基于DSP的无刷直流电动机的控制系统研究

基于DSP的无刷直流电动机的控制系统研究
基于DSP的无刷直流电动机的控制系统研究

摘要

近年来,随着电机控制技术、电力电子技术和微电子技术的快速发展,无刷直流电机作为一种高性能的电机已经被广泛应用。无刷直流电机像交流电机一样具有结构简单、维护方便、运行可靠等优点,同时也有直流电机的转矩大、运行效率高等优点,已经在运动控制领域取得了广泛的应用。特别是它在高性能的运动控制系统中的运用,使人们对无刷直流电机性能的要求也在不断的提高。在电机本体优化设计、电力电子装置的控制及各种先进控制策略等方面改善无刷直流电机性能,具有很大的社会效益和经济效益。

本文论述无刷直流电机控制原理,首先介绍了无刷直流电机的本体结构,并建立了数学模型。其次,根据无刷直流电机驱动的控制要求,以及无刷直流电机的功能和特点,采用TI公司的TMS320LF2407A的DSP控制芯片设计了无刷直流电机控制系统,并完成了控制系统的硬件、软件设计。最后对无刷直流电机控制系统建立simulink仿真平台,通过仿真验证系统控制算法和性能,为微处理器电机控制系统的设计和调试进行了验证。

关键词:无刷直流电动机;DSP控制;simulink建模和仿真

Abstract

In recent years, as rapid development of motor control technology, power electronic technology and the microelectronics technology, a high performance brushless DC motor (BLDCM) has been widely applied. BLDCM as well as AC motor has advantages of simple structure, convenient maintenance, reliable operation, but also has such as DC motor torque,

higher operating efficiency advantages. So it has been in the field of motion control of a wide range of applications.

This article discusses the brushless DC motor control theory, presents the body structure of brushless DC motors, and a mathematical model. Then, according to the brushless DC motor drive control requirements, as well as brushless DC motor functions and features, the use of TMS320F2812 DSP control chip design models of brushless DC motor control system, and completed the control system hardware and software design.Finally, the establishment of matlab simulation platform for brushless DC motor control system, the system control algorithms through simulation and performance microprocessor motor control system design and debug verified.

Key words:BLDCM:DSP control:simulink modeling and simulation

目录

第一章引言 (1)

1.1 无刷直流电机的发展与现状 (1)

1.2 论文的研究意义 (2)

第二章无刷直流电机控制分析 (3)

2.1 电机结构分析 (3)

2.1.1 基本结构框图 (3)

2.1.2电机本体 (3)

2.1.3 转子位置传感器简介 (4)

2.2 无刷直流电机工作原理 (5)

第三章控制系统硬件和软件设计方案 (9)

3.1 控制芯片的选取 (9)

3.2 无刷直流电机控制系统方案设计 (9)

3.2.1 无刷直流电机控制技术的发展 (9)

3.2.2 有位置传感器的直流无刷电动机控制策略 (10)

3.2.3 PWM波控制策略 (12)

3.3 基于DSP技术控制的硬件设计 (12)

3.3.1 硬件电路设计 (12)

3.3.2功率模块、驱动模块、保护电路设计 (13)

3.3.3电源转换及复位电路 (14)

3.3.4位置检测与调节 (15)

3.3.5电流检测 (16)

第四章无刷直流电机的控制系统建模和仿真 (17)

4.1 Simulink简介 (17)

4.2 无刷直流电机控制系统模型的建立 (17)

4.2.1 无刷直流电机总体模块 (18)

4.2.2 速度控制模块 (22)

4.2.3 电流滞环控制模块 (23)

4.2.4 电压逆变器模块 (25)

4.2.5 简化仿真 (26)

4.3 仿真结果 (26)

4.4 本章小结 (29)

第五章成本估算 (30)

第一章引言

1.1 无刷直流电机的发展与现状

电动机作为机电能量转换装置,其应用范围己经遍及国民经济的各个领域,电动机主要类型有同步电动机、异步电动机与直流电动机三种。直流电动机具有运行效率高和调速性能好等诸多优点,因此被广泛应用于各种调速系统中,但传统的直流电动机均采用机械电刷的方式进行换向,存在相对的机械摩擦,和由此带来的噪声、火花、无线电干扰以及寿命短等致命弱点[1]。因此,早在1917年,Bolige就提出了用整流管代替有刷直流电机的机械电刷,从而诞生了无刷直流电机(BLDCM:Brushless Direct Current Motor)的基本思想[2]。

1955年,美国DHarrison等人首次申请了用晶体管换向线路代替有刷直流电机机械电刷的专利,标志着无刷直流电机的诞生。1978年,原联邦德国MANNESMANN公司的Indramat分部在汉诺威贸易展览会上正式推出其MAC 永磁无刷直流电机及其驱动系统标志着永磁无刷直流电机真正进入实用阶段[3]。二十世纪80年代国际上对无刷电机开展了深入的研究,先后研制成方波和正弦波无刷直流电机,在10多年的时间里,无刷直流电机在国际上己得到较为充分的发展。近年来,稀土永磁材料迅速发展,其矫顽力高、抗去磁能力强,且常规去磁曲线在大范围线性可逆等特点为永磁无刷直流电动机的设计开辟了广阔的前景。同时现代电力电子器件工艺日臻成熟,出现了功率晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET),特别是绝缘栅双极晶体管(IGBT)、MOS可控晶闸管(IGCT)的开发成功,使无刷直流电机功率驱动电路的可靠性和稳定性得到保障[4]。现在,永磁无刷直流电动机的概念己经由最初特指的具有电子换向的永磁直流电动机延拓至所有具备有刷直流电动机外部特性的电子换向式永磁电动机。永磁无刷直流电动机的发展也使得传统的电机学科同当代许多新技术的发展密切相关。随着大功率半导体器件、电力电子技术、微电子技术、数字信号处理技术、现代控制理论的发展以及高性能永磁材料的不断出现,如今的永磁无刷直流电机系统己经成为集特种电动机、功率驱动器、检测元件、控制软

件与硬件于一体的典型的机电一体化产品,体现了当今工程科学领域的许多最新成果。

我国无刷直流电机的研制工作始于二十世纪70年代初期,主要集中在一些科研院所和高等院校。限于我国元器件水平及相关理论与实践相结合的程度还比较低,尤其是制造工艺和加工设备距离国际水准差距较大,所以目前我国无刷电机综合水平仍低于国际水平,有待进一步的研究和开发。

