人教A版高中数学选修2-1习题:3.2.3利用向量求空间角(附答案)

人教A版高中数学选修2-1习题:3.2.3利用向量求空间角(附答案)
人教A版高中数学选修2-1习题:3.2.3利用向量求空间角(附答案)

第3课时利用向量求空间角

1.若平面α的一个法向量为n1=(1,0,1),平面β的一个法向量是n2=(-3,1,3),则平面α与β所成的角等于( )

A. 30°

B. 45°

C. 60°

D. 90°

2.已知A(0,1,1),B(2,-1,0),C(3,5,7),D(1,2,4),则直线AB和直线CD所成角的余弦值为( )

A. B. -

C. D. -

3.在正方体ABCD-A1B1C1D1中,E是C1C的中点,则直线BE与平面B1BD所成的角的正弦值为( )

A. -

B. C. -

D.

4.若二面角α-l-β的大小为120°,则平面α与平面β的法向量的夹角为( )

A. 120°

B. 60°

C. 120°或60°

D. 30°或150°

5.已知四面体各棱长为1,是棱的中点,则异面直线与所成角的余弦值()

A. B. C. D.

6.若两个平面α,β的法向量分别是u=(1,0,1),v=(-1,1,0),则这两个平面所成的锐二面角的度数是_____.

7.已知正方体ABCD-A1B1C1D1,则直线BC1与平面A1BD所成的角的余弦值是_____.

8.在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的二面角的余弦值为_____.

9.如图,直棱柱ABC-A1B1C1的底面△ABC中,CA=CB=1,∠ACB=90°,棱AA1=2,如图,以C为原点,分别以CA,CB,CC1为x,y,z轴建立空间直角坐标系

. (1)求平面A1B1C的法向量;

(2)求直线AC与平面A1B1C夹角的正弦值.

10.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯

形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD的平面分别交PB,PC于M,N两点

.

(1)求证:MN∥BC;

(2)若M,N分别为PB,PC的中点,

①求证:PB⊥DN;

②求二面角P-DN-A的余弦值.

11.在正方体ABCD-A1B1C1D1中,M是AB的中点,则sin<>的值为( )

A. B. C. D.

12.在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=,则异面直线AB1和BC1所成角的正弦值为( )

A. 1

B.

C.

D.

13.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB.已知AB =4,AC =6,BD =8,CD =2,则该二面角的大小为( )

A. 150°

B. 45°

C. 60°

D. 120°

14.已知a,b 是异面直线,A,B ∈a,C,D ∈b,AC ⊥b,BD ⊥b 且AB=2,CD=1,则a 与b 所成的角是( ) A. 30° B. 45° C. 60° D. 90°

15.正三棱柱ABC-A 1B 1C 1的所有棱长都相等,则AC 1与平面BB 1C 1C 的夹角的余弦值为_____. 16.如图,三棱柱OAB-O 1A 1B 1中,平面OBB 1O 1⊥平面OAB,且

∠O 1OB=60°,∠AOB=90°,OB=OO 1=2,OA=,求异面直线A 1B 与O 1A 所成角的余弦值

.

17.如图,在直三棱柱ABC-A 1B 1C 1中,AB=AC=1,∠BAC=90°,异面直线A 1B 与B 1C 1所成的角为60°.

(1)求该三棱柱的体积;

(2)设D 是BB 1的中点,求DC 1与平面A 1BC 1所成角的正弦值.

第3课时 利用向量求空间角

1.若平面α的一个法向量为n 1=(1,0,1),平面β的一个法向量是n 2=(-3,1,3),则平面α与β所成的角等于( )

A. 30°

B. 45°

C. 60°

D. 90°

【答案】D 【解析】 【分析】 先求出

,所以α⊥β,即得平面α与β所成的角.

【详解】因为n 1·n 2=(1,0,1)·(-3,1,3)=0,所以α⊥β,即平面α与β所成的角等于90°. 故答案为:D

【点睛】(1)本题主要考查利用面面垂直的向量表示,意在考察学生对该知识的掌握水平和分析推理能力.(2)两平面的法向量垂直,则两平面互相垂直.

2.已知A(0,1,1),B(2,-1,0),C(3,5,7),D(1,2,4),则直线AB 和直线CD 所成角的余弦值为( )

A.

B. -

C.

D. -

【答案】A 【解析】 【分析】 先求出向量

=(2,-2,-1),

=(-2,-3,-3),再利用向量法求两异面直线所成的角的余弦.

