电光防爆KBZ-400馈电开关漏电闭锁保护原理

电光防爆KBZ-400馈电开关漏电闭锁保护原理
电光防爆KBZ-400馈电开关漏电闭锁保护原理

第一章KBZ9-400/200馈电开关漏电闭锁保护原理

谈到漏电保护,需要说明一下,漏电保护分为漏电闭锁和漏电检测,这是两种不同的功能,这个在以前的帖子中也谈到过,在这里再说一下:

漏电闭锁:就是在开关合闸之前,开关的保护插件先对负载线路的绝缘情况进行检测,如果线路绝缘低于规定值,则开关不能合闸。

漏电检测:简称检漏,就是开关合闸之后,如果负载线路发生漏电情况,开关立即跳闸。

漏电检测从工作原理上又有,附加直流漏电检测和零序电流检测。在本贴中,我们将通过对KBZ9-400/200馈电开关漏电保护原理的介绍来讲解这两种漏电检测的工作原理。

馈电开关与磁力启动器的区别:

1、磁力启动器是用来控制一个负载电源的通断控制的,他不允许一个磁力启动器控制两台设备。而馈电开关是作为一个工作面的总开管使用,他可以连接较多的负载。

2、磁力启动器可以频繁启动、停止以控制设备的启停。馈电开关一旦合闸,如果负载线路不发生故障,或其他情况(像停电检修),馈电开关是不需要停电的。

3、磁力启动器只具有漏电闭锁,而没有漏电检测功能。馈电开关同

时具有漏电闭锁、漏电检测、过负荷等故障保护。

4、磁力启动器的接触器吸合维持靠衔铁带电维持,而馈电开关的接触器闭合维持靠机械结构维持。

说完上面这点小常识之后,现在步入正题,KBZ9-400/200馈电开关漏电保护原理

漏电闭锁工作原理

如下图:

变压器将1140(660)V电压变成12V交流电,通过红线1、2所示引入插件内部,然后

整流成直流电。直流12V电源如图中红线3中的箭头所示,通过电阻

2R13 —— 2R14 ——二极管2D1 ——插件引脚2A1 ——馈电开关辅助常闭触点ZD ——总分选择开关FK(此时开关拨至总开关FK 位置)——三相电抗器SK ——将12V直流电源加入负载导线上面——负载导线的对地电阻(正常时此电阻很大,有漏电现象,负载线路对地电阻减小)—— 12V电源负极(图中蓝色箭头所示)。

如果负载对地电阻低于规定值,则IC1 13(集成运算放大器13脚)电位下降,低于IC1 12脚,则14脚变为12V,经2R32,2D8,FK,2J1,2B7进入过载插件A2脚,使D13截止,过载插件IC2 5脚变为高电位,使IC2 7脚输出24V,推动G管,使J1吸合,脱口线圈TQ动作闭锁,使断路器三相对地绝缘电阻低于规定值时不能合闸。同时漏电插件1C1 14脚输出12V经过2A8,进入显示插件,漏电显示。

看我上面的介绍,大家可能有点晕,现在我们还是来点通俗易懂的吧。还是看图:

控制变压器BK 将1140V或660V电源变成17V电源,送入插件内部(图中绿色箭头所示)。经过插件内部的整流,稳压电路,变成直流12V电源。12V电源的正极通过插件的B10脚——三相电抗器SK ——将电源加到负载线路上。如果负载的对地电阻低于规定值,插件内部的原件就会检测出来,从而驱动脱扣线圈TQ吸合,使馈电开关不能合闸。

为什么说这个电路时漏电闭锁哪,请你看一下图中蓝色线圈的那个ZD常闭触点,这个触点就是馈电开关前面的行程开关其中的以对触点。他串联的漏电闭锁的检测回路当中。当馈电开关没有合闸时,这对触点是闭合的,漏电闭锁回路可以对负载的绝缘情况进行检测,当馈电开关合闸之后,此常闭触点就会切断漏电闭锁的检测回路,漏电

闭锁检测回路就失去了作用。那么馈电开关合闸之后,要是负载漏电了怎么办哪?那就要有漏电检测回路来完成这个工作了,原理将在下一贴介绍。

第二章KBZ-400馈电开关选择性漏电保护原理

首先说一下,什么是选择性漏电保护:如下图,

在一个工作面中安装有3台馈电开关,其中一台为总开关,接在变压器的后面,另外两台并联连接在总馈电开关的负载侧。后面的两台馈电开关即为分馈电开关。

分馈电开关1的负载侧连接有照明综保、25KW绞车、皮带涨紧绞车等等。

分馈电开关2的负载侧连接有皮带开关QJZ-315控制着SDJ皮带机。选择性漏电保护就是,当分馈电开关1所带负载中有漏电故障时,例如25KW绞车电机漏电。分馈电开关1就会立即跳闸,切断这一支路的供电,而不会影响馈电开关2所带支路的供电。

如果馈电开关2所带负载有漏电现象,则馈电开关2跳闸,不会影响其他支路。

总馈电开关作为后备保护,当分馈电开关出现故障,不能及时检测到漏电故障时,总馈电开关跳闸。

这就是选择性漏电保护:哪个支路有漏电故障,哪个支路的馈电开关先跳闸。

也许你看完这段介绍,觉得没有什么复杂的,这个供电系统理所应当这么连接,其实,在早些时候,馈电开关是没有选择性漏电保护功能的,那是一个工作面只安装一台馈电开关,如果工作面中的任何一台设备发生漏电现象,都是作为总开关的馈电开关跳闸,切断了整个工作面的供电。

也许你有疑问,那是为啥不像现在这样安装3台,把工作面分成几个支路哪?因为那时的开关厂家还没有能力生产出带有选择性漏电保护的馈电开关。如果馈电开关不具备选择性漏电保护功能,就是你安装上十台,出现故障的支路也不会先跳闸,而是总开关跳闸,或者不知道哪个开关会跳闸。

看到这里,你也许会觉得,选择性漏电保护的工作原理还是挺有意思的。我们就来看看他的工作原理吧:

KBZ-400馈电开关既可以作为总馈电开关使用,也可以作为分馈电开关使用。选择性漏电保护,是在他作为分开关使用的时候才具备的功能,也就是安装到上图中的馈电开关1或馈电开关2的位置。在馈电

开关的漏电保护插件里,有一个选择开关,当作为总开关使用时,将选择开关拨至ZK位置,当作为分开关使用时,就要将选择开关拨至FK位置。

当作为分开关使用时,如果本支路的漏电电阻小于规定值时,零序电流互感器就会输出电压送至IC1 的3脚与IC2的2脚相比较,(图中红色线所示)如果绝对值大于2脚的电位,IC1的1脚就会输出脉冲波信号。