1.2 论文的研究意义

无刷直流电机既具有交流电动机结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机运行效率高、无励磁损耗以及调速性能好等特点,故在当今国防和国民经济的各个领域,如医疗器械、仪器仪表、化工、轻纺、家电和航空航天等方面的应用日益普及[2]。由于无刷直流电机不存在机械电刷,但存在电机的电子换向问题,在无刷电机控制中的一个关键问题是要解决电子换向控制器的设计和实现。

从目前的发展趋势来看,以数字信号处理器(DSP: Digital signal Processor)为核心的控制电路将代表无刷直流电机电子换向控制器的发展方向。针对电机控制所设计的DSP芯片运算速度远远高于单片机,而且片内集成了模拟/数字转换器、数字I/O以及专门用于电机控制的PWM脉冲发生器等,使得它们从硬件机制上可以较好地满足电机控制系统的要求。此外,DSP强大的事件管理器可以实时地执行一些高精度的复杂控制算法,减少传感器信号采样到控制命令输出之间的延迟,改善速度控制中的动态行为。

无刷直流电机是当今效率最高的调速电机之一,与其相关的控制技术研究是当今电机领域的热门课题,其中有很多问题值得深入研究,如无刷直流电机的转矩脉动、最佳换向和转子位置检测问题,本文对相关的主要问题进行了研究。

第二章无刷直流电机控制分析

2.1 电机结构分析

2.1.1 基本结构框图

无刷直流电机从结构上来看,与传统的直流电机主要区别在于:用装有永磁体的转子取代有刷直流电机的定子磁极;用具有多相绕组的定子取代电枢;用由固态逆变器和轴位置检测器组成的电子换向器取代机械换向器和电刷。因此,直流无刷电机一般由永磁电机本体、逆变器和转子位置传感器组成[3]。

图2-1 无刷直流电机的组成框图

电机本体由主定子和主转子组成,逆变器由功率逻辑开关线路和位置信号处理电路组成,位置传感器则由定子传感器和转子传感器组成。综上所述,组成直流无刷电机各主要部件的框图如图2-1所示。

2.1.2电机本体

无刷直流电机其转子采用永久磁铁励磁,目前多使用稀土永磁材料。由于转

子磁场的几何形状不同,使得转子磁场在空间的分布为正弦波和梯形波两种。因此,当转子旋转时在定子上产生的反电势波形也有两种‘这两种直流无刷电机在原理、模型及控制方法上有所不同,对于正弦波直流无刷电机,希望在绕组中获得正弦波形式的反电势,其绕组形式采用短距、分布或分数形式,以尽可能削弱其它次谐波,从而保留基波。而方波直流无刷电机为了获得顶宽为120°的方波或梯形波,定子绕组采用整距、集中的形式,以保留磁密中的其它谐波。

(1)主定子是电机本体的静止部分。它由导磁的定子铁芯、导电的电枢绕组及固定铁芯和绕组用的一些零部件、绝缘材料、引出部分等组成,如机壳、绝缘片、槽楔、引出线及环氧树脂等。

(2)主转子是电机本体的转动部分,是产生激磁磁场的部件。它由三部分组成:永磁体、导磁体和支撑零部件。永磁体和导磁体是产生磁场的核心,系由永磁材料和导磁材料组成。

2.1.3 转子位置传感器简介

位置传感器在直流无刷电机中起着测定转子磁极位置的作用,为逆变器提供正确的换相信息。位置传感器与电机同轴安装,由于逆变器的导通次序是与转子转角同步的,因而与逆变器一起,起着与直流有刷电机的机械换相相类似的作用。位置传感器种类较多,特点各异。目前,直流无刷电机系统的位置传感器多为电磁式、光电式和磁敏式。也有少数用正余弦旋转变压器和编码器等位置传感器的,但这些元件成本较高、体积较大、配套线路复杂,在一般直流无刷电机中较少采用。本次设计采用磁敏式位置传感器中的霍尔位置传感器。

霍尔位置传感器是利用电流的磁效应进行工作的,由与电机同轴安装、多只空间均匀分布的霍尔元件构成。由于直流无刷电机的永磁转子多用钦铁硼等稀土永磁材料,瓦片型永磁体直接粘贴在转子铁心上,故其气隙磁场在空间呈矩形分布。霍尔元器件在磁场作用下会产生霍尔电势,经整形、放大后即可输出所需转子位置电平信号,构成了原始的位置信号[5]。图2-2为霍尔集成电路及其开关型输出特性。

(a)霍尔集成电路(b)开关型输出特性

图2-2 霍尔传感器

2.2 无刷直流电机工作原理

直流无刷电机三相绕组主回路基本类型有三相半控和三相全控两种。三相半控电路的特点是简单,一个功率开关控制一相的通断,每个绕组只通电1/3的时间,另外2/3时间处于断开状态,没有得到充分的利用。所以我们采用三相全控式电路。众所周知,三相绕组的联结方式有△和丫之分,而它们的通电方式又可分为两两导电方式和三三导电方式两种。

这里以丫联结三相全控桥两两通电方式为例进行介绍,电路如图2-3所示。所谓两两导通方式是指每一个瞬间有两个功率管导通,每隔1/6周期(60°电角度)换相一次,每次换相一个功率管,每一功率管导通120°电角度。各功率管的导通顺序VIVZ一VZV3一V3V4一V4VS一VSV6一V6VI一VIVZ,当功率管VIVZ导通时,电流从V1管流入A相绕组,再从C相绕组流出,经VZ管回到电源。

图2-3三相全控桥两两通电电路

直流无刷电机转子位置与换相关系如图1-5所示。

假设当转子处于图2-4中(a)位置时为0°,相带A’、B’、C’在N极下,相带A、B,、C在S极下,这时A相正向通电,B相反向通电,C相不通电,产生的定子磁场与转子磁场相互作用,使转子转动。

当转过60°角后,转子位置如图2-4中(b)所示。如果转子继续转下去进入图2-4中(c)所示的位置,就会使同一磁极下的电枢绕组中有部分导体的电流方向不一致,他们产生的磁场相互抵消,削弱磁场,使电磁转矩减小[6]。

(a)A正向通电,B反向通电(b)转过60°(c)继续旋转

(d)A相正向通电,c相反向通电,转过60°(e)B相正向通电,C相反向通电

(f)转过60°(g)B相正向通电,A相反向通电

(h)转过60°(i)C相正向通电,A相反向通电

(j)转过60°(k)C相正向通电,B相反向通电(l)转过60°

图2-4 直流无刷电机转子位置与换相的关系

因此,为避免出现这样的结果,当转子转到图2-4中(b)就必须换相,使B 相断电,C相反向通电。转子继续旋转,转过图2-4中(d)所示位置,同上所述也要进行换相,即A相断电,C相转过60°后到B相正向通电如图2-4中(e)所示。