【详解】由题得

=(2,-2,-1),

=(-2,-3,-3),而cos<

>=

,

故直线AB 和CD 所成角的余弦值为

.

故答案为:A

【点睛】(1)本题主要考查向量法求两异面直线所成的角,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 异面直线所成的角的求法方法一:(几何法)找

作(平移法、补形法)

证(定义)指求(解三角形),方法二:(向量法)

,其中是异面直线所

成的角,分别是直线的方向向量.

3.在正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成的角的正弦值为

( )

A. -

B.

C. -

D.

【答案】B

【解析】

取中点,则就是直线与平面所成角的线面角,

所以,故选B。

点睛:本题考查立体几何的线面夹角。一般的,立体几何问题利用其几何性质求解,如本题中的线面角,可以结合图形的特殊性,可以较容易地找到其线面角。当线面角不容易找的时候,可以采用空间直角坐标系来辅助解题。

4.若二面角α-l-β的大小为120°,则平面α与平面β的法向量的夹角为( )

A. 120°

B. 60°

C. 120°或60°

D. 30°或150°

【答案】C

【解析】

【分析】

利用法向量的夹角和二面角的关系解答.

【详解】二面角为120°时,其法向量的夹角可能是60°,也可能是120°.

故答案为:C

【点睛】本题主要考查二面角的大小和法向量的夹角的关系,意在考查学生对该知识的掌握水平和分析推理能力.

5.已知四面体各棱长为1,是棱的中点,则异面直线与所成角的余弦值()

A.

B.

C.

D.

【答案】C

【解析】

试题分析:如图,过D做DE||AC,交OC于点E,连接BE,则异面直线AC于BD 所成角为,易知,故选C.

考点:异面直线所成角

6.若两个平面α,β的法向量分别是u=(1,0,1),v=(-1,1,0),则这两个平面所成的锐二面角的度数是_____.

【答案】

【解析】

【分析】

利用向量的夹角公式求法向量的夹角,即得锐角二面角的大小.

【详解】设这两个平面所成的锐二面角为θ,则cos θ=,所以锐二面角的度数是60°.

故答案为:

【点睛】(1)本题主要考查二面角的向量求法,意在考查学生对该知识的掌握水平和分析推理能力.

(2)二面角的求法方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形).方法二:

(向量法)首先求出两个平面的法向量;再代入公式

(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“”号).

7.已知正方体ABCD-A1B1C1D1,则直线BC1与平面A1BD所成的角的余弦值是_____.

【答案】

【解析】

【分析】

如图,以D为坐标原点,直线DA,DC,DD1分别为x轴、y轴、z轴建立空间直角坐标系,设正方体棱长为1,再利用向量法求直线BC1与平面A1BD所成的角的余弦值.

【详解】

如图,以D为坐标原点,直线DA,DC,DD1分别为x轴、y轴、z轴建立空间直角坐标系,设正方体棱长为1,则D(0,0,0),A1(1,0,1),B(1,1,0),C1(0,1,1),

则=(1,0,1),=(1,1,0),=(-1,0,1),

设平面A1BD的一个法向量为n=(x,y,z),

则所以

令x=1得,n=(1,-1,-1),

设直线BC1与平面A1BD所成角为θ,

则sinθ=|cos <,n >|=,故cos θ=.

故答案为:

【点睛】(1)本题主要考查直线和平面所成角的求法,意在考查学生对该知识的掌握水平和分

析推理能力.(2)直线和平面所成的角的求法方法一:(几何法)找作(定义法)

证(定义)

指求(解三角形),其关键是找到直线在平面内的射影作出直线和平面所成的角和解三角

形.方法二:(向量法),其中是直线的方向向量,是平面的法向量,是直线

和平面所成的角.

8.在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的二面角的余弦值为_____.

【答案】

【解析】

【分析】

建立空间直角坐标系如图,设正方体的棱长为2,利用向量法求平面A1ED与平面ABCD所成的二面角的余弦值.

【详解】

建立空间直角坐标系如图,设正方体的棱长为2,则D(2,0,0),A1(0,0,2),E(0,2,1),

则=(2,0,-2),=(0,2,-1).

设平面A1ED的法向量为n=(x,y,z),

令y=1,得n=(2,1,2).

易知平面ABCD的法向量为m=(0,0,1),

则cos=.