同时三相电抗器也将输出零序电压经过插件插脚2B10,选择开关FK,电阻2R6,电容2C11送入IC2的10脚(如同中蓝色线所示)与IC2 的9脚相比较,若绝对值大于9脚电位,IC2的8脚将输出脉冲波信号。若两脉冲方波正半周信号重合满足一定值时,两信号向电容2C13充电(如图中橙色线所示),当IC1 的5脚电位高于IC1的6脚电位时,IC1的7脚输出高电位,直至IC1的8脚输出的是宽脉冲,时二极管2D7截止。

另外70V附加直流通过三相电抗器,对三相网络进行漏电检测,若漏电电阻小于规定值时,IC2的5脚电位将高于IC2的6脚整定值时,IC2的7脚变为高电位,使二极管2D9截止。

二极管2D7和2D9截止之后,+12V电源经过电阻2R30、二极管2D10、选择开关FK、将插件插件2B7进入过载插件A2脚,(如图中黄色线路所示)推动G管,时脱扣器动作,断路器分闸。

通俗讲解:

每当看完上面这样的原理讲解,相信不少朋友都有点晕,其实我也是有点晕。

还是来点通俗易懂的吧。

当KBZ-400作为分开关使用时,把选择开关拨至FK之后,选择性漏电保护回路就接入了。当负载有漏电现象时,当零序电流互感器就会感应出信号。零序电流互感器感应的信号送入漏电插件进行处理。同时,漏电时,三相电抗器的人为中性点对地的电压也不为0了,这个不为零的电压信号也送入漏电插件进行处理。

漏电插件综合以上两个信号的值,与插件内部设定的值进行比较,当送入的信号不符合设定值时,插件就会认为负载漏电从而驱动脱口线圈吸合,使馈电开关跳闸。

也许有朋友还想知道,零序电流互感器和三相电抗器是如何感应出零

序电流和零序电压信号的,我们在这里简要的讲一下:

零序电流互感器

(零序电流互感器就是本体后面那个黑色的方块,中间有个孔,三根负载线一起从哪个孔中穿过的原件。

)零序电流互感器时如何感应出信号的哪?我们就用测量电动机电流来讲解,在用钳形电流表测量电流的时候,都是钳住一根线,这时可以看出这一根线中流过的电流大小。如果你把3根相线一起钳住,你看看钳流表是不是测不出电流了(即电流为0或很小)。但如果电动机的三相电流不平衡,(电动机漏电就会造成三相电流不平衡)钳流表就可以测出电流了。

三相电抗器:

三相电抗器就是馈电开关本体后面那个有3个小线圈的家伙,他的3个线圈,一头接在开关三相负载线上,另外3个头连在一起,形成一个中性点,在馈电开关三相负载平衡时,中性点对地电压是0V。当有漏电现象时,致使三相负载不平衡,三相电抗器的中性点对地就会有电压。

KBZ馈电开关400说明书

2216-02 KBZ—400,200/1140、660 矿用隔爆型真空馈电开关产品使用说明书

甘肃容和矿用设备集团有限公司2009.03.16出版

1. 产品型号及意义 K B Z ——□ / □ 额定电流(A)/额定电压(V) 真空 隔爆型 馈电开关 2. 产品执行标准 MT871-2000《矿用隔爆真空馈电开关》 Q/RH 012—2008 《KBZ—630(500,400,200)矿用隔爆型低压交流真空馈电开关》 3. 防爆形式: 矿用隔爆型防爆标志:ExdI。 4. 用途及使用条件 4.1 用途 KBZ—400,200/1140、660矿用隔爆型真空馈电开关(以下简称馈电开关),使用于煤矿井下和其它周围介质中含有爆炸性气体(甲烷混合物)的环境中,在交流50Hz,电压660V、1140V,电流至400A(200A)的中性点不接地的三相电网中,作为配电总开关或分支开关,也可作大容量电动机不频繁起动之用。具有总开关漏电保护、分开关选择性漏电保护、漏电闭锁、过载、短路、三相不平衡(包括断相)、欠压等多种保护功能,并可外接远方分励、起动按钮,也可接风电瓦斯闭锁。 4.2 使用条件 4.2.1 海拔高度不超过2000m; 4.2.2 周围环境温度为-25~+40℃; 4.2.3 周围环境湿度不大于95%(+25℃); 4.2.4 无破坏性绝缘气体或蒸气的环境中; 4.2.5无显著振动或冲击振动的地方; 4.2.6能防止雨雪与滴水的地方; 4.2.7与水平面的安装倾斜度不超过15°; 5. 主要技术特征 5.1 额定工作电压:660V、1140V;额定工作电流:400A,200A; 5.2 额定工作制:长期工作制; 5.3 最大分断能力:1140V(COS?=0.3)7.5KA; 5.4 操作方式:电动合、分闸,机械保持。 5.5 馈电开关保护功能的特性参数:详见附录保护器使用说明书。 5.6 进出线口:主回路进出线喇叭口4只,可穿入?32~?78的橡套电缆;控制线路喇叭口2只,可穿入?12~?19橡套电缆。 6 外行尺寸及质量 6.1 馈电开关外形尺寸:700×480×720。 6.2 馈电开关的重量:300Kg。 7 结构概述 7.1 馈电开关的隔爆外壳呈方形,座焊在撬形底座上,隔爆外壳分隔为两个空腔即接线腔与主腔。

馈电开关漏电原理及设置方法

KBZ16-400(200)/1140(660)矿用隔爆型真空馈电开关 漏电保护工作原理及设置方法 总开关漏电保护和漏电闭锁工作原理: 总开关漏电保护:当馈电设置为总开关时,漏电保护使用附加直流方式监测电网三相对地绝缘电阻。附加直流回路为:36V直流电源正极--35#线和扭子开关接点,保护器R0输入端--保护器内部--RON输出端--大地、电缆三相对地绝缘电阻--三相电抗器--R1--36V电源负极形成回路。当电缆三相对地绝缘电阻小于整定值时保护器内部继电器J1释放,接通分闸继电器HK2,馈电开关显示漏电。 漏电闭锁:采用附加直流工作原理,保护电路同漏电保护。 分开关漏电保护(功率方向型)工作原理: 当馈电开关设置为分开关时,漏电保护采用基于零序电压和零序电流的保护方式。当电网发生漏电故障时,互感器上会产生零序电流,零序电流经54#、55#接线端子输入给保护器,与此同时,零序变压器BK2二次侧会产生零序电压,并经U0、U0N接线端子输入给保护器。保护器将采集到的零序电流值和零序电压值与保护器设定值比较,并判断零序电压和零序电流之间的相位角。当零序电流值和零序电压值大于设定值,同时零序电流相位角滞后零序电压53°―218°时(保护器程序已设好此参数,无法更改),保护器做出漏电故障判断,其继电器J1释放,接通分闸继电器HZ2,于是断路器失压线圈S失电