这样下去,转子每转过60°就换相一次,电机就会平稳地旋转下去[7]。

根据图2-4的通电方式,三相Y联结两两通电方式的通电规律如下:

表2-1 三相Y联结两两通电方式的通电规律

注:表中“十”表示正向通电;“一”表示反向通电。

图2-5 电流与感应电动势的波形

第三章控制系统硬件和软件设计方案

3.1 控制芯片的选取

TMS32O的C2000系列芯片是专门为数字控制、运动控制设计的。采用该系列DSP芯片使得电机控制系统设计更加简单、方便,可以用于无刷直流电机、交流电机、同步电机、开关磁阻电机的控制[8]。现代DSP芯片作为可编程超大规模集成电路(VLSI)器件,通过可下载的软件或内部硬件来实现复杂的数字信号处理功能。DSP芯片除具备普通微处理器的高速运算和控制功能外,在处理器结构、指令系统和指令流程设计等方面都做出了较大的改进。

近年来TI推出了专用在电机控制方面的一系列DSP芯片,如TMS320F240、TMS320F240X、TMS320F28XX等。其中TMS320F28XX不再是16位内核,而是一款具有32位全新内核,专门针对一些高精密、高实时性应用而设计的高速定点DSP,性能为15OMPIS的32位运算速度[9]。考虑到芯片性价比以及供货等综合因素,本文采用的DSP为TMS320LF2407A,该芯片是TI公司生产的16位定点数字信号处理器TMS320C2000家族中的一种,是TMS32OX240X系列DSP 控制器中功能最强、片上设施最完备的一个型号,采用该芯片设计控制器,只需要很少的外围芯片即可完成基本上所有的控制任务。

之所以称TMS320LF2407A为电机控制专用芯片,主要原因在于该芯片内置有功能强大的事件管理器、PWM脉冲发生器和两路10位模数转换模块。有了事件管理器强大的实时处理功能和PWM控制波形发生器以及两路同时采样、保持、转换的高速A/D,TMS320F2407A几乎可以实现任何电机控制[10]。

3.2 无刷直流电机控制系统方案设计

3.2.1 无刷直流电机控制技术的发展

常规控制器(PID控制)尽管控制精度较高,但它需要建立描述动态系统的精确的数学模型,对于未知动态变化的系统要建立精确的数学模型是比较困难

的。比如干扰、参数漂移和噪声等不可能在很高的精度下进行模型化。直流无刷电机是一个多变量、非线性、强耦合的对象,因此利用模糊控制、神经网络控制、自适应控制、专家系统等具有自学习、自适应、自组织功能的智能控制来进行无刷直流电机的控制是一种有效的手段,控制器的计算和存储能力的不断增强也为这些先进控制算法的实现提供了有利的条件。直流无刷电动机控制技术发展经历了如下的发展过程:

1无位置传感器控制

2有位置传感器控制

3变结构控制

4模糊控制和PID相结合的Fuzzy-PID控制

5神经网络和模糊控制相结合的复合控制

3.2.2 有位置传感器的直流无刷电动机控制策略

图3-1是三相直流无刷电动机调速控制框图。给定转速与速度反馈量形成偏差,经速度调节后产生电流参考值,它与电流反馈量的偏差经电流调节后形成PWM占空比的控制量,实现电动机的速度控制。电流的反馈是通过测量电阻的压降来实现。速度反馈则是通过霍尔位置传感器输出的位置量,经过计算得到的。位置传感器输出的位置还用于控制换相。

图3-1 三相直流无刷电动机调速控制框图

3.2.2.1电流检测

我们用位于桥式逆变电路的低电压端与地之间的分压电阻R来检测主回路上的电流如图3-2所示。将电压输入值传到DSP处理器的ADC输入端口,这样可

以测出流经主回路上的电流。

图3-2 电流检测连接图

为实现20KHz的电流环,电流每50 us采样一次,在每个PWM周期之初载入电流检测值以产生一个新的占空比来改变PWM波,同时应该注意,那就是在功率管关断的时刻不要进行电流检测,那是因为在关断的时刻相电流的流动是不可测的,并不能反映相电流的大小。

3.2.2.2位置检测

这里我们用的是一个具有三个霍尔元件作位置传感器的直流无刷电机。霍尔元件由电源板5V辅助电源供电,位置传感器的输出直接输入到TMS320LF2407的捕获口CAP1~CAP3,由于位置信号来自3个霍尔元件而不是光电编码器,捕获单元由软件设置成4个捕获输入(其中3个是必需的),而不是作为QEP接口形式。捕获单元的时基选Timer2,它被设置成连续向上计数模式,它检测的最慢速度靠它最大的可以设置周期值来决定,T2PER(定时器2周期寄存器)设置为0xFFFFh,并且分频设置成128,这个设置允许速度降低到12rpm(当主频率CPUCLOCK=10MHZ时)[11],通过检测霍尔传感器输出的三个180°宽、相位相差120°信号的上升沿与下降沿,可以得到六个位置发生变化的时刻。在捕获到变化时刻的同时,DSP相应的中断标志位置1,发出中断请求产生捕获中断,调用相应的中断处理程序即可得到所要的位置信号并进行相应处理。而且中断处理程序还可以根据Timer2的值算出两位置发生变化之间的时间差,得到速度的信息。

3.2.3PWM波控制策略

本系统采用PWM波控制方式,通过调整PWM波的占空比,调节绕组电压平均值进而能间接限制和调节绕组电流的大小,实现转速的调节。在这里PWM波频率是固定的,其占空比根据电流误差得到,因而在这种情况下电流与电流的变化率都是可控的,因为PWM波的频率是固定的,因此可以用滤波器将由高频、低频信号产生的机械噪声及电磁噪声很好地滤掉。

另外有两种方式控制驱动功率管的开关,一种是硬开关方式,另一种是软开关方式。硬开关方式就是逆变器的上下两功率管用同一个脉冲信号驱动两个功率管,在同一时刻导通一个功率管,关断一个功率管,这种方式比较简单,只需控制三个脉冲信号就可以了。但是相对于软开关方式电流的波动比较大,软开关方式不仅仅可以控制电流和电流的变化率,还可以将电流的波动降到最小,在软斩波方式下,低端的功率管始终保持开状态,导通时上桥臂功率管的开关由脉冲信号决定,在这种情况下需要控制6个PWM信号。