故答案为:

【点睛】(1)本题主要考查二面角的向量求法,意在考查学生对该知识的掌握水平和分析推理能力.

(2)二面角的求法方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形).方法二:

(向量法)首先求出两个平面的法向量;再代入公式

(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的

大小选择“”号).

9.如图,直棱柱ABC-A 1B 1C 1的底面△ABC 中,CA=CB=1,∠ACB=90°,棱AA 1=2,如图,以C 为原点,分别以CA,CB,CC 1为x,y,z 轴建立空间直角坐标系

.

(1)求平面A 1B 1C 的法向量;

(2)求直线AC 与平面A 1B 1C 夹角的正弦值. 【答案】(1);(2)

【解析】 【分析】

(1)v=(x 0,y 0,z 0)为平面A 1B 1C 的法向量,则v·

=x 0+2z 0=0,v·

=y 0+2z 0=0,解方程组即得

平面A 1B 1C 的法向量.(2)利用向量法求直线AC 与平面A 1B 1C 夹角的正弦值. 【详解】(1)由题意可知C(0,0,0),A 1(1,0,2),B 1(0,1,2),故=(1,0,2),

=(0,1,2),

设v=(x 0,y 0,z 0)为平面A 1B 1C 的法向量,则 v·=(x 0,y 0,z 0)(1,0,2)=x 0+2z 0=0, v·=(x 0,y 0,z 0)(0,1,2)=y 0+2z 0=0,

令z 0=1,则v=(-2,-2,1).

(2)设直线AC 与平面A 1B 1C 夹角为θ,而=(1,0,0),

所以直线AC 与平面A 1B 1C 夹角的正弦值sin θ

=

.

【点睛】(1)本题主要考查直线和平面所成角的求法,考查法向量的求法,意在考查学生对该

知识的掌握水平和分析推理能力.(2) 直线和平面所成的角的求法方法一:(几何法)找作(定义法)证(定义)指求(解三角形),其关键是找到直线在平面内的射影作出直线和平面所成的角和解三角形.方法二:(向量法),其中

是直线的方向向量,是平

面的法向量,是直线和平面所成的角.

10.如图,在四棱锥P-ABCD 中,PA ⊥底面ABCD,底面ABCD 为直角梯

形,AD ∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过AD 的平面分别交PB,PC 于M,N 两点

.

(1)求证:MN ∥BC;

(2)若M,N 分别为PB,PC 的中点, ①求证:PB ⊥DN;

②求二面角P-DN-A 的余弦值. 【答案】(1)见解析;(2)见解析, 【解析】 【分析】

(1)先证明BC∥平面ADNM ,再证明MN∥BC.(2)①先证明PB⊥平面ADNM ,再证明PB⊥DN. ②以A 为坐标原点,直线AB 为x 轴,直线AD 为y 轴,直线AP 为z 轴,建立空间直角坐标系A-xyz,利用向量法求二面角P-DN-A 的余弦值.

【详解】(1)证明因为底面ABCD 为直角梯形,所以BC∥AD. 因为BC ?平面ADNM,AD ?平面ADNM, 所以BC∥平面ADNM.

因为BC ?平面PBC,平面PBC∩平面ADNM=MN,所以MN∥BC.

(2)①证明因为M,N 分别为PB,PC 的中点,PA=AB,所以PB⊥MA.

因为∠BAD=90°,所以DA⊥AB.

因为PA⊥底面ABCD,所以DA⊥PA.

因为PA∩AB=A,所以DA⊥平面PAB.

所以PB⊥DA.

因为AM∩DA=A,所以PB⊥平面ADNM.

因为DN?平面ADNM,所以PB⊥DN.

②如图,以A为坐标原点,直线AB为x轴,直线AD为y轴,直线AP为z轴,建立空间直角坐标系A-xyz,

则A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),P(0,0,2).

由①知,PB⊥平面ADNM,所以平面ADNM 的法向量为=(-2,0,2).

设平面PDN的法向量为n=(x,y,z),

因为=(2,1,-2),=(0,2,-2),

所以

令z=2,则y=2,x=1.

所以n=(1,2,2),

所以cos=.

所以二面角P-DN-A 的余弦值为.

【点睛】(1)本题主要考查二面角的向量求法,考查空间线面位置关系的证明,意在考查学生对该知识的掌握水平和空间想象分析推理转化能力.(2)二面角的求法方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形).方法二:(向量法)首先求出两个平面的法向量;再代入公式(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“”号).