释放,而脱扣线圈F得电带动断路器分闸机构动作,断路器跳闸。与此同时,保护器液晶显示屏显示故障类型为“选漏”(故障界面参见图1),保护器面板上“选漏”故障指示灯通电发出红光,给出故障指示信号。 图1选漏故障显示界面图2跳闸投退界面 注意事项: 1、一个系统中最多允许一台馈电开关设为总开关,他的下级开关 都应设为分开关,并应设置总开关的漏电检测延时时间,通常设为0.2s。若总开关下有多级分开关,那么分开关应设置“选漏延时”,各级延时的级差时间为0.2s。 2、若馈电开关是安装在移动变电站下级,那么低压保护箱为总开 关,馈电开关应设置为分开关。 3、作为分开关使用时,若发现零序电流值过小,无法实现选择性 漏电保护,可以通过增加分布电容来补偿零序电流,我公司可以提供0.22uF的补偿电容器。 分开关选择性漏电保护参数的整定方法: 出厂时,监视电压(零序电压)默认值为5V。监视电流(零序电流)

隔离开关闭锁回路的比较分析

隔离开关闭锁回路的比较分析 [摘要]本文通过比较前后两期工程隔离开关闭锁回路的不同,分析其在运行实践中的不同效果。 [关键词] 变电站电气闭锁微机闭锁性能可靠操作简便 1 前言 近年来,随着新变电站和新设备的投入运行,在原来熟悉的变电站内传统机械闭锁“五防”装置之后,又出现了电气闭锁和微机闭锁这样新的“五防”装置。这些新的“五防”装置伴随着新的设备的操作特性,并突破了原有机械闭锁的本体限制,实现了防误逻辑上的单元互联。由于新型高压刀闸采取电动操作机构,这一操作方式的改变从而决定了其可以采取更先进的电气闭锁和微机闭锁。所以隔离开关的电气先进性决定了“五防”装置先进性,而“五防”装置先进性也确保了隔离开关的可靠性。这两者真是相生相克,共生共存。 电气防误操作是建立在二次操作回路上的一种防误功能,是一种现场电气联锁技术, 主要通过相关设备的辅助接点连接来实现闭锁。这是电气闭锁最基本的形式,闭锁可靠。但这种方式需要接入大量的二次电缆,接线方式较为复杂,运行维护较为困难,辅助接点设备工作不可靠。 微机防误则是一种计算机技术,闭锁系统一般不直接采用现场设备的辅助接点,接线简单,通过防误闭锁系统微机软件规则库和现场锁具实现防误闭锁。根据现场实际情况,编写相应的"五防"规则程序,可以实现较为完整的"五防"功能。 灌南县供电公司于2006年投运的220kV金庄变一期工程,220kV和110kV采取双母线接线,其隔离开关采用电动操作机构,隔离开关的防误采取近控微机五防加电气防误,远控采取监控机防误。 在运行准备时,通过学习和研究施工图纸发现实际中理想化的微机五防加电气防误互联技术的具体接线确非常让人深思。细小接线的不同将会导致整个防误回路完全不同的结果。近年来由于电网的扩大,技术的进步,运行人员的减少,变电站无人值班制度逐渐推广,所以对隔离开关的远近控操作的防误也随之出现。 施工图中的隔离开关闭锁回路图如下: 其中“闭锁”、“合闸”、“分闸”位于测控装置,2G、1GD、3GD1为一次设备硬节点,“YK”、“1FA”、“1HA” 位于刀闸操作箱。 此隔离开关闭锁回路两头接于隔离开关的操作电源,图左紧急分闸按钮未画出,右边是刀闸机构箱回路。 测控装置采用北京四方CSI200测控装置,在二次操作回路中,测控装置上可以分合闸、实现远近控切换、以及解锁。图中的闭锁长开接点由微机防误中的逻辑五防规则库实现,当

接近开关工作原理,及接线图

接近开关工作原理,及接线图 发布者:david 发布时间:2011-4-20 13:30:02 阅读:607次 接近开关工作原理 1、概述 接近传感器可以在不与目标物实际接触的情况下检测靠近传感器的金属目标物。根据操作原理,接近传感器大致可以分为以下三类:利用电磁感应的高频振荡型,使用磁铁的磁力型和利用电容变化的电容型。 特点: ●非接触检测,避免了对传感器自身和目标物的损坏。 ●无触点输出,操作寿命长。 ●即使在有水或油喷溅的苛刻环境中也能稳定检测。 ●反应速度快。 ●小型感测头,安装灵活。 2、类型 (1)按配置来分

(2)、按检测方法分 ●通用型:主要检测黑色金属(铁)。 ●所有金属型:在相同的检测距离内检测任何金属。 ●有色金属型:主要检测铝一类的有色金属。 3、高频振荡型接近传感器的工作原理 电感式接近传感器由高频振荡、检波、放大、触发及输出电路等组成。振荡器在传感器检测面产生一个交变电磁场,当金属物体接近传感器检测面时,金属中产生的涡流吸收了振荡器的能量,使振荡减弱以至停振。振荡器的振荡及停振这二种状态,转换为电信号通过整形放大转换成二进制的开关信号,经功率放大后输出。下面为详细介绍: (1)通用型接近传感器的工作原理

振荡电路中的线圈L产生一个高频磁场。当目标物接近磁场时,由于电磁感应在目标物中产生一个感应电流(涡电流)。随着目标物接近传感器,感应电流增强,引起振荡电路中的负载加大。然后,振荡减弱直至停止。传感器利用振幅检测电路检测到振荡状态的变化,并输出检测信号。

振幅变化的程度随目标物金属种类的不同而不同,因此检测距离也随目标物金属的种类不同而不同。 (2)所有金属型传感器的工作原理 所有金属型传感器基本上属于高频振荡型。和普通型一样,它也有一个振荡电路,电路中因感应电流在目标物内流动引起的能量损失影响到振荡频率。目标物接近传感器时,不论目标物金属种类如何,振荡频率都会提高。传感器检测到这个变化并输出检测信号。 (3)有色金属型传感器工作原理

最新400馈电开关说明书汇总

400馈电开关说明书

ZYFB 中原防爆 KBZ—400(630)/1140(660)矿用隔爆型智能化真空馈电开关 使用说明书

河南省济源市中原防爆电器有限公司 目录 一、用途及使用条件 (2) 二、产品特点 (2) 三、产品功能 (3) 四、产品型号含义 (5) 五、开关结构概述 (5) 六、主要技术参数及保护特性 (5) 七、电气原理 (10) 八、操作指南 (11) 九、外形尺寸及重量 (20) 十、标志、包装、运输 (20) 十一、售后服务 (21) 十二、常见故障及处理方法 (21) 十三、电器元件明细表 (22) 十四、附图 (23)