3.3 基于DSP技术控制的硬件设计

3.3.1 硬件电路设计

针对以上对直流无刷电机控制系统的分析,进行了基于DSP的直流无刷电机高性能实用数字控制系统的研制,控制系统硬件构成如图2-3所示。采用的控制系统主要由DSP接口电路、功率驱动电路、三相逆变、逻辑控制电路及保护电路等。电流、磁极位置脉冲信号分别由DSP的A/D转换接口、工/O接口、QEP/CAP单元输入。DSP跟据控制指令、参考速度指令及反馈转速输出PWM 脉冲信号,驱动IGBT构成的桥式逆变电路控制直流无刷电机。

图3-3 系统控制和驱动电路

在图3-3所示的系统控制和驱动电路中,3 个位置间隔120°的霍尔传感器H1 、H2 、H3 经整形隔离电路后分别与TMS320L F2407A 的3 个捕捉引脚CAP1 、CAP2 、CAP3 相连,通过产生捕捉中断给出换相时刻,同时给出位置信息。

3.3.2功率模块、驱动模块、保护电路设计

要驱动电动机运行,如果给全控系统的每个MOSFET管都连接一个驱动电路,将需要有6个驱动电路,同时还要相应的配备驱动电源。而采用电机前置驱动电路,利用驱动器自身的输出调节功能,不仅可以简化电路,还可以提高电路的稳定性,同时由于带有硬件保护电路,所以还能够提供短路、过流、欠压、过压等故障的保护功能。这里采用IR2130驱动器。

IR2130是一种高电压、高速度的功率MOSFET和IGBT驱动器,工作电压为10~20V,分别有三个独立的高端和低端输出通道。逻辑输入与CMOS或LSTTL输出兼容,最小可以达到2.5V逻辑电压。外围电路中的参考地运算放大器通过外部的电流检测电位器来提供全桥电路电流的模拟反馈值,如果超出设定

或调整的参考电流值,IR2130驱动器的内部电流保护电路就启动关断输出通道,

实现电流保护的作用。

IR2130芯片可同时控制六个大功率管的导通和断开顺序,通过输出HO1、2、3分别控制三相全桥驱动电路的上半桥Q1、Q3、Q4的导通关断,而IR2130的输出LO1、2、3分别控制三相全桥驱动电路的下半桥Q2、Q4、Q6的导通关断,从而达到控制电机转速和正反转的目的。

IR2130芯片内部有电流比较电路,可以进行电机比较电流的设定。设定值可以作为软件保护电路的参考值,这样可以使电路能够适用于对不同功率的电机的控制。

其典型引脚连接图如下图3-4所示:

图3-4 IR2130驱动器典型引脚连接图

3.3.3电源转换及复位电路

由于LF24O7A采用高性能静态CMOS技术,使得供电电压降为3.3V,减小了控制器的功耗;而整个系统的数字电路和直流无刷电机霍尔传感器的电压为SV,故在整个控制板上有5V电源和3.3V电源并存。为此必须设计电源转换电路,将5V进线转换为3.3V。通过多方比较,决定采用LM317为电源转换芯片,通过选则合适的电容电阻参数,可将5V转换为3.3V。

由于DSP是高速处理器,在系统上电时,外围器件还处在不定状态,因此在系统上电时DSP在一段时间间隔内应处于复位状态。当外围处准备就绪后,DSP由复位转为运行状态。为此在DSP的复位电路中加扩RC缓冲电路。当系统上电时,DSP在RC电路的时间常数内仍处于复位状态,即DSP的复位管脚RS仍保持低电平。当电容充电达到系统所要求的高电平门限后,则DSP由复位

状态转为运行状态。电路如图3-5所示。

图3-5 电源转换及复位电路图

3.3.4位置检测与调节

本系统中,位置信号是通过3 个霍尔传感器得到的。每一个霍尔传感器都会产生180°脉宽的输出信号,如图3-6所示。3 个霍尔传感器的输出信号互差120°相位差。这样它们在每个机械转中共有6 个上升沿或下降沿,正好对应着6 个换相时刻。通过将TMS320L F2407A 设置为双沿触发捕捉中断功能,就可以获得这6 个时刻。但只有换相时刻还不能正确换相,还需要知道应该换哪一相。通过将TMS320LF2407A 的捕捉口CAP1~CAP3 设置为I/ O 口,并检测该口的电平状态,就可以知道哪一个霍尔传感器的什么沿触发的捕捉中断。

图3-6霍尔传感器的输出波形

位置的控制通过调节电动机的转速来实现, 可通过下式计算得到:

ref_k ref_k-1P k k-1I k D K K-1K-2E =E +K (S -S )+K S +K [S -2S +S ]

??????

式中:K ——速度采样时刻; KP , KI , KD ——P ID 控制器的比例系数, 积分系数, 微分系数;

ΔSK ——第K 个采样时刻的位置误差。

但是,采用这种PID 控制算法对电机的转角进行控制,存在一个积分饱和的问题,当系统开/停或大幅度变动给定值时,系统输出会出现较大的偏差,经过积分项累积以后,可能使控制量u ( k) > umax 或u ( k) < umin ,即超过执行机构由机械(或物理) 性能所决定的极限。此时, 控制量并不能真正取得计算值,而只能取umax 或umin ,从而影响控制效果。

3.3.5电流检测

本系统中,电流检测是用分压电阻R 来实现的。电阻值的选择可考虑当过流发生时能输出最大电压,同时起到过流检测的作用。需要注意的是,本系统中开关管采用单极性PWM 控制(即2 个对角开关管中的上桥臂开关管采用定频PWM 控制,另一个开关管常开) ,在PWM 周期的“关”期间,电流经过那个常开的开关管和另一个开关管的续流二极管形成续流回路,这个续流回路并不经过电流检测电阻R ,因此在R 上没有压降,所以在PWM 周期的“关”期间不能采样电流;另外,由于在PWM 周期的“开”的瞬间,电流上升并不稳定,也不易采样电流。因此,电流采样时刻应该是在PWM 周期的“开”期间的中部,如图3-7所示。

图3-7电流采样时刻分析

第四章无刷直流电动机的控制系统建模和仿真

4.1 simulink简介

Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。

Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试

4.2 无刷直流电机控制系统模型的建立

前面章节分析了无刷直流电机数学模型,设计了无刷直流电机控制系统。在此基础上,本文利用SimPowerSystem Toolbox提供的丰富模块库,提出了一种建立BLDC控制系统仿真模型的新方法,系统设计框图如图3.1所示。BLDC建模仿真系统采用双闭环控制方案:转速环由PID调节器构成,电流环由电流滞环调节器构成。根据模块化建模的思想[12],将图4-1所示的控制系统分割为各个功能独立的子模块。

