,才大概达到其标称功率输出。在普通灯光下,看上去能对手机充电,实际上是错觉,这种状况下,充电电流非常低,可不充电没有分别。当然,你把电池置于100W灯泡下10cm内的地方,那又另当别论了,但如果那样,还不如直接充电呢。 此外,现在出现的很多太阳能手机充电器,其中又内置了一个锂电池,号称一千多mAH的是锂电池的电量,一般为了迷惑大众出厂的时候已经预充电了,所以你在看人家演示的时候,是正常充电的。实际上却是该充电器内的电池对手机充电,当你想依靠太阳来给你充电,不是说完全没有可能,可是充一个小时连通话十分钟都不能保证的话,那这个充电器又有什么实用意义呢?充其量,也就只能当作移动电源使用,使用以前先把该充电器里面的电池充满电,然后应急,那还可行一点。 太阳能手机充电器真的那么不堪?其实也不是的,而是一分钱一分货,一些太阳能电池比较大的产品,还是很有实用价值的。我以前做的太阳能手机充电器,就是这样的产品,功率接近1.5W,但这样的产品相对比较贵,去深圳批发市场问过价格在两百以上,我以前做这个产品的时候,批发价也差不多。由于功率相对较大,能达到阳光下一定的充电电流。但是也不要指望这个产品能在一个小时充满电,一般在阳光明媚的日子,也需要三四个小时(根据手机电池容量和日光强度,很难一概而论)。不过,这也仅仅能作为旅游和应急品,因为很少会有人拿手机去晒这么久。除非是像这次地震灾害,通讯电力全无的情况,才能发挥一点作用。

电源适配器插头规格

电源厂家谈世界各国电源适配器插头标准 世界上常用的插头以美欧英澳四种为主,美规常用插头为两脚扁插,欧规为两脚圆插,英规为三脚扁插,通常分为三铜脚和两铜一塑。澳规为八字两脚,在电源适配器上多见有一半为绝缘型。

亚太区域 国名 (中文 / 英文) 电压频率插头型式阐明日本/ Japan 100V 50, 60 A & B 两脚扁型 / 两脚扁+圆型接地脚我国 / China 220V 50 D & J 两脚扁型 / 八字型 韩国 / Korea 220V 50, 60 E & G 双脚圆型香港 / Hong-Kong 220V 50Hz I 三脚扁型澳门 / Macau 220V 50Hz I 三脚扁型 澳大利亚 / Australia 240V 50Hz C & D 八字型 纽西兰 / New-Zealand 220V 50Hz C & D 八字型越南 / Vietnam 120/220V 50Hz A, B, E & G 双脚圆型及扁型泰国 / Thailand 220V 50Hz A & B 两脚扁型 / 两脚扁+圆型接地脚马来西亚 / Malaysia 230V 50Hz I 三脚扁型 新加坡 / Singapore 220V 50Hz I 三脚扁型 菲律宾 / Philippines 220V 50Hz A & B 两脚扁型 / 两脚扁+圆型接地脚印度尼西亚 / Indonesia 220V 50 E & G 双脚圆型印度 / India 230V 50 I & L 三脚扁型 / 三脚圆型 中东区域 国名 (中文 / 英文) 电压频率插头型式阐明 俄罗斯 / Russia 220V 50Hz E, F & G 欧洲标准双脚圆型 白俄罗斯 / Ukraine 220V 50Hz E, F & G 欧洲标准双脚圆型 沙特阿拉伯 / Saudi Arabia 127及220V 60Hz / 50Hz A, B & I 两脚扁型 / 两脚扁+接地脚 / 英规三脚扁 型 约旦 / Jordan 220V 50Hz I 英规三脚扁型 伊拉克 / Iraq 220V 50Hz E & I 欧洲标准双脚圆型 / 英规三脚扁型 叙利亚 / Syria 220V 50Hz E, F & N 欧洲标准双脚圆型 / 意大利标准三脚圆 型 黎巴嫩 / Lebanon 220V 50Hz E 欧洲标准双脚圆型 科威特 / Kuwait 220-240V 50Hz E & I 欧洲标准双脚圆型 / 英国标准三脚扁型以色列 / Israel 220-240V 50Hz E & P 欧洲标准双脚圆型 / 以色列标准巴林 / Bahrain 220V 50Hz I & K 英规三脚扁型 / 英规三脚圆型杜拜 / Dubai 220V 50Hz G 欧洲标准双脚圆型 土耳其 / Turkey 220V 50Hz E & F 欧洲标准双脚圆型 北美区域 国名 (中文 / 英文) 电压频率插头型式阐明 美国 / United States 120V 60 A & B 两脚扁型 / 两脚扁+圆型接地脚加拿大 / Canada 110V 60 A & B 两脚扁型 / 两脚扁+圆型接地脚 中南美区域 国名 (中文 / 英文) 电压频率插头型式阐明 墨西哥 / Mexico 127V 60 A & B 两脚扁型 / 两脚扁+圆型接地脚 危地马拉 / Nicaragua 110V 60 A & B 两脚扁型 / 两脚扁+圆型接地脚 萨尔瓦多 / El Salvador 110V 60 A & B 两脚扁型 / 两脚扁+圆型接地脚 宏都拉斯 / Honduras 110V 60 A & B 两脚扁型 / 两脚扁+圆型接地脚 尼加拉瓜 / Nicaragua 110V 60 A & B 两脚扁型 / 两脚扁+圆型接地脚 哥斯达黎加 / Costa Rica 110-120V 60 A & B 两脚扁型 / 两脚扁+圆型接地脚巴拿马 / Panama 120V 60 A & B 两脚扁型 / 两脚扁+圆型接地脚海地 / Haiti 110-120V 60 A & B 两脚扁型 / 两脚扁+圆型接地脚