一用途及使用条件 1、矿用隔爆型智能化真空馈电开关(以下简称开关),主要用于煤矿井下和其它周围介质中含有甲烷及煤尘混合物的爆炸性气体环境中。适应于交流50HZ,额定电流400(630)A,额定电压380V、660V、1140V三相中性点不接地供电系统中。做为总开关、分支开关,也可作为大容量电动机不频繁起动控制之用。当供电电路中出现过载、短路、断相或漏电时能自动切断电源。做总开关时具有三相对称性漏电和漏电闭锁保护,做分支开关使用时具有选择性漏电保护和漏电闭锁保护功能,过流保护具有反时限时性,近端出口短路采用大电流无压释放保护功能。 2、开关可以在下列环境中使用; (1)海拔高度不超过2000m; (2)环境温度为零下-20℃-- +40℃; (3)空气相对湿度不大于95%(+25℃); (4)含有甲烷、煤尘的空气中,但无足以腐蚀金属和绝缘的气体和蒸气; (5)无淋水和水侵入的地方。 二、产品特点 本开关根据用户需求,采用先进的科学技术进行设计,与同类相比,其特点如下: 1、具有强大的数据采集和处理功能,对传感器二次信号不经过任何变形处理,直接进行高速采样和实时测算,连续量化处理所获信息最接近于真实情况。 2、采用晶振计时,故所有定时限、反时限延时准确无误。

矿用真空隔爆馈电开关附带说明书和原理图(终审稿)

矿用真空隔爆馈电开关附带说明书和原理图 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、概述 本系列开关是用于煤矿移动变电站低压侧馈电开关,和煤矿井下配电系统总开关或分支开关。也可作为不频繁起动的电动机控制开关。本厂生产的馈电开关有采用单片计算机保护系统和电子式保护系统两种。此说明书只适用于电子式保护系统。 二、使用环境条件 1、海拔高度不超过1000米; ?2、周围环境温度-5~40℃; ?3、周围空气相对湿度不超过95%(+25℃); 4、污染等级为3级,安装类别为Ⅲ类; 5、在有甲烷和煤尘爆炸危险的空气中; 6、在没有淋水的地方; 7、无对金属和绝缘体有害的气体; 8、安装倾斜都不大于15度,没有强烈震动场所。 三、基本参数 额定电压 1140V或660V 额定电流 630A、500A、400A 电源频率 50HZ 工作制连续工作制 控制操作电压~48V、~127V 外型尺寸508×780×854 重量 300kg极限通断能力 12.5KA(630开关)9KA(400、500开关)电寿命 3000次机械寿命 10000次 四、结构 1、壳体用钢板焊接加工制成。门为快动平面止口式,利用左侧凸轮手柄提起,转移出止口限位范围,即可将门打开,使用方便。 2、前门上装有电压表、电流表、KΩ表、信号显示窗、复位按扭、过流按扭、漏电按扭。箱体右侧设有合闸按扭、分闸按扭、隔离开关手柄。 3、箱体上部是隔爆型接线腔,有四个主电缆引出口和三个控制电缆引出口。与移动变电站配套运行时,可四路同时输出;作为配电系统总开关或分支开关时,其中一路作为电源输入,其余可同时输出。 4、箱体腔内上部装有真空断路器,它与主回路连接采用三相插接式结构,利用装在腔内上方的杠杆可方便的将断路器沿导轨推入或拉出,使其接入或断开电源和负载。 5、箱体底部装有保护器,用插接件与其他电路连接,便于更换。保护器内装有检漏板、信号板和继电器1J、2J,保护器外壳即可防尘、又能屏蔽。 6、箱体腔内后下部装有电源变压器、阻容吸收器;右侧右三相电抗器、控制电路的熔断器和隔离开关。 7、前门内侧的仪表、按扭等都装在一块表板上,仪表板用铰链安装,与箱体的电气连接采用插接件,便于安装、更换和维修。 8、电源变压器一次侧设有660V、690V、1140V、1200V四档,用户可根据主回路电源电压进行选接。 五、电气原理 馈电开关的电气线路由主回路、控制回路和保护电路三大部分组成。(一)主回路是通过真空断路器接通与分断。(二)控制回路由隔离开关、电源变压器、断路器

接近开关原理及接线图

电容/电感/霍尔式接近开关的工作原理 1、电感式接近开关工作原理 电感式接近开关属于一种有开关量输出的位置传感器,它由LC高频振荡器和放大处理电路组成,利用金属物体在接近这个能产生电磁场的振荡感应头时,使物体内部产生涡流。这个涡流反作用于接近开关,使接近开关振荡能力衰减,内部电路的参数发生变化,由此识别出有无金属物体接近,进而控制开关的通或断。这种接近开关所能检测的物体必须是金属物体。工作流程方框图及接线图如下所示:

2、电容式接近开关工作原理 电容式接近开关亦属于一种具有开关量输出的位置传感器,它的测量头通常是构成电容器的一个极板,而另一个极板是物体的本身,当物体移向接近开关时,物体和接近开关的介电常数发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通和关断。这种接近开关的检测物体,并不限于金属导体,也可以是绝缘的液体或粉状物体,在检测较低介电常数ε的物体时,可以顺时针调节多圈电位器(位于开关后部)来增加感应灵敏度,一般调节电位器使电容式的接近开关在0.7-0.8Sn的位置动作。工作流程方框图及接线图如下所示:

3、霍尔式接近开关工作原理 当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U, 其表达式为U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。 由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。我门销售的霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。 霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和接近开关类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。 霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近开关,压力开关,里程表等,作为一种新型的电器配件。 霍尔开关的功能类似干簧管磁控开关,但是比它寿命长,响应快无磨损,而且安装时要注意磁铁的极性,磁铁极性装反无法工作。 内部原理图及输入/输出的转移特性和接线图如下所示:

400A馈电开关说明书

矿用隔爆真空馈电开关 8.1 DKZB-400/1140矿用隔爆型真空自动馈电开关 馈电开关主要用作供电系统的总开关、分支开关,也可作为大容量电动机不频繁起动之用。当线路中出现过载或短路故障时,馈电开关能根据要求自动地切断电路。同时馈电开关可与检漏继电器配合使用或自身内装置检漏保护单元,对系统中的漏电故障实施保护。 8.1.1概述 1.技术特征 额定电压 /V 1140/660 额定电流 /A 400 最大分断能力 /A 7500(30次) 分断时间 /s ≯0.03(从接到电流、继电器动作信号起到分断完毕) 电寿命 /次 3000(分、合额定电流) 机械寿命 /次 15000 过载保护: 整定值 /A 160、200、250、300、350、400 保护特性过电流/整定电流动作时间 1.0 不动作 1.3 <1h 2.0 <10min 3.0 可返回电间>3s 短路保护整定值(瞬动) /A 1200、1800、2400、3000、3500、4000 欠压保护当电压降到0.35~0.65U N时, 失压线圈释放,开关脱扣,分闸。 当电网停电时失压线圈释放,开关脱扣,分闸漏气闭锁开关分闸后,任一真空管完全漏气时,开关闭锁而不能合闸漏电保护与检漏继电器配合使用,对线路实行漏电保护 远方分闸外接主令开关(常开接点)可实现远方分闸 重量 /kg 约90 2. 结构特点 1)外壳部分 隔爆外壳分为2个隔爆腔,上腔为接线空腔,下腔为主腔(包括腔体与前门)。前门与壳体用12个M12螺栓紧固,支承在壳体的铰链上。 ZD1-400/1140型真空断路器安装在后腔中部,其操作轴与脱扣按钮分别由连接套、连动板、操作手把与手动脱扣按钮相连,并与连接套与外壳把手相连。阻容吸收器安装在后腔左上方,接在开关的负荷侧。 前门内侧下方装有易拆的控制芯板组件,中间为试验开关,上方为开关工作状态指示灯。前门与外壳有可靠的机械闭锁。 2)芯子部分 (1)ZD1-400/1140型真空断路器为一长方体结构。它由装有3只真空管、3只拉力继电器、电流互感器组和操作机构等组成。断路器的触头开距为4±0.5mm,超行程为1+0.5mm。 (2)控制电源开关。用来接通与分断电源变压器的一侧电源,还兼作故障排除后开关重新分闸前解除记忆的复位开关。

KBZ9-400馈电开关原理及维修

简要说一下9-400馈电开关的机械操作机构 图一 9馈电开关的分闸与合闸,主要是通过机械操作机构完成的。如上图,真空管动触点通过连杆3与机械机构连接。然后机械机构再通过连杆1与开关外壳上的操作手柄连接(如下图)。转动外壳上的手柄,带动真空管的闭合与分开。

图二 在图一中,有一个脱扣线圈5,这个脱扣线圈受馈电开关的保护插件控制。当馈电开关有短路,过载,漏电等故障时,保护插件驱动脱扣线圈吸合,使馈电开关跳闸。 在脱扣线圈的旁边,有一个跳闸螺栓6。如果在手动合闸的时候,搬动合闸手柄,机械机构不能合闸,就是机构打滑,在合闸状态保持不住。这时,可以调整这条螺栓。 当按动试验按钮进行短路试验,电动分闸时,如果按动按钮后,脱扣线圈吸合,但是不跳闸。这时,也可以通过调整这条螺栓解决问题。不过调整的方向和合不上闸时调整的方向相反。 机械机构的原理,基本上就是这样,大家可以在操作开关的时候,自己仔细观察一下机械机构具体的动作过程,要比我在这里讲解好的多。 在井下,有这样一个要求,就是在没有通风的情况下,工作面的电气设备不允许工作。也就是说,风机开关不启动,其他电气设备的开关不能启动。为了确保这一功能的实现,便有了“风电闭锁”。因为馈电开关是一个工作面的总开关,如果馈电开关不合闸,其他的电器设备就无法工作。所以“风电闭锁”的连接,就是风机开关与馈电开关的闭锁连接。 风电闭锁的接线方法如下:

上图中,灰色部分为馈电开关的原理图,图中,你可以看到在漏电插件与过载插件的引脚上分别有个A4点,在两点之间写着“风电闭锁”。在开关的接线室中,你会找到A3和A4这两个接线柱,就是原理图中的这两个接点。 白色为风机开关的一对“风电闭锁”接点。在实际使用中,将风机开关的风电闭锁点与馈电开关的“风电闭锁”点连接起来,如上图所示。当风机开关启动以后,就会将风机开关的“风电闭锁”触电1K1闭合。从而使馈电开关中的A3与A4形成“通路”。只有A3与A4形成通路以后,馈电开关才能够合闸。否则馈电开关无法合闸。在馈电开关与风机开关都正常运行的情况下,如果风机开关停止,1K1触电就会断开,切断馈电开关A3与A4的联系,馈电开关也会跳闸。 9-400/200馈电开关的合闸靠手动,这个在“9-400馈电开关的机械操作机构”一贴中已经讲过了。他的电动分 闸,漏电、过载等保护的动作,靠的是脱扣线圈。脱扣线圈吸合,开关就分闸。

接近开关工作原理一

接近开关工作原理一-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

接近开关的工作原理一 随着自动化的提高,接近开关的使用次数也越来越频繁,大家不禁会问,接近开关就那么点大,能用多大的用处呢?其实,这是个理解误区,可别小看了这些小开关,它们的用处可大着呢!现在,就让我来给大家详细系统的介绍介绍接近开关的工作原理、接线方式及应用吧!首先大家看到的就是它的工作原理。 接近开关又称传感器,按工作性质分类可分为电感式接近开关、电容式接近开关、红外线光电开关、位移传感、霍尔开关及磁性开关六大类,按电源分类就只有交流和直流两种了。针对设备,给大家介绍前面三种常用的开关,即电感式、电容式和红外线光电三种! 电感式接近开关: 电感式接近开关属于一种有开关量输出的位置传感器,它由LC高频振荡器和放大处理电路组成,利用金属物体在接近这个能产生电磁场的振荡感应头时,使物体内部产生涡流。 这个涡流反作用于接近开关,使接近开关振荡能力衰减,内部电路的参数发生变化,由此识别出有无金属物体接近,进而控制开关的通或断。这种接近开关所能检测的物体必须是金属物体。 以下是它的工作原理图:(图1) 电容式接近开关: 电容式接近开关亦属于一种具有开关量输出的位置传感器,它的测量头通常是构成电容器的一个极板,而另一个极板是物体的本身,当物体移向接近开关时,物体和接近开关的介电常数发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通和关断。这种接近开关的检测物体,并