电动车直流无刷电动机的调速控制

电动车直流无刷电动机的调速控制 作者:黄涛李晶李志刚单位:武汉理工大学信息学院 摘要:对当前无刷电动机在电动车领域的应用做了简单分析,简要介绍了直流无刷电动机的组成和工作原理,提出设计总体方案,详细阐述了驱动电路组成和调速部分的具体实现方法,并且介绍了电路的过流保护功能。 关键词:直流无刷电动机霍尔位置传感器驱动电路调速过流保护 中图分类号:TP332.3 文献标示码: B Timing Control to the Brushless electromotor of Electric-automobile Author: HuangTao LiJing LiZhigang Department: Information College Wuhan University of Technology Abstract:Analyze simply to the application of Brushless electromotor in Electric-automobile field.Take a introduction to the composing and principle of Brushless electromotor.Give a designing blue print and the material method of the driving circuit and timing control circuit.Moreover,introduce the function of over-current protection. Key words: Direct current Brushless electromotor Hall position sensor Driving circuit Timing Control Over-current protection 1.引言 随着当前油价上涨,能源紧张以及人们环保意识的不断加强,具有“节能、环保、轻便灵活”等特点的电动车越来越受到了人们的青睐。目前市场上电动车大多数停留在有刷电动机阶段。有刷电动机采用机械换向,对控制系统的技术要求较低,但是相比无刷电动机,有刷电动机存在着明显的劣势:寿命短,噪声大,效率低,返修率较高,因此电动车采用直流无刷电动机做为驱动系统是一个必然的大趋势。针对这种情况,本文介绍了对电动车直流无刷电动机调速控制的一套切实可行的设计方案,该方案可实现对三相无刷电动机转速进行精确控制。 2. 无刷电动机基本组成和工作原理 2.1 基本组成 直流无刷电动机的结构原理如图1所示。它主要由电动机本体、位置传感器和电子开关线路三部分组成。A相、B相、C相绕组分别与功率开关管V1、V2、V3相接。位置传感器的跟踪转子与电动机转轴相连接。本设计主要实现电子开关线路的功能。

《直流电动机》名师教案

《直流电动机》名师教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第六节直流电动机 清华大学附属中学永丰学校刘铭 教材内容分析 本课选自义务教育教科书,北京师范大学出版社物理九年级全一册第14章,第6节《直流电动机》。前面学生已经掌握了电流周围存在磁场,磁场对通电导体有力的作用,紧接着这节课的学习就是对前面所学知识的一个应用,也是对前面所学内容的另一种诠释,这需要很好的理解掌握前面学习的理论知识,这节课进行深入加工,有着理论的依据,亲自动手操作实验,切实做到学以致用。 学生情况分析 初三下学期的学生,有前面几节课的知识储备,并具备一定的发现问题、分析问题、解决问题的能力,在实验操作方面也有很多的实验积累,在讨论解决方案时会有一些可行的猜想,并针对这些猜想设计可行的实验,来验证猜想是否正确。但是对于学生来说,总会有一些想法不是很严谨,需要老师的及时适当引导。 核心素养 通过动手组装模拟电动机,探究电动机的工作的过程和原理,培养学生科学探究的能力和科学的思维,通过了解电动机在生活中的应用,认识科学与技术之间的关系,培养学生科学的态度与责任。 教学目标设计 1.知识与技能: (1)知道电动机工作的基本原理:通电线圈在磁场中受到力的作用。 (2)知道电动机工作过程中的能量转化。 (3)了解使电动机连续转动的方法,及换向器在直流电动机中的作用。 2.过程与方法:

(1)经历探究电动机转动原理的过程,培养学生初步分析问题的能力。 (2)经历电动机的发明过程,培养学生动手能力和发现问题并解决问题的能力。 3.情感态度与价值观: 了解物理知识如何转变为科学技术,强化学生学以致用的意识。 教学内容设计: 教学重点:探究磁场对通电导体有力的作用。 教学难点:使电动机持续转动的方法。 教学策略分析 (一)教学方法分析: 1.协作学习法:2个学生为一组,组内同学协同完成实验任务。 2.任务驱动法:学生们经历电动机的发展历程,随着电动机发展过程中问题的产生,猜想解决问题的措施,针对解决措施,动手设计实验,验证猜想是否正确,方案是否可行。 3.讨论交流学习法:学生在实验操作前,交流实验方案;在实验操作过程中,讨论方法的可行性;在实验操作后,交流总结实验心得和结论。 (二)教学手段: 多媒体,实物投影,电动机的换向器工作时慢镜头视频,小型电动机模型(2个),带有换向器的电动机模型(2个),玩具车中的电动机。

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

直流电动机控制系统

煤炭工程学院课程设计 题目:直流电动机转速控制系统 专业班级: 学生姓名: 学号: 指导教师: 日期:

摘要 当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 电机在各行各业发挥着重要的作用,而电机转速是电机重要的性能指标之一,因而测量电机的转速和电机的调速,使它满足人们的各种需要,更显得重要,而且随着科技的发展,PWM调速成为电机调速的新方式。 随着数字技术的迅速发展,微控制器在社会的各个领域得到了广泛的应用,由于数字系统有着模拟系统所没有的优势,如抗干扰性强、便于和PC机相联、系统易于升级维护。 本设计是以单片机AT89S52和L298控制的直流电机脉宽调制调速系统。利用AT89S52芯片进行低成本直流电动机控制系统的设计,能够简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。系统实现对电机的正转、反转、急停、加速、减速的控制,以及PWM的占空比在LCD上的实时显示。 关键词:直流电机;AT89S52;PWM调速;L298

直流电动机调速系统

创新设计创新设计名称: 直流电动机调速系统设计

目录 目录 (1) 1 引言 (2) 1.1 设计背景 (2) 1.2 系统可实现的功能 (2) 2 总体方案设计 (3) 2.1 单片机选型方案 (3) 2.2 转速测量方案选择 (4) 2.3直流电机驱动电路介绍 (5) 2.4 PWM调宽方式的选择 (6) 2.5键盘的选择 (6) 2.6整体方案设计框图 (6) 3 硬件电路设计 (7) 3.1 系统的整体硬件框图 (7) 3.2 按键模块电路设计 (7) 3.3数码管显示模块电路设计 (8) 4系统软件设计 (10) 4.1 PWM输出程序设计 (10) 4.2 数字PID算法程序设计 (11) 4.3速度采集模块程序设计 (12) 4.4 按键设定程序设计 (13) 4.5 速度显示模块程序设计 (15) 5 总结 (16) 6参考文献 (17) 附录A系统原理图 (18)