交直流接触器的区别

交流接触器和直流接触器的不同主要有以下几点: 1、灭弧装置 交流接触器触头间产生的电弧在电流过零时能自然熄灭,而直流电弧不存在这个自然过零点,只能靠拉长电弧和冷却电弧来灭弧。因此在同样的电气参数下,熄灭直流电弧比熄灭交流电弧要困难得多,所以直流接触器的灭弧装置一般比交流接触器的灭弧装置复杂。直流接触器一般采用磁吹式灭弧装置结合其他灭弧方法灭弧。 2、触头系统 交流接触器多为双断点桥式触头,而电流较大的直流接触器多采用滚动接触的指形触头。动、静触头在闭合的过程中有一滑动过程,以延长使用寿命。3、接触器磁系统的线圈所使用的电源类型不同。 交流接触器吸引线圈电源多为交流,而直流接触器吸引线圈多使用直流线圈。但这一点并非绝对,现在也有许多交流接触器电磁线圈是直流线圈,通过整流的方式把交流电源转换成直流;而直流接触器使用交流线圈的情况虽不多见,但也有这样的产品。 知道了交流接触器和直流接触器的差别,在直流电路中就应该选用直流接触器。当然在直流负载容量较小时,也可以用交流接触器控制直流负载,但交流接触器的额定电流应适当选大一些。 直流断路器和交流断路器的主要差别在于去灭弧能力上。 因为交流每个周期都有过零点,在过零点容易熄弧,而直流开关没有过零点,熄弧能力很差,所以要添加额外的灭弧装置。总的来说就是直流难灭弧,而交流有过零,灭弧容易。可以用大的交流断路器代替小的直流断路器。 直流继电器和交流继电器为什么不能互相代换 铁芯不一样-补充 为了防止铁芯在交流磁场中产生涡流,交流继电器(也包括交流接触器)的铁芯是用矽钢片叠成,和变压器铁芯差不多。直流继电器不存在涡流问题,铁芯可以用整块的电工纯铁等软磁性材料制成。如果直流继电器铁芯会因涡流而发热,不能正常工作,并有可能烧毁线圈。 交流继电器的交流阻抗很大而直流电组很小。如果交流继电器接上直流电,交流阻抗对直流电不起作用,而很小的直流电组会引起很大的电流,烧毁线圈。 为了防止铁芯在交流磁场中产生涡流,交流继电器(也包括交流接触器)的铁芯是用矽钢片叠成,和变压器铁芯差不多。直流继电器不存在涡流问题,铁芯可以用整块的电工纯铁等软磁性材料制成。如果直流继电器接上交流电,铁芯会因涡流而发热,不能正常工作,并有可能烧毁线圈。 交流电要交变换向,直流继电器用在交流回路中即使可以吸和也会产生很大噪音,为了抑制振动和噪音在交流继电器的铁心上加有短路环,直流继电器为了保证足够的安匝数通常铁心都较交流继电器为细长,这也是两者的不同 1、直流继电器只有阻抗,故线圈直流电阻值较大; 2、交流继电器既有阻抗,还有感抗,即线圈在交流电路中所产生的阻抗,感抗占大头。 若交流继电器要用在直流回路,可在继电器吸合后串入一电阻;而同电压的直流