11.在正方体ABCD-A1B1C1D1中,M是AB的中点,则sin<>的值为( )

A. B. C. D.

【答案】B

【解析】

【分析】

如图,以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系.

设正方体的棱长为1,利用向量法求sin<>的值.

【详解】

如图,以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系.

设正方体的棱长为1,则D(0,0,0),B1(1,1,1),C(0,1,0),M,

∴=(1,1,1),,

∴cos <>==,

∴sin <>=.

故答案为:B

【点睛】(1)本题主要考查向量夹角的向量求法,意在考查学生对该知识的掌握水平和分析推

理计算能力.(2)求向量的夹角常用.

12.在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=,则异面直线AB1和BC1所成角的正弦值为( )

A. 1

B.

C.

D.

【答案】A

【解析】

【分析】

设线段A1B1,AB的中点分别为O,D,则OC1⊥平面ABB1A1,以的方向分别为x轴,y轴,z 轴的正方向建立空间直角坐标系,利用向量法求异面直线AB1和BC1所成角的正弦值.

【详解】

设线段A1B1,AB的中点分别为O,D,则OC1⊥平面ABB1A1,以的方向分别为x轴,y轴,z 轴的正方向建立空间直角坐标系,如图,

则A(-1,0,),B1(1,0,0),B (1,0,),C1(0,,0),

所以=(2,0,-),=(-1,,-).

因为=(2,0,-)·(-1,,-)=0,

所以,即异面直线AB1和BC1所成角为直角,则其正弦值为1.

故答案为:A

【点睛】(1)本题主要考查向量法求两异面直线所成的角,意在考查学生对该知识的掌握水平和

分析推理计算能力.(2)异面直线所成的角的求法方法一:(几何法)找

作(平移法、补形法)

证(定义)指求(解三角形),方法二:(向量法),其中是异面直线所成的角,分别是直线的方向向量.

13.二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2,则该二面角的大小为( )

A. 150°

B. 45°

C. 60°

D. 120°

【答案】C

【解析】

【分析】

将向量转化成,然后等式两边同时平方表示出向量的模,再根据向量的数量积求出向量与的夹角,而向量与的夹角就是二面角的补角.

【详解】由条件,知.

=62+42+82+2×6×8cos,

∴cos ,即=120°,

所以二面角的大小为60°,

故选:C.

【点睛】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.

14.已知a,b是异面直线,A,B∈a,C,D∈b,AC⊥b,BD⊥b且AB=2,CD=1,则a与b所成的角是( )

A. 30°

B. 45°

C. 60°

D. 90°

【答案】C

【解析】

【分析】

先求出,再计算出,所以

2×1×cos <>=1,即得a与b所成的角.

【详解】直线a,b的方向向量分别

为,因

为,所

,即2×1×cos

<>=1,所以cos

<

>=,即

<>=60°.

故答案为:C

【点睛】(1)本题主要考查异面直线所成的角,意在考查学生对该知识的掌握水平和分析推理能

力.(2)解法本题的关键是由得2×1×cos <>=1.

15.正三棱柱ABC-A1B1C1的所有棱长都相等,则AC1与平面BB1C1C的夹角的余弦值为_____.

【答案】

【解析】

【分析】

设三棱柱的棱长为1,以B为原点,建立坐标系,利用向量法求AC1与平面BB1C1C的夹角的余弦

值.

【详解】

设三棱柱的棱长为1,以B为原点,建立坐标系如图,则C1(0,1,1),A,又平面

BB1C1C的一个法向量n=(1,0,0),

设AC1与平面BB1C1C的夹角为θ.

则sin θ=|cos|=,

故cos θ=.

故答案为:

【点睛】(1)本题主要考查直线和平面所成角的求法,考查法向量的求法,意在考查学生对该

知识的掌握水平和分析推理能力.(2)直线和平面所成的角的求法方法一:(几何法)找作(定

义法)证(定义)指求(解三角形),其关键是找到直线在平面内的射影作出直线和平

面所成的角和解三角形.方法二:(向量法),其中是直线的方向向量,是平

面的法向量,是直线和平面所成的角.

16.如图,三棱柱OAB-O1A1B1中,平面OBB1O1⊥平面OAB,且

∠O1OB=60°,∠AOB=90°,OB=OO1=2,OA=,求异面直线A1B与O1A所成角的余弦值

.