1 引言 1.1 设计背景 现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。本设计主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。 1.2 系统可实现的功能 设计一个直流电机调速系统,要求系统具有如下功能:通过按键设定转速的大小,然后由单片机产生PWM控制信号,控制直流电机驱动器L298N,使电动机以一定的转速旋转,为实现闭环控制,通过外围器件为单片机提供测量转速的电平变化信号,单片机测得转速后,与设定的转速值相比较,通过数字PID算法产生控制信号,改变PWM输出的占空比,从而改变电动机转速,从而实现闭环控制,使电动机在一个转速值上较稳定的旋转。

直流无刷电动机及其调速控制

直流无刷电动机及其调速控制 1.直流无刷电动机的发展概况与应用 有刷直流电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间内一直在运动控制领域占据主导地位。但是,有机械接触电刷-换向器一直是电流电机的一个致命弱点,它降低了系统的可靠性,限制了其在很多场合中的使用。为了取代有刷直流电动机的机械换向装置,人们进行了长期的探索。早在1917年,Bolgior就提出了用整流管代替有刷直流电动机的机械电刷,从而诞生了无刷直流电机的基本思想。 1955年美国的D.Harrison等首次申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,标志着现代无刷直流电动机的诞生。无刷直流电动机的发展在很大程度上取决于电力电子技术的进步,在无刷直流电动机发展的早期,由于当时大功率开关器件仅处于初级发展阶段,可靠性差,价格昂贵,加上永磁材料和驱动控制技术水平的制约,使得无刷直流电动机自发明以后的一个相当长的时间内,性能都不理想,只能停留在实验室阶段,无法推广使用。1970年以后,随着电力半导体工业的飞速发展,许多新型的全控型半导体功率器件(如GTR、MOSFET、IGBT等)相继问世,加之高磁能积永磁材料(如SmCo、NsFeB)陆续出现,这些均为无刷直流电动机广泛应用奠定了坚实的基础。在1978年汉诺威贸易博览会上,前联邦德国的MANNESMANN公司正式推出了MAC无刷直流电动机及其驱动器,引起了世界各国的关注,随即在国际上掀起了研制和生产无刷直流系统的热潮,这业标志着无刷直流电动机走向实用阶段。 随着现代永磁材料和相关电子元器件的性能不断提高,价格不断下降,无刷电动机的到了快速发展,并被广泛应用于各个领域,例如,在数控机床、工业机器人以及医疗器械、仪器仪表、化工、轻纺机械和家用电器等小功率场合,计算

九年级物理全册 第14章 第六节 直流电动机教案1 (新版)北师大版(1)

《直流电动机》 教学目的: 1、知道直流电动机的原理和主要构造。 2、知道换向器在直流电动机中的作用。 3、了解直流电动机的优点及其应用。 4、培养学生把物理理论应用于实际的能力。 教学重点、难点: 1.、磁场对电流的作用。 2.、磁场对电流作用的现象和规律,电动机的构造和原理。 教学过程: 1、复习 提问:上节课我们做实验给磁场中的导体通电,发现了什么?(学生回答:通电导体在磁场中受力)。 提问:这个力的方向与哪两个因素有关?(学生回答之后,教师强调:改变电流方向,或改变磁感线方向,导体受力方向就随着改变) 提问:出示如课本中的挂图和模型,根据上面的结论,通电线圈在磁场中是怎样受力的?(学生回答:ab边受力向上,cd边受力向下) 提问:在这两个力的作用下,线圈怎样运动?(学生回答:线圈会转动) 提问:这个现象中能量是怎样转化的?(学生回答:电能转化为机械能) 2、引入新课 教师陈述:电动机就是利用通电线圈在磁场中受力而转动的现象制成的,它将电能转化成机械能。下面我们来研究电动机是如何利用上述现象制成的,当然,我们先讨论最简单的一种电动机—直流电动机。给出直流电动机定义,并板书: 〈第六节直流电动机〉 3、进行新课 (1)使磁场中的通电线圈能连续转动的办法 很多同学可能马上想到通电线圈在磁场中不能连续转动(转到平衡位置要停下来),而实际的电动机要连续转动。怎样解决这个问题呢?(此处可告诉学生把理论用于实际需要再付出很多劳动,还可简介各国对理论应用于实际的重视,以培养学生对应用科学的兴趣)要解决这个问题,我们还得进行深入研究。 提问:在上节课的演示实验中,线圈转到平衡位置时是立即停止吗?为什么它不立即停止?(学生答:由于惯性线圈会稍转过平衡位置) 提问:转过平衡位置后,为什么它又转回来呢?(利用模型分析:转过平衡位置后,ab

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

直流电动机转速控制

直流电动机转速控制 王文玺 (北京交通大学机械与电子控制工程学院,北京) 摘要:通过对直流电动机控制系统的建模,再利用Matlab对建模后的系统进行分析,来加深对自动控制系统的理解。找到系统的输入、输出,理清经历各环节前后的信号变化,找出系统传递函数。 关键词:直流电动机、Matlab、建模、传递函数 1、直流电动机动态数学模型建立 1.1直流电机数字PID闭环速度控制,系统实现无静差控制。 这是一个完整的带PID算法的直流电动机控制系统。目标值为给定的期望值,期望值与被测输出结果形成的反馈做比较,得到误差信号。误差信号经过PID控制环节得到控制信号。继而经历驱动环节得到操作量,驱动量作用与对象即电动机然后得到输出信号即转速。转速通过传感器得到反馈信号。 1.2PID控制环节 1.3被控对象(直流电动机)的统一数学模型 信号类型一次为,输入信号为电压,然后电流、电流、转矩、转速,反馈信号为电压。