通用型手机旅行充电器电路图

通用型手机旅行充电器电路图 目前的手机旅行充电器,输出端口通常都是采用USB接口,输出电压为5V。输入电压为110V-240V,可以适用于不同地区和国家的电源电压。旅行充电器功能实质上就是将市电的交流电变换为5V的直流电,所以我觉得,把它称为“电源变换器”或“电源适配器”更合适。由于不同手机的旅行充电器基本上都类似,所以旅行充电器一般可以互换使用。当然为确保万无一失,互换使用前要一定要仔细确认旅行充电器的输出电压和输出电流等参数,输出电压相同,输出电流相近的旅行充电器,互换使用是完全可以的。 本人剖析过多个手机旅行充电器,其内部电路基本相似。这里,以型号为GC-002 RCC的旅行充电器为例,介绍一下电路图和电路工作原理,供大家参考。电路图系根据旅行充电器实物绘制,其输入电压为110V-240V,输出电压5V,最大输出电流700mA。 工作原理 C1,R1,D3组成的整流滤波电路,将市电输入转换成150-300V的直流电压;C2,R5,Q2及L1,L1组成开关振荡电路,将整流滤波后的直流电压变换成高频脉冲电压。R5,C2组成RC反馈回路,其值的大小决定开关振荡频率及反馈量的大小。R3为振荡电路提供启动电流;R7,C3,D5组成反向高峰电压吸收回路,避免在Q2截止时在L1上产生的反向高峰电压击穿Q2;R11,R12,D8,U1,Q1组成稳压电路,当输出电压发生变化时,通过光电耦合器U1改变Q1的基极电压,Q1的c-e间等效电阻也随之变化,因为这个等效电阻与Q2的基极并联,其阻值的变化将引起反馈电路时间常数的变化,使振荡电路的振荡脉冲宽度发生变化,脉冲宽度的变化将引起输出电压的改变,从而达到调节输出电压的目的,使输出电压趋于稳定;R6,R4,Q1组成保护电路,当负载过大或输出短路时,Q2的射极电流也将增大,此电流在R6上的压降达到约0.7V时,Q1开始导通。Q1的c-e间等效电阻会限制Q2的电流进一步增大,也就可以防止Q2因电流过大而损坏;D7,C5及L3组成输出整流滤波电路,开关振荡电路产生的高频脉冲电压,经过高频变压器T1,在L3上也将得到高频脉冲电压,当Q2处于截止状态时,L3的电压为上正下负,此时D7导通,向输出端供电。

电源适配器五个安全准则

电源适配器五个安全准则 森树强电子 1、切忌用电压电流不足的适配器 现在的笔记本电脑配置越来越高,耗电也水涨船高,尤其是高主频的P4-M机器更是 耗电惊人,一旦电源适配器的电压和电流不足,容易引起屏幕闪动,硬盘坏道,电池无法 充满和无故死机等问题。 另外,电源适配器的电流和电压不足时,反而可能导致线路负荷加重,机器发热反比 平时大,对笔记本电脑寿命不利。 2、切忌跌落、水淹 笔记本电脑的电源适配器为了便携性,内部的结构都很紧凑,虽然没有电池那样脆弱,但也应该避免撞击和跌落。 至于水淹,因为电源大多数放在地上,往往水淹之后才发觉,所以应该养成良好的使 用习惯,先接上市电端再把插头插上笔记本电脑,并且尽量不要把电源直接放在地上,而 要放在自己能看见的地方。 3、切忌散热不良 笔记本电脑自身的散热很多人都十分重视,事实上许多机器的电源适配器发热量绝不 逊于笔记本,使用中要注意不要用衣服和报纸覆盖,并且要放在通风较好的地方。 4、切忌粗暴折线