不限于金属导体,也可以是非金属、液体或粉状物体,在接近开关的尾部,有一个可以顺时针调节多圈电位器来调节感应灵敏度,一般调节电位器使电容式的接近开关在它本身检测距离的70%-80%的位置动作。 以下是它的工作原理图:(图2) 红外线接近开关: 红外线属于一种电磁射线,其特性等同于无线电或X射线。人眼可见的光波是380nm-780nm,发射波长为780nm-1mm的长射线称为红外线,而红外线光电开关优先使用的是接近可见光波长的近红外线。红外线光电开关(光电传感器)属于光电接近开关的简称,它是利用被检测物体对红外光束的遮光或反射,由同步回路选通而检测物体的有无,其物体不限于金属,对所有能反射光线的物体均可检测。根据检测方式的不同,红外线光电开关可再分为 1.漫反射式光电开关 漫反射光电开关是一种集发射器和接收器于一体的传感器,当有被检测物体经过时,将光电开关发射器发射的足够量的光线反射到接收器,于是光电开关就产生了开关信号。当被检测物体的表面光亮或其反光率极高时,漫反射式的光电开关是首选的检测模式。其原理图见图3。 图3

KBZ-400矿用隔爆型智能化真空馈电开关使用说明书

K B Z-400矿用隔爆型智能化真空馈电开关使 用说明书 -CAL-FENGHAI.-(YICAI)-Company One1

KBZ-200400/1140(660) 矿用隔爆型智能化真空馈电开关 使 用 说 明 书 KBZ-200400/1140(660)

矿用隔爆型智能化真空馈电开关 1、用途及使用条件 本馈电开关主要用于煤矿和其周围介质中有爆炸性气体和煤尘的环境中。在交流50Hz,电压1140V或 660V、额定电流 400A以下的线路中,可作配电系统的总开关,也可作配电支路的分开关使用;具有短路、 过载、漏电(选择性漏电)及漏电闭锁、瓦斯闭锁等综合保护功能。 馈电开关可在下列环境中使用: 1.2.1海拔高度不超过2000m; 1.2.2环境温度为-20℃—+40℃; 1.2.3空气相对湿度不大于95%; 1.2.4在有瓦斯及煤尘等爆炸性混合物的矿井中; 1.2.5与垂直面的安装倾斜度不超过15o; 1.2.6在无破坏绝缘的气体和蒸汽的环境中; 1.2.7能防止滴水的地方。 2、主要技术参数 额定电压:1140V 或 660V 额定电流:400A、200A。(两种规格断路器的额定电流都为400A,只是电流互感器电流规格区别) 断路器的极限分断能力:8000A。 断路器分断时间不大于30ms。 短路整定电流值可分别设为开关整定电流的倍、2倍、3倍、4倍、5倍、6倍、8倍、10倍,精度为±8%。当短路电流大于10倍整定电流时,实行无压释放速断保护。 短路保护动作时间小于秒。 开关在分闸状态负荷侧漏电电阻在40KΩ+20%(1140V)、22KΩ+20%(660V)以下能可靠地实现漏电闭锁不能合闸,并有中文字幕显示。 在合闸运行中负荷侧漏电电阻在20KΩ(1140V)、11KΩ(660)以下能可靠地实现漏电保护跳闸,并有中文字幕显示故障。 过载电流整定分档可调。标称值分别为馈电开关额定工作电流值的:倍、倍、倍、倍、倍、倍、倍、倍、倍、倍、倍,精度为±8%。 负载电流超过过载电流整定标称值倍时告警,并开始实施反时限延时。负载电流超过整定值的倍数越大,动作延时越短。 出线喇叭口:主电路4个,可穿不大于Ф68mm的橡套电缆,控制回路2个,可穿不大于 Ф20mm的橡套电缆。 3、机芯组装 本开关机芯由断路器组件、侧板、前门板等三部份组合而成。 断路器组件:断路器型号为ZN7-400/,合闸电磁铁DC127V,分励脱扣器DC48V,欠压脱扣器DC48V;在其断路器的上部,安装有整流桥Q1和Q2,电阻R2;在其断路器的负载侧安装有电流变换器1-3LB 及零序电流互感器OH;在其断路器的侧面安装有断路器的辅助触头组。 侧板:由电源变压器B1,高压熔断器GRD,低压熔断器1-4RD,电源开关YK,三相电抗器SK,阻容吸收装置ZR,漏电继电器LJ和电阻R1;接线柱XZ(1140V)5只(红色)等组成。注意该5只接线柱在电源开关接通后有1140V高电压,切勿触及!(如需检修该板,必须将电源开关断开)。

电感式接近开关原理详解

电感式接近开关原理 1.电感式接近开关工作原理 电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的 2.霍尔接近开关工作原理 当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U,其表达式为U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。 由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和其他传感器类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近传感器、压力传感器、里程表等,作为一种新型的电器配件。 3.线性接近传感器的原理 线性接近传感器是一种属于金属感应的线性器件,接通电源后,在传感器的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 该接近传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。线性传感器主要应用在自动化装备生产线对模拟量的智能控制。 4. 电感式接近开关工作原理 电感式接近开关由三大部分组成:振荡器、开关电路及放大输出电路。振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而达到非接触式之检测目的。 附录1:部分常用材料的值 材料衰减系数 钢 1

400馈电开关说明书

ZYFB 中原防爆 KBZ—400(630)/1140(660)矿用隔爆型智能化真空馈电开关使用说明书 河南省济源市中原防爆电器有限公司

目录 一、用途及使用条件 (2) 二、产品特点 (2) 三、产品功能 (3) 四、产品型号含义 (5) 五、开关结构概述 (5) 六、主要技术参数及保护特性 (5) 七、电气原理 (10) 八、操作指南 (11) 九、外形尺寸及重量 (20) 十、标志、包装、运输 (20) 十一、售后服务 (21) 十二、常见故障及处理方法 (21) 十三、电器元件明细表 (22) 十四、附图 (23)

一用途及使用条件 1、矿用隔爆型智能化真空馈电开关(以下简称开关),主要用于煤矿井下和其它周围介质中含有甲烷及煤尘混合物的爆炸性气体环境中。适应于交流50HZ,额定电流400(630)A,额定电压380V、660V、1140V三相中性点不接地供电系统中。做为总开关、分支开关,也可作为大容量电动机不频繁起动控制之用。当供电电路中出现过载、短路、断相或漏电时能自动切断电源。做总开关时具有三相对称性漏电和漏电闭锁保护,做分支开关使用时具有选择性漏电保护和漏电闭锁保护功能,过流保护具有反时限时性,近端出口短路采用大电流无压释放保护功能。 2、开关可以在下列环境中使用; (1)海拔高度不超过2000m; (2)环境温度为零下-20℃-- +40℃; (3)空气相对湿度不大于95%(+25℃); (4)含有甲烷、煤尘的空气中,但无足以腐蚀金属和绝缘的气体和蒸气; (5)无淋水和水侵入的地方。 二、产品特点 本开关根据用户需求,采用先进的科学技术进行设计,与同类相比,其特点如下: 1、具有强大的数据采集和处理功能,对传感器二次信号不经过任何变形处理,直接进行高速采样和实时测算,连续量化处理所获信息最接近于真实情况。 2、采用晶振计时,故所有定时限、反时限延时准确无误。 3、采用微处理器技术,能完成合、分闸控制,过载、短路、漏电闭锁、漏电保护、选择性漏电保护、三相不平衡、欠压、风电闭锁、故障原因记忆查询、联网通讯、电度计量等功能。