各环节的比例函数为: 1.3.1额定励磁条件下,直流电机的电压平衡关系: (Ud为外加电压,E 为感应电势,R a为电枢电阻 ,La为电枢电感,i a为电枢电流。) 拉氏变换后: (ra—L /R ,为电枢时间常数) 1.3.2直流电机的转矩平衡关系及拉氏变换: (Te 为电磁转矩,Tl 为负载转矩,B为 阻尼系数,J 为转动惯量,w为电机机 械转速,rm=J/B,为机械时间常数) 1.3.3电动机传递函数 可见直流电动机本身就是一个闭环系统,假设电机工作在空载状态,且机械时间常数远大于电枢时间常数,则电机传递函数可近似为: 1.4具体实例 电枢控制直流电动机拖动惯性负载的原理图,涉及的参数有:电压U为输入,转速为输出,R、L为电枢回路电阻、电感,K 是电动机转矩系数,K 是反电动势系数,K 是电动机和负载折合到电动机轴上的黏性摩擦系数,.厂是电动机和负载折合到电动机轴上的转动惯量。已知:R一2.0 Q,L:==0.5 H ,K = Kb一0.015,Kf一0.2 Nms,J— o.02kg.m 。 ( 取电压U为输入,转速叫为输出,由已知条件和原理图,根据直流电机的运动方程可以求出电动机系统的数学模型为:

直流电动机调速系统设计方案

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流内环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗 器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.北京:中国电力出版社, 2005:41-49、105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1概述 0 2转速、电流双闭环直流调速系统的组成及其静特性 0 2.1转速、电流双闭环直流调速系统的组成 0 2.2 稳态结构框图和静特性 (1) 3双闭环直流调速系统的数学模型与动态过程分析 (2) 3.1双闭环直流调速系统的动态数学模型 (2) 3.2双闭环直流调速系统的动态过程分析 (3) 4转速电流双闭环直流调速系统调节器的工程设计 (5) 4.1转速和电流两个调节器的作用 (5) 4.2调节器的工程设计方法 (5) 4.2.1设计的基本思路 (6) 4.3 触发电路及晶闸管整流保护电路设计 (6) 4.3.1触发电路 (6) 4.3.2整流保护电路 (7) 4.3.2.1 过电压保护和du/dt限制 (7) 4.3.2.2 过电流保护和di/dt限制 (8) 4.4 器件选择与计算 (8) 5心得体会 (13) 参考文献 (14) 附录:电路原理图 (15)

《电动机》教案

《电动机》教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电动机教案 核心素养 经历制作模拟电动机的过程,增强学生动手和观察能力;通过了解物理知 识如何转化成实际技术应用,进一步提高学生学习科学技术知识和应用物理知 识的兴趣。 教学目标 知识要点课标要求 1.磁场对通电线圈的作用通过生活实例,认识电流的热效应 2.电动机的基本构造了解电动机的构造,理解电动机的工作原理及换向 器的作用 优教提示:教师登陆优教平台,发送预习任务,学生完成本节课的预习任 务,反馈预习情况。 新课引入 电动自行车是倍受人们青睐的一种交通工具.它可以电动骑行,亦可以脚踏骑行.电动骑行时,蓄电池对车上电动机供电,电动机为车提供动力.你知道电 动机的工作原理吗?从学生的质疑中导入新课。 合作探究 探究点一磁场对电流的作用 活动1:展示如图所示的装置,让学生猜想一下,当开关闭合后,将会观察到 什么现象学生诧异闭合开关,让学生观察实验现象根据实验现象讨论、交流产 生此现象的原因是什么 (优教提示:请打开素材“实验演示:通电导体在磁场中受力”)

师适当点拨: 现象→原因→有磁场 ↓↓↓ 导线运动→受力的作用→通电导体是磁体 归纳总结:磁场对通电导体有力的作用。 知识拓宽:并不是所有的通电直导线在磁场中都受到力的作用,当通电直导线与磁感线方向平行时,此时通电的直导线不受力的作用。 活动2:要想改变导体在磁场中的运动方向,如何操作?学生交流、讨论,发表自己的观点,师总结。 总结:改变磁场的方向;可以改变电流的方向。 活动3:根据学生的猜想,进行验证。让学生观察实验现象,讨论得出实验结论。 归纳总结:通电导线在磁场中受力方向跟电流的方向、磁感线的方向都有关;当电流方向、磁感线方向发生改变时,通电导体受力方向也发生改变。 活动4:根据实验现象,大家讨论一下,在这个装置在能量的转化是怎样的在生活中哪些用电器是利用这一原理来工作的学生交流、讨论,发表自己的观点。 归纳总结: (1)将电能转化为机械能; (2)生活中的电动车、电风扇、电动机等工作时的原理与此相同。 探究点二电动机的基本构造 活动1:一根通电直导线在磁场会受力运动,一个通电的线圈在磁场中会怎样呢?展示如图所示的装置,让同学们猜想,然后再展示。 (优教提示:请打开素材“演示视频:制作简易电动机”)

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

直流电动机转速控制系统设计

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。特别是在直流电动机广泛应用的电气传动领域,起到至关重要的作用。直流电动机因为具有良好的调速性能和比较大的起动转矩,一直被应用在电气领域,尤其是在需要调速性能很高的场所。在制造业、工农业自动化、铁路与运输等行业都被广泛的应用,随着市场的竞争力,对直流电动机的需求也越来越高,同时对直流电动机的调速性能也有了更高的要求。因此,研究直流电动机转速控制系统的调速性能有着很重要的意义。 在本次的设计中采用PWM控制直流电动机转速。PWM脉冲受到PID算法的控制,被用来控制直流电动机的转速。同时利用安装在直流电动机转轴上的光电式传感器,将直流电动机的转速转换成脉冲信号,反馈到单片机,形成闭环反馈控制系统,改变不同占空比的PWM脉冲就可以实现直流电动机转速控制。 本论文对每一个方案的选择都进行详细的论述,在软件和硬件部分都进行了模块化。硬件部分首先给出一个以AT89S52单片机为核心的整体结构图,并对驱动电路、显示电路等模块进行详细的阐述。在软件部分给出整体程序流程图,对PWM 程序、PID算法程序、显示程序等模块详细的阐述。本次系统设计的具有抗干扰能力强、性价比高、维修简单方便等优点。 关键词:PWM;单片机;直流电动机;转速控制

Abstract Nowadays, automatic control system has been widely used and greatly developed in all walks of life. As the dominant part of electric drive, direct current (DC) control plays an important role in modern production, especially in the DC motor is widely used in the field of electric transmission. DC motor because of its good speed control performance and relatively large starting torque, has been applied in the electrical field, especially in the high speed performance requirements of the occasion. Is widely used in the manufacturing industry, industry and trade of agricultural automation, rail and transit industry, with the competitiveness of the market, the demand of DC motor is also more and more high, also of the DC motor speed performance also has the higher requirements. Therefore, it is very important to study the speed control performance of the DC motor speed control system. In this design, using PWM control DC motor speed. PWM pulse is controlled by the PID algorithm, PWM is used to control the speed of DC motor. At the same time, the hall sensor mounted on the rotational shaft of the DC motor, the DC motor speed is converted into a pulse signal, feedback to the microcontroller, form a closed loop feedback control system, changing the duty ratio of the PWM pulse can realize DC motor speed control. In this paper, the choice of each program are discussed in detail, in both the software and hardware parts are modular. In the part of hardware, we first give a whole structure diagram with AT89S52 single chip microcomputer as the core, and elaborate the driving circuit, display circuit and other modules in detail. In the software part gives the overall program flow chart, the PWM program, PID algorithm program, display program, and other modules are described in detail. The system design has the advantages of strong anti-interference ability, high cost performance, easy maintenance and so on. Key Words: PWM; microcomputer; DC motor; speed control