一般这种问题主要发生在电源适配器到笔记本电脑之间的接线,因为电源线比较细容 易弯折,所以很多使用者都不在意,随便以各种角度缠绕以方便携带。其实这样容易造成 内部铜线断路或者短路,尤其在天气寒冷接线表面外皮变脆弱的时候特别容易发生。缠绕 接线应该尽量绕得松一些。 5、切忌选用不合适的插头 切忌将原有的电源插头扭曲后强行插入现有插座,否则就容易因为接触不良造成跳火,导致电源插座和插头热量升高,一方面可能导致火灾,另外一方面接触不良造成电源适配 器输出不稳定,可能导致笔记本电脑的损坏。 电源适配只要合理使用,合理操作,才不会缩短使用寿命、或造成电源适配器的损坏。

开关电源中MOSFET的驱动电路设计

???⑤Ё026)(7???????????????? ??026)(7????????????????????????????⑤????????????026)(7???????-? ??026)(7???????????????????????П??????????????????????9JV WK??026)(7????????????????????/??????????????????????????&HL???????????????????????????026)(7??????&LVV?????????&HL???????????????????????????, &?GY GW? ?┉??&HL ???&LVV ?????/???026)(7???????????4J?????? 4J ?026)(7???????????????? 4J 4JV 4JG 4RG ?Ё? 4J ?????? 4JV ?? ⑤??? 4JG ?? ?????0LOOHU? ???026)(7???? ?? ? ??026)(7???????????????????026)(7??????&JV ???9JV ??Q????????&JV г??9WK ??????┨?9JV ??&HL?????┨?????????????????????????? ???????? 4J ?&HL??9JV? ,J 4J W ?? ?Ё? 4J ???????Н??? &HL ?????? 9JV ? ⑤????

,J?026)(7???????????????? ???6036???Ё??▊????????????????????????????????????????? $??????????└????????????????????? ╓????ā???ā?⑤???????????????????????6036??????????????????&026????????? 9?▊??026)(7???????????????????77/?????026)(7??????7& $??????????????9LO 9?9LK 9?????????????⑤??????? 9???????????? ???????-??????????026)(7?????????????????????????7& $?026)(7????????????? $??????????????????? ??????????L?????????????????E6036??????????????????????????????┑????????????????????????026)(7???????????????????⑤??П???????????????┑??⑤?????????026)(7???????????????L? 026)(7?????????????┑???/???????????7& $??????? S)?????????????W5??┑??W)?? Q V????????????????????-???????? ? ??????????/???????E?????????????????026)(7??????????????????7& $????????????┑????????? Q V??? ????-???????????????0L F UR&KL S ???????-???????:?????????-?????? ??▊??6036??Ё?????-????ˊ???

直流接触器,继电器简介及常用型号汇总

接触器选型方法简介 接触器用以接通和分断负载。它与热过载继电器组合,保护运行中的电气设备。它与继电控制回路组合,远控或联锁相关电气设备。 n 接触品种类 交流接触器:主回路接通和分断交流负载。控制线圈可以有交、直流。典型结构分为双断点直动式(LC1-D/F*)和单断点转动式(LC1-B*)。前者结构紧凑、体积小、重量轻;后者维护方便、易于配置成单极、二级和多极结构,但体积和安装面积大。 直流接触器:主回路接通和分断直流负载。控制线圈可以有交、直流。其动作原理与交流接触器相似,但直流分断时感性负载存储的磁场能量瞬时释放,断点处产生高能电弧,因此要求直流接触器具有较好的灭弧功能。中/大容量直流接触器常采用单断点平面布置整体结构,其特点是分断时电弧距离长,灭弧罩内含灭弧栅。小容量直流接触器采用双断点立体布置结构。 真空接触器:真空接触器(LC1-V*)其组成部分与一般空气式接触器相似,不同的是真空接触器的触头密封在真空灭弧室中。其特点是接通/分断电流大,额定操作电压较高。 半导体式接触器:主要产品如双向晶闸管,其特点是无可动部分、寿命长、动作快、不受爆炸、粉尘、有害气体影响,耐冲击震动。 电磁闭锁接触器:模块安装与母线安装的电磁闭锁接触器都安装特殊电磁铁,当线圈失电时,可以将其保持在接通位置。有进口Tesys CR1系列产品。 电容接触器:专门应用于低压无功补偿设备中投入或者切除并联电容,以调整用电系统的功率因数。有国产LC1D*K系列产品。 可逆交流接触器:由两个相同规格的交流接触器加机械互锁(和电气互锁)构成。应用于双电源切换和电机设备正反转控制。可由国产LC1-D*C系列产品自行组装,进口产品有的有全套产品。 星三角起动组合接触器:采用3个接触器、1个热继电器和1个延时头及辅助触点块等组成的专门应用于星三角起动的设备,原来有进口LC3-D*系列的产品,目前已经停产,但是可以选择独立元件组装。 n 接触器选型原则 接触器的选型主要需要确定种类,负载类型,主回路参数,控制回路参数辅助触点,以及电气寿命,机械寿命及工作制等多种情况综合考虑。