【答案】

【解析】

【分析】

以O为坐标原点,OA,OB所在直线分别为x轴、y轴,建立如图所示的空间直角坐标系,

利用向量法求异面直线A1B与O1A所成角的余弦值.

【详解】以O为坐标原点,OA,OB所在直线分别为x轴、y轴,建立如图所示的空间直角坐标系

,

则A(,0,0),B(0,2,0),A1(,1,),O1(0,1,),

所以=(-,1,-),=(,-1,-).

设所求的角为α,

则cos α=,

即异面直线A1B与O1A 所成角的余弦值为.

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

【有关高中数学教学的】高中数学经典大题150道

【有关高中数学教学的】高中数学经典大题150道 学习活动对学生来说本身就具有重要的意义,但是由于个体间的差异和教学时间紧迫等客观因素决定了在数学课堂上教师不可能兼顾到每一个学生的实际情况. 第一篇:民族地区的高中数学教学 1. 当前高中数学教学的问题和分析 ①不注重知识的循序渐进:从初中到高中的知识跨越是一个循序渐进的过程,一定要做到让学生吸收。 而现在的教师为了让学生掌握的更多,没节制的拓宽知识面,不断地补充一些公式或者特殊的解题方法,这些在高中生的高三复习阶段屡见不鲜,导致学生的负担过重不能更好的发挥。 ②因材施教没有落到实处:一些高中教师教学过程中分层教学把握不到位,教法单一。 只讲”范式”,不讲”变式”,只要求记结论、套题型,多数学生浅尝辄止,不求甚解。 学生学习毫无兴致,导致两级分化严重。 2. 教学新思路探索 2.1注重生源状况研究,实施因材施教依据少数民族地区生源质量较差的实际情况,

教师需要对其因材施教。 结合班级里学生能力参差不齐的实际,传统的一些僵化教法根本无法适应当前新课程改革的要求,无法推进后进生的转化。 教师需要根据生源状况,将其分为差、中、好三个档次,对后进生在知识方面进行详细的了解,设计问题的过程中可以梯度小一点,采取”小步子、慢速度”的原则。 2.2掌握新课改新课程的基本理念在新课改下,高中数学旨在构建学生发展和学习的良好基础,激励学生学习的积极主动性;促进学生的全面发展,注重学生数学思维的形成,把信息技术和课程化作一体,建立适应学生个性发展的学习体系。 这一切都要求教师提高自身的综合素质,在教学中探索更好的教学方法,实现从知识的传授到学生能力的培养的跨越。 2.3注重知识传授的循序渐进以及改进方法新课改高中数学教学的关键就是循序渐进,只有完成这个环节,才能顺利的开展教学。 有的老师眼中只有成绩,一味赶进度,形成”填鸭式”的教学模式。 但事实上这样会适得其反,数学学科肩负着学生运算能力、逻辑思维能力和空间想象能力的培养。 它的特点就是很抽象,对能力的要求很高。 所以如果不遵从循序渐进的原则,那么必然会形成很多学生的掉队,不仅会影响学生的兴趣,更重要的是还会影响其成绩。 所以高中数学教学方法一定要活,因材施教,要具有针对性。 教师要真正成为学生的引导和合作者。 考虑学生的自身状况以及学习需要,辅以多媒体教学,培养学生的积极性和兴趣,做到学生不仅能够掌握现有概念和技能,还能独立思考学习,要充分鼓励学生自主探索。

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

高中数学椭圆超经典知识点+典型例题讲解

学生姓名性别男年级高二学科数学 授课教师 上课时 间2014年12月13 日 第()次课 共()次课 课时:课时 教学课题椭圆 教学目标 教学重点 与难点 选修2-1椭圆 知识点一:椭圆的定义 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若,则动点的轨迹为线段; 若,则动点的轨迹无图形.