直流电动机开环调速MATLAB系统仿真

东北石油大学MATLAB电气应用训练 2013年 3 月 8日

MATLAB电气应用训练任务书 课程 MATLAB电气应用训练 题目直流电动机开环调速系统仿真 专业电气信息工程及其自动化姓名赵建学号 110603120121 主要内容: 采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB /SIMULINK 仿真模型。分析系统起动的转速和电流的仿真波形,并进行调试,使双闭环直流调速系统趋于合理与完善 基本要求: 1.设计直流电动机开环调速系统 2.运用MATLAB软件进行仿真 3.通过仿真软件得出波形图 参考文献: [1] 陈伯时. 电力拖动自动控制系统—运动控制系统第3版[M]. 北京:机械工业出版社, 2007. [2] 王兆安, 黄俊. 电力电子技术第4版[M]. 北京:机械工业出版社, 2000. [3] 任彦硕. 自动控制原理[M]. 北京:机械工业出版社, 2006. [4] 洪乃刚. 电力电子和电力拖动控制系统的MATLAB仿真[M]. 北京:机械工业出版社, 2006. 完成期限 2013.2.25——2013.3.8 指导教师李宏玉任爽 2013年 2 月25 日

目录 1课题背景 (1) 2直流电动机开环调速系统仿真的原理 (2) 3仿真过程 (5) 3.1仿真原理图 (5) 3.2仿真结果 (9) 4仿真分析 (12) 5总结 (13) 参考文献 (14)

1课题背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。 由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。 MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。 Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型,如现实世界中的摩擦、空气阻力、齿轮啮合等自然现象;它可以仿真到宏观的星体,至微观的分子原子,它可以建模和仿真的对象的类型广泛,可以是机械的、电子的等现实存在的实体,也可以是理想的系统,可仿真动态系统的复杂性可大可小,可以是连续的、离散的或混合型的。Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代起,就开始

直流电动机-教案

《直流电动机》教学设计 一、教材内容分析 本课选自义务教育教科书,北京师范大学出版社物理九年级全一册第14章,第6节《直流电动机》。前面学生已经掌握了电流周围存在磁场,磁场对通电导体有力的作用,紧接着这节课的学习就是对前面所学知识的一个应用,也是对前面所学内容的另一种诠释,这需要很好的理解掌握前面学习的理论知识,这节课进行深入加工,有着理论的依据,亲自动手操作实验,切实做到学以致用。 二、学生情况分析 初三下学期的学生,有前面几节课的知识储备,并具备一定的发现问题、分析问题、解决问题的能力,在实验操作方面也有很多的实验积累,在讨论解决方案时会有一些可行的猜想,并针对这些猜想设计可行的实验,来验证猜想是否正确。但是对于学生来说,总会有一些想法不是很严谨,需要老师的及时适当引导。 三、教学目标设计 1.知识与技能: (1)知道电动机工作的基本原理:通电线圈在磁场中受到力的作用。 (2)知道电动机工作过程中的能量转化。 (3)了解使电动机连续转动的方法,及换向器在直流电动机中的作用。 2.过程与方法: (1)经历探究电动机转动原理的过程,培养学生初步分析问题的能力。 (2)经历电动机的发明过程,培养学生动手能力和发现问题并解决问题的能力。 3.情感态度与价值观: 了解物理知识如何转变为科学技术,强化学生学以致用的意识。 四、教学内容设计:

教学重点:探究磁场对通电导体有力的作用。 教学难点:使电动机持续转动的方法。 五、教学策略分析 (一)教学方法分析: 1.协作学习法:2个学生为一组,组内同学协同完成实验任务。 2.任务驱动法:学生们经历电动机的发展历程,随着电动机发展过程中问题的产生,猜想解决问题的措施,针对解决措施,动手设计实验,验证猜想是否正确,方案是否可行。 3.讨论交流学习法:学生在实验操作前,交流实验方案;在实验操作过程中,讨论方法的可行性;在实验操作后,交流总结实验心得和结论。 (二)教学手段: 多媒体,实物投影,电动机的换向器工作时慢镜头视频,小型电动机模型(2个),带有换 向器的电动机模型(2个),玩具车中的电动机。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

直流电动机控制系统设计

X X X X X学院 题目:直流电动机控制系统 学 院 XXXXXX学院 专 业 自动化 班 级 XX班 姓 名 XXX 学 号 XXXXX 指导老师 XXX 2012年 12 月 25 日 1、 设计题目:直流电动机控制系统 1、前言 近年来,随着科技的进步,电力电子技术得到了迅速的发展,直流电机得到了越来越广泛的应用。直流它具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;需要能满足生产过程自动化系统各种不同的特殊运行要求,从而对直流电机的调速提出了较高的要求,改变电枢回路电阻调速,改变电枢电压调速等技术已远远不能满足要求,这时通过PWM方式控制直流电机调速的方法应运而生。 采用传统的调速系统主要有以下缺陷:模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。另外,由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开

关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。PWM 具有很强的抗噪性,且有节约空间、比较经济等特点。 2、系统设计原理 脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需 要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 直流电动机的转速n和其他参量的关系可表示为 (1) 式中 Ua——电枢供电电压(V); Ia ——电枢电流(A); Ф——励磁磁通(Wb); Ra——电枢回路总电阻(Ω); CE——电势系数, ,p为电磁对数,a为电枢并联支路数,N为导体数。 由式(1)可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。 3、方案选择及论证 3.1、方案选择 3.1.1、改变电枢回路电阻调速 可以通过改变电枢回路电阻来调速,此时转速特性公式为 n=U-【I(R+Rw)】/KeФ (2)式中Rw为电枢回路中的外接电阻(Ω)。 当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R= (Ra+Rw)增大,电动机转速就降低。Rw的改变可用接触器或主令开关切换来实现。 这种调速方法为有级调速,转速变化率大,轻载下很难得到低速,

相关文档
最新文档