电光防爆KBZ-400馈电开关漏电闭锁保护原理

第一章KBZ9-400/200馈电开关漏电闭锁保护原理 谈到漏电保护,需要说明一下,漏电保护分为漏电闭锁和漏电检测,这是两种不同的功能,这个在以前的帖子中也谈到过,在这里再说一下: 漏电闭锁:就是在开关合闸之前,开关的保护插件先对负载线路的绝缘情况进行检测,如果线路绝缘低于规定值,则开关不能合闸。 漏电检测:简称检漏,就是开关合闸之后,如果负载线路发生漏电情况,开关立即跳闸。 漏电检测从工作原理上又有,附加直流漏电检测和零序电流检测。在本贴中,我们将通过对KBZ9-400/200馈电开关漏电保护原理的介绍来讲解这两种漏电检测的工作原理。 馈电开关与磁力启动器的区别: 1、磁力启动器是用来控制一个负载电源的通断控制的,他不允许一个磁力启动器控制两台设备。而馈电开关是作为一个工作面的总开管使用,他可以连接较多的负载。 2、磁力启动器可以频繁启动、停止以控制设备的启停。馈电开关一旦合闸,如果负载线路不发生故障,或其他情况(像停电检修),馈电开关是不需要停电的。 3、磁力启动器只具有漏电闭锁,而没有漏电检测功能。馈电开关同

时具有漏电闭锁、漏电检测、过负荷等故障保护。 4、磁力启动器的接触器吸合维持靠衔铁带电维持,而馈电开关的接触器闭合维持靠机械结构维持。 说完上面这点小常识之后,现在步入正题,KBZ9-400/200馈电开关漏电保护原理 漏电闭锁工作原理 如下图: 变压器将1140(660)V电压变成12V交流电,通过红线1、2所示引入插件内部,然后 整流成直流电。直流12V电源如图中红线3中的箭头所示,通过电阻

2R13 —— 2R14 ——二极管2D1 ——插件引脚2A1 ——馈电开关辅助常闭触点ZD ——总分选择开关FK(此时开关拨至总开关FK 位置)——三相电抗器SK ——将12V直流电源加入负载导线上面——负载导线的对地电阻(正常时此电阻很大,有漏电现象,负载线路对地电阻减小)—— 12V电源负极(图中蓝色箭头所示)。 如果负载对地电阻低于规定值,则IC1 13(集成运算放大器13脚)电位下降,低于IC1 12脚,则14脚变为12V,经2R32,2D8,FK,2J1,2B7进入过载插件A2脚,使D13截止,过载插件IC2 5脚变为高电位,使IC2 7脚输出24V,推动G管,使J1吸合,脱口线圈TQ动作闭锁,使断路器三相对地绝缘电阻低于规定值时不能合闸。同时漏电插件1C1 14脚输出12V经过2A8,进入显示插件,漏电显示。 看我上面的介绍,大家可能有点晕,现在我们还是来点通俗易懂的吧。还是看图:

220kV隔离开关电气闭锁回路的分析

220kV隔离开关电气闭锁回路的分析 来源:时间:2009-07-13字体:[ 大中小]投稿 夏辉军1刘明福2 (1 泸州电业局646000 2 攀枝花电业局646000) 摘要:通过对220kV隔离开关电气闭锁回路的反复操作和试验,发现了电气闭锁回路中因接地母线对地电容形成交流通路,使保持回路无法返回而导致电气闭锁回路失效的隐患,并针对原因提出了具体的防范措施。 关键词:隔离开关电气闭锁对地电容解决措施 1 存在的问题 500kV泸州变电站的220kV母线为双母线单分段接线方式,有线路出线七回,两个主变进线,两个母联间隔和一个分段间隔,母线隔离开关为GW10-220型(西高),配CJ6A型电动操作机构。隔离开关的电气闭锁回路的原理图如图1所示,电机电源回路和控制回路通过不同的空开控制,其电源取自本间隔端子箱,一段母线上的所有隔离开关的控制回路的N 端接至公共的N2接地母线,再经母线接地刀闸的辅助接点串联后接地。本站在设备投运前对部分的隔离开关电气闭锁回路进行了标准化验收,在对220kV隔离开关的电气闭锁回路验收时发现一个奇怪的现象,现象如下:在某线路的断路器断开,回路无接地刀闸时,即满足电气闭锁的条件时,断开电机电源空开QF1,合上电机控制电源空开QF2,按下合闸按钮SB2或分闸按钮SB1,控制回路能够保持,这时只要合上空开QF1,隔离开关便会自动的合闸或分闸,这与控制回路的原理是相符的。但是在此模拟操作过程中,当合上QF2并按下SB2或SB1按钮后,一旦控制回路保持,就无法被母线隔离开关的辅助接点1GD和2GD断开,即在这种情况下,即便合上母线接地刀闸时,线路的隔离开关也能进行分、合闸操作,不满足电气闭锁的要求。实际运行中,在检修调试后,若没有仔细检查控制回路是否保持,当母线接地时,无论是在远方还是在就地给上电机电源,该刀闸都会自动的分合闸,存在发生恶性误操作的可能。 2 原因分析 经过对回路的核对检查和反复的试验操作,发现在合上QF2并按下SB2或SB1按钮后,再合上母线接地刀闸,其辅助接点1GD和2GD虽已断开,但回路中合闸或分闸保持回路不返回,测量N2接地母线的对地电压不稳定,有时甚至达到460伏及以上,是一个虚电位,但在先合上母线接地刀闸后,该控制回路却不能保持。首先想到的是不是母线接地刀闸的辅助接点1GD和2GD切换不可靠,接点间绝缘降低,后将N2接地母线至2GD的连接线断开并检查接点的切换状况,一切正常,保持回路仍然不返回,排除了辅助接点切换不可靠的情况。其次考虑到是不是N2接地母线太长,存在绝缘降低的问题,在断开电源后,对N2接地母线进行绝缘测试,其绝缘状况良好,排除了为绝缘降低所致。最后考虑到会不会有存在寄生回路可能,断开了部分线路的控制回路至N2接地母线的连线,当只剩下3及以下间隔的线路时,该控制回路恢复了正常,保持和返回均很好。据此,初步分析可能是N2接地母线太长,存