电源适配器的主要质量指标

电源适配器的主要质量指标 目前电源适配器按其配套电子电器设备的不同,分别采用国标《GB4943-2001:信息技术设备的安全》和《GB8898-2001:音频、视频及类似电子设备安全要求》作为其质量考核标准,如笔记本电脑、蜂窝电话等信息设备配套的电源适配器应符合国标GB4943的要求,为复读机、随身听等音频、视频设备配套的电源适配器应符合国标GB8898的要求。以下介绍几个标准中规定的主要性能指标: 1.额定输出电流 按电源适配器的规定运行条件,对其标称的额定电源电压和额定频率下的输出电流。 2.额定输出电压 按电源适配器的规定运行条件,对其标称的在额定电源电压、额定频率、额定功率因素下输出额定电流值时的输出电压。 3.标记和使用说明 标记是指示使用者正确安装、使用的重要信息,是确保使用者人身财产安全的一项最基本的安全内容。标记要求耐久醒目,在考虑标记的耐久性时,应把正常作用时对标记的影响考虑进去。国内销售的产品要求用中文简体标识,且至少饮食一个信息:制造厂或经销商的名称、商标或识别标记:机型代号或型号规格;电源性质:额定电源电压范围。

4.电源适配器插头尺寸 我国的家用单相电源适配器插头有两极无接地和两极带接地两种形式。 标准规定插头应能防止单极插入,即当插头的任何一个插销与插座的带电插套插合时,其他插销不能处于易角及状态。国家标准规定,采用两极无接地时,插销长度为16±0.35mm,两极带插销的长度为18±0.35mm。 5.正常工作条件下的触电危险 在正常工作时,危险带点零部件应是不可触及的。电源适配器外壳上如有通风孔,应 保证使悬挂的外来物进入通风孔时不会变成危险带电部件,电源适配器上用于改变电 压设定的或改变输出正负极性的旋钮和操纵杆的轴不应有带电危险,外壳应有足够的 强度来抵抗外力的作用,手动移动保护盖后而变成可触及的零部件不应是危险带电的。 6.正常工作发热 发热是对电源适配器正常工作的要求,在正常工作条件下变换电压时,因为存在损耗,需要一部份电能,电能转化成热能后,引起产品温度的升高。由于绝缘材料的耐热性 限制,当设备内部温度过高时,绝缘材料会迅速老化,造成安全性能降低,产品的电 气性能和机械性能也会长期受到不利的影响,期中的元器件、零部件也降低其预期使 用寿命。因此标准要求当产品工作达到稳定状态时,设备的零部件不应出现超过标准 范围内的温度。为了保证配套设备的正常工作,标准还规定热断路器、过流保护装置 等影响设备安全的保护装置在正常工作条件下不应动作。 7.故障条件 在长期使用出现老化导致内部零件短路或由于使用者错误操作使输出短路等情况下, 电源适配器会出现异常工作或故障。此时由于内部损耗急剧增加,致使各部位的温升 升高,甚至会造成设备损坏。按照标准规定,在异常工作和故障条件下电源适配器可 以出现损坏,但不能降低设备的安全性能,仍应能通过防触电保护。标准规定各部位 的温升不能超过要求,设备周围的物品不能有着火危险,外壳不应出现影响安全要求 的变形。按照GB8898的规定,电源适配器的外壳(可角及的非金属外壳)在故障条 件下的温升应小于65度。

相关文档
最新文档