讲练结合一.椭圆的定义 1.方程()()10222222=++++-y x y x 化简的结果是 2.若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 3.已知椭圆22 169 x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 知识点二:椭圆的标准方程 1.当焦点在轴上时,椭圆的标准方程:,其中; 2.当焦点在轴上时,椭圆的标准方程:,其中; 注意: 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有 和 ; 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为, ; 当焦点在轴上时,椭圆的焦点坐标为 ,。

圆的标准方程; 知识点三:椭圆的简单几何性质 椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换 成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围 椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。

高中数学经典例题错题详解

高中数学经典例题、错 题详解

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M到N的映射是() M N A M N B M N C M N D 映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A到集合B的一个函数。(函数的本质是建立在两个非空数集上的特殊对应) 映射与函数的区别与联系: 函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。 映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。 映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性 上题答案应选 C 【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。 本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。 【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B 中的对应元素;(2)(2、1)在A中的对应元素 【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1 【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数() 【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8 【例4】若函数f(x)为奇函数,且当x﹥0时,f(x)=x-1,则当x﹤0时,有() A、f(x) ﹥0 B、f(x) ﹤0 C、f(x)·f(-x)≤0 D、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称;? 2、满足f(-x) = - f(x)?; 3、关于原点对称的区间上单调性一致;? 4、如果奇函数在x=0上有定义,那么有f(0)=0;? 5、定义域关于原点对称(奇偶函数共有的)

空间向量与空间角练习题

课时作业(二十) [学业水平层次] 一、选择题 1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( ) A .30° B .150° C .30°或150° D .以上均不对 【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且 异面直线所成角的围为? ????0,π2.应选A. 【答案】 A 2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( ) A.52266 B .-52266 C.52222 D .-52222 【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266, ∴直线AB 、CD 所成角的余弦值为52266 . 【答案】 A

3.正方形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,若PA =AB ,则平面PAB 与平面PCD 的夹角为( ) A .30° B .45° C .60° D .90° 【解析】 如图所示,建立空间直角坐标系,设PA =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD → =(0,1,0). 取PD 中点为E , 则E ? ????0,12,12, ∴AE → =? ????0,12,12, 易知AD →是平面PAB 的法向量,AE →是平面PCD 的法向量,∴ cos AD →,AE →=22 , ∴平面PAB 与平面PCD 的夹角为45°. 【答案】 B 4.(2014·师大附中高二检测)如图3-2-29,在空间直角坐标系Dxyz 中,四棱柱ABCD —A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E 、F 分别为C 1D 1、A 1B 的中点,则二面角B 1-A 1B -E 的余弦值为( )

高中数学集合典型例题教学文案

高中数学集合典型例 题

精品文档 收集于网络,如有侵权请联系管理员删除 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??=Y I 注:数形结合---文氏图(即韦恩图、Venn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A I 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A I ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M I 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围.

高中数学-空间向量的基本定理练习

高中数学-空间向量的基本定理练习 课后导练 基础达标 1.若对任意一点O ,且OP =y x +,则x+y=1是P 、A 、B 三点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:C 2.已知点M 在平面ABC 内,并且对空间任一点O ,OM OM=x + 31+31,则x 的值为…( ) A.1 B.0 C.3 D. 3 1 答案:D 3.在以下命题中,不正确的个数是( ) ①已知A,B,C,D 是空间任意四点,则DA CD BC AB +++=0 ②|a |+|b |=|a +b |是a ,b 共线的充要条件 ③若a 与b 共线,则a 与b 所在的直线的平行 ④对空间任意一点O 和不共线的三点A,B,C,若z y x ++=,(其中x,y,z∈R ),则P,A,B,C 四点共面 A.1 B.2 C.3 D.4 答案:C 4.设命题p:a ,b ,c 是三个非零向量;命题q:{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B 5.下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM --= B.MC MB MA ++=0 C.3 13131++++ D.OC OB OA OM +-=2 答案:B 6.在长方体ABCD —A 1B 1C 1D 1中,E 为矩形ABC D的对角线的交点,设A 1=a,11B A =b,11D A =c,则E A 1=____________.

答案:a +21b +21c 7.设O 为空间任意一点,a,b 为不共线向量,OA =a,OB =b,OC =ma+nb,(m,n∈k)若A,B,C 三点共线,则m,n 满足____________. 答案:m+n=1. 8.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,在下列各条件下,点P 是否与A 、B 、C 一定共面? (1)OP =52OA +51OB +5 2OC ; (2)OP=2OA-2OB-OC. 解:(1)OP = 52OA +51OB +52OC . ∵1525152=++,∴P 与A 、B 、C 共面. (2)OP =OC OB OA --22. ∵2-2-1=-1,∴P 与A 、B 、C 不共面. 9.如右图,已知四边形ABCD 是空间四边形,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF =32CB ,CG =3 2CD . 求证:四边形EFGH 是梯形. 证明:∵E、H 分别是AB 、AD 的中点, ∴= 21,=2 1, EH =-=21AD -21AB =21(AD -AB )=21BD =2 1(CB CD -) =21(23CG -23CF )=43(-)=4 3. ∴EH ∥FG 且|EH |=43|FG |≠|FG |. ∴四边形EFGH 是梯形. 综合运用 10.如右图,平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,11A A =c ,则下列向量中与B 1M 相等的向量是( )