接近开关的工作原理

接近开关的工作原理 发布时间:2007-6-11 供稿:xabest 浏览[758]次打印该页 接近开关的工作原理 1、概述 接近传感器可以在不与目标物实际接触的情况下检测靠近传感器的金属目标物。根据操作原理,接近传感器大致可以分为以下三类:利用电磁感应的高频振荡型,使用磁铁的磁力型和利用电容变化的电容型。 特性: ●非接触检测,避免了对传感器自身和目标物的损坏。 ●无触点输出,操作寿命长。 ●即使在有水或油喷溅的苛刻环境中也能稳定检测。 ●反应速度快。 ●小型感测头,安装灵活。 2、类型 (1)按配置来分 (2)、按检测方法分 ●通用型:主要检测黑色金属(铁)。 ●所有金属型:在相同的检测距离内检测任何金属。 ●有色金属型:主要检测铝一类的有色金属。 3、高频振荡型接近传感器的工作原理 电感式接近传感器由高频振荡、检波、放大、触发及输出电路等组成。振荡器在传感器检测面产生一个交变电磁场,当金属物体接近传感器检测面时,金属中产生的涡流吸收了振荡器的能量,使振荡减弱以至停振。振荡器的振荡及停振这二种状态,转换为电信号通过整形放大转换成二进制的开关信号,经功率放大后输出。下面为详细介绍: (1)通用型接近传感器的工作原理 振幅变化的程度随目标物金属种类的不同而不同,因此检测距离也随目标物金属的种类不同而不同。 (2)所有金属型传感器的工作原理 所有金属型传感器基本上属于高频振荡型。和普通型一样,它也有一个振荡电路,电路中因感应电流在目标物内流动引起的能量损失影响到振荡频率。目标物接近传感器时,不论目标物金属种类如何,振荡频率都会提高。传感器检测到这个变化并输出检测信号。 (3)有色金属型传感器工作原理

KBZ馈电开关400说明书

2216-02 KBZ —400 , 200/1140 、660 矿用隔爆型真空馈电开关产品使用说明书

甘肃容和矿用设备集团有限公司 2009.03.16 出版 1. 产品型号及意义 K B Z ——□ / □ ---- 额定电流(A)/额定电压(V) --------------- 真空 L ------------------- 隔爆型 ------------------------ 馈电开关 2. 产品执行标准 MT871-2000《矿用隔爆真空馈电开关》 Q/RH012—2008《KBZ-630(500, 400,200)矿用隔爆型低压交流真空馈电开关》 3. 防爆形式:矿用隔爆型防爆标志:Exdl。 4. 用途及使用条件 4.1 用途 KBZ-400, 200/1140、660矿用隔爆型真空馈电开关(以下简称馈电开关),使用于煤矿井下和其它周围介质中含有爆炸性气体(甲烷混合物)的环境中,在交流50Hz,电压660V、1140V,电流至400A (200A)的中性点不接地的三相电网中,作为配电总开关或分支开关,也可作大容量电动机不频繁起动之用。具有总开关漏电保护、分开关选择性漏电保护、漏电闭锁、过载、短路、三相不平衡(包括断相)、欠压等多种保护功能,并可外接远方分励、起动按钮,也可接风电瓦斯闭锁。 4.2 使用条件 4.2.1海拔高度不超过2000m 4.2.2 周围环境温度为-25?+40C; 4.2.3周围环境湿度不大于95%(+25C); 4.2.4无破坏性绝缘气体或蒸气的环境中; 4.2.5无显著振动或冲击振动的地方; 4.2.6能防止雨雪与滴水的地方; 4.2.7与水平面的安装倾斜度不超过15°;

KBZ9-400馈电开关原理及维修讲解学习

K B Z9-400馈电开关原理及维修

简要说一下KBZ9-400馈电开关的机械操作机构 图一 KBZ9馈电开关的分闸与合闸,主要是通过机械操作机构完成的。如上图,真空管动触点通过连杆3与机械机构连接。然后机械机构再通过连杆1与开关外壳上的操作手柄连接(如下图)。转动外壳上的手柄,带动真空管的闭合与分开。 图二

在图一中,有一个脱扣线圈5,这个脱扣线圈受馈电开关的保护插件控制。当馈电开关有短路,过载,漏电等故障时,保护插件驱动脱扣线圈吸合,使馈电开关跳闸。 在脱扣线圈的旁边,有一个跳闸螺栓6。如果在手动合闸的时候,搬动合闸手柄,机械机构不能合闸,就是机构打滑,在合闸状态保持不住。这时,可以调整这条螺栓。 当按动试验按钮进行短路试验,电动分闸时,如果按动按钮后,脱扣线圈吸合,但是不跳闸。这时,也可以通过调整这条螺栓解决问题。不过调整的方向和合不上闸时调整的方向相反。 机械机构的原理,基本上就是这样,大家可以在操作开关的时候,自己仔细观察一下机械机构具体的动作过程,要比我在这里讲解好的多。 在井下,有这样一个要求,就是在没有通风的情况下,工作面的电气设备不允许工作。也就是说,风机开关不启动,其他电气设备的开关不能启动。为了确保这一功能的实现,便有了“风电闭锁”。因为馈电开关是一个工作面的总开关,如果馈电开关不合闸,其他的电器设备就无法工作。所以“风电闭锁”的连接,就是风机开关与馈电开关的闭锁连接。 风电闭锁的接线方法如下:

上图中,灰色部分为馈电开关的原理图,图中,你可以看到在漏电插件与过载插件的引脚上分别有个A4 点,在两点之间写着“风电闭锁”。在开关的接线室中,你会找到A3和A4这两个接线柱,就是原理图中的这两个接点。 白色为风机开关的一对“风电闭锁”接点。在实际使用中,将风机开关的风电闭锁点与馈电开关的“风电闭锁” 点连接起来,如上图所示。当风机开关启动以后,就会将风机开关的“风电闭锁”触电1K1闭合。从而使馈电开关中的A3与A4形成“通路”。只有A3与A4形成通路以后,馈电开关才能够合闸。否则馈电开关无法合 闸。 在馈电开关与风机开关都正常运行的情况下,如果风机开关停止,1K1触电就会断开,切断馈电开关A3与 A4的联系,馈电开关也会跳闸。 KBZ9-400/200馈电开关的合闸靠手动,这个在“BKD9-400馈电开关的机械操作机构”一贴中已经讲过了。他的电动分闸,漏电、过载等保护的动作,靠的是脱扣线圈。脱扣线圈吸合,开关就分闸。 , 源按钮通过操作机构上的一个螺栓进行开关,机构在分闸位置,螺栓按下按钮,控制电源断开,当抬起操作机构手把时,控制按钮闭合,控制变压器原边得电,通过变压器线圈,将660V或1140V电源变为110V、15V、 28V、17V和70V电源,为保护插件的各个功能电路提供电源;

相关文档
最新文档