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

论高中数学习题课教学

论高中数学习题课教学 发表时间:2014-04-14T11:10:10.810Z 来源:《教育与管理》2014年1月供稿作者:贾丽霞 [导读] 在初中数学教学中,习题课的基本目的是通过解题的形式来形成学生的数学技能,并通过解题教学进一步培养学生数学的应用意识和能力。 笙河北省沙河市第一中学/贾丽霞 【摘要】上好习题课课堂教学模式可以是“目标教学法”、“范例式教学法”、先学后教的“学案导学式教学法”、“探究式教学法”等,但无论采用什么教学模式,都离不开教学内容的合理安排。在科学合理地安排好教学内容的同时,再选择适当的教学方式,则能达到事半功倍之效。 【关键词】高中数学习题课模式在新课程改革过程中,专家、教师们对于如何上好一节新授课讨论的很多,而对于如何上好一节习题课讨论的相对较少。然而,习题课在数学课教学中起着非常重要的作用,它是数学教学中的重要课型。 在初中数学教学中,习题课的基本目的是通过解题的形式来形成学生的数学技能,并通过解题教学进一步培养学生数学的应用意识和能力。习题课之所以重要,是因为习题课能使学生加深对基本概念的理解,使理论完整化、具体化。习题课教学还可以增强学生的理性认识,提高学生的辨别能力。另外,通过问题创设了一种适合学生思维的情境,可以多方面、多角度地培养学生的观察、归纳、类比等技能和能力。从此也可看出学生的解题过程是一种独立的创造活动过程,有利于学生思维能力的发展。对于教师来说,还可以检查学生对所学知识的理解和掌握程度,以便适时调整教学方法和策略,实现数学教学的基本目标。结合自己的教学体会,我认为应做好以下几个方面工作: 1 科学安排教学内容1.1 例题和习题的安排要有明确的学习目标。目标主要有两个方面,一是知识目标,二是技能目标,要通过本节学习,巩固哪些知识,扩展哪些知识,掌握哪些解题方法,理解和体验哪些思想方法,形成什么技能,这些都要有明确的目标。如何没有明确的目标,将成为简单的例题讲解和习题训练,使学习内容缺少完整的知识体系,知识之间难以很好地沟通和联系。例题的安排难以达到示范性,习题的安排也缺少典型性,揭示习题的规律性也有困难。所以缺少目标的习题课有盲目性,会降低教学效率,因此要有明确的教学目标。 1.2 例题的安排要有非常强的示范性。首先要让某些例题体现主要知识点的运用,体现通法通解,以起到加强双基的示范性,再通过适当的变式引申、变式训练,以达到夯实双基、举一反三之效。例题的安排要体现教学解题方法的训练和解题技能的培养,要揭示例题的解题规律和体现例题的思想方法,这样才能体现例题的典型性。分析例题前可适当回顾知识要点及解题的基本方法,以便例题的学习更自然、更轻松。 2 精心选题 2.1 选题要有针对性,针对教学目标,针对知识点,针对学生的现状。教师在编选题前,对近一段的教学情况做些回顾和小结,很有必要,做到对教学情况心中有数,不能凭感觉和“经验”随意挑选几个题目,这就很难收到好的效果。小结要从教与学两个方面入手。对于教而言,要冷静,客观的分析前面所学知识到位了没有,教学情况如何,教学方法是否暴露了知识的形成过程。对学而言,要了解学生对重点内容了解到什么层次,难点消化到什么程度,思维训练的效果如何,针对这些来编选题。 2.2 选题要有可行性。选题要把握好度,作为平时的习题课,题目的综合性不要过强,这是因为学生对新概念,新知识接触的时间不长,有的学生尚未完全理解和掌握。如果题目背景较深,信息量较大,涉及到的新知识较多,学生的思维可能跟不上,这会影响学生思维的积极性,甚至使学生丧失信心,若要选综合性较强的题目,一般采取分步设问的方式给出,这样做学生易成功,有利于激发学生的思维兴趣,有助于学生把问题搞懂。 2.3 例题选择要有研究性。选题要精,要有典型性。通过对问题分析,启发学生从不同的角度观察、联想、探索解决问题的途径,使学生参与到研究问题中,成为问题的探索者。 3 重视问题分析第一,树立正确的解题观:弄清问题,拟定计划,实现计划,回顾总结。第二,发挥学生主体作用,让学生自己分解目标,进行知识点定位,寻找问题突破点,选择解题方法。第三,引导学生多角度思考问题,强化等价转化与化归思想,一题多解,培养学生的发散性思维。第四,注重思维方法和品质的培养,如逆向思维,正难则反,类比思想等,要求思维严谨,逻辑严密,切忌会而不对,对而不全。 4 例题的处理要得当对例题的学习要注意师生互动。教师重要的是及时地点拨,学生重要的是始终积极地进行思维活动,这样才能真正体现教师为主导、学生为主体的新的学习方式。教师要精讲,但对学习易犯的错误要及时纠正,对学生困难的解题思路要及时点拨,对方法技巧要引导学生总结。先学后教的“学案导学”教学方式是一种很好的教学模式。按照这种方式提前把学案发到学生手里,让学生予习,教师在上课前利用班空时间要及时了解学生学习的重点、难点及其他内容,并发现问题,这样才能在上课时有的放矢地学习,讲解更能击中要害,学生能会的就不要讲,学生能代老师讲的尽量让学生讲,尽量多给学生点空间和时间,以培养学生自主学习的能力。

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

高中数学习题课教学反思

高中数学习题课教学反思 进贤一中叶志勇 波利亚强调指出:“中学数学教学首要的任务就是加强解题训练。” “掌握数学就是意味着善于解题。” 习题课是数学教学活动的一个极为重要的形式.目前我国中学数学教学中,习题课教学占有较大的比例.在习题课教学中,师生通过对一些典型例题的分析讨论,使学生对所学过的基本概念、公式、定理及其运用有进一步的理解,以达到夯实基础的目的.在对例题解题策略的思考和解题方法的探求中,要启迪学生的思维,培养学生的品质,提高学生的能力.对于数学习题课的教学,我认为应该做好以下几方面的工作: 一、精心挑选例题: 1.例题选择要有针对性,即要针对教学目标、针对知识点、针对学生的学习现状。目标主要有两个方面,一是知识目标,二是技能目标,要通过本节学习,巩固哪些知识,扩展哪些知识,掌握哪些解题方法,理解和体验哪些思想方法,形成什么技能,这些都要有明确的目标。如果没有明确的目标,将成为简单的例题讲解和习题训练,使学习内容缺少完整的知识体系,知识之间难以很好地沟通和联系.例题的安排难以达到示范性,习题的安排也缺少典型性,揭示习题的规律性也有困难.所以缺少目标的习题课不仅有盲目性,还会降低教学效率,因此要有明确的教学目

标. 2.例题选择要注意可行性,即应在学生“最近发展区”内进行选择,不宜过易也不宜过难,要把握好“度”。要注意题型的划分,习题类型一般有基础知识型、基本方法型、综合提高型、创新应用型等,在难度上要有低、中、高三级题型,这三级之间还应插入级与级之间的“缓冲”习题,形成“小坡度、密台阶”习题,这样安排有利于学生在“发现区”内解题,利于学生“步步登高”,利于学生树立解题的必胜信心.我们坚决反对把难题放在前面,坚决反对把整套习题安排得太难,要避免打击学生做题的积极性。适当安排综合提高型和创新应用型习题,有利于程度较好的学生的学习和提高.习题的安排,既要体现知识与方法,也要体现能力培养与积极性调动. 3.例题选择要有研究性,典型性,要克服贪多、贪全,既要注意到对知识点的覆盖面,又要能通过训练让学生掌握规律,达到“以一当十”的目的。选择例题要精,要有丰富内涵,既要注重结果,更要注重质量,以期“一题多解,达到熟悉;多解归一,挖掘共性;多题归一,归纳规律” 。首先要让某些例题体现主要知识点的运用,体现通法通解,以起到加强双基的示范性,再通过适当的变式引申、变式训练,以达到夯实双基、举一反三之效.例题的安排要体现教学解题方法的训练和解题技能的培养,要揭示例题的解题规律和体现例题的思想方法,这样才能体现例题的典型性,分析例题前可适当回顾知识要点及解题的基本方

相关文档
最新文档