&%)*(’(,+(,’)E-")%0";+%#0,-(%++"#00$".’/-,E;-’."%/’)’0*HUNun-O.n4,T@-1Y8n4,LUAB3un-/:.振动桩锤是通过偏心回转激振器产生纵向振动,利用桩土振" />

影响振动桩锤沉桩能力的土力因素分析

影响振动桩锤沉桩能力的土力因素分析
影响振动桩锤沉桩能力的土力因素分析

影响振动桩锤沉桩能力的土力因素分析

胡均平!唐勇!罗春雷

"中南大学机电工程学院!湖南长沙%&""*($

!中图分类号"T U#,!文献标识码"B!文章编号"&""&-’’%X#!""#$"%-""*"-"!

>&%)*(’(,+(,’)E-")%0";+%#0,-(%++"#00$".’/-,E;-’."%/’)’0*

H UN u n-O.n4,T@-1Y8n4,L U AB3u n-/:.

振动桩锤是通过偏心回转激振器产生纵向振动,利用桩土振动降低桩)土摩擦力和桩端阻力将桩轻松沉入地基中。其突出特点是对环境干扰小、噪声低、沉桩过程对预制桩损害小、机器重量轻、造价低,因此自问世以来,一直受到施工单位的欢迎,在国内有很大的发展潜力。国内对振动沉桩机理的研究处于初始阶段,对沉桩能力这一难题的研究甚少,还没有形成一套系统的振动沉桩理论体系。本文旨在面向地基土分析影响振动桩锤沉桩能力的土力因素。

3土力因素对振动桩锤沉桩能力的影响土壤通常可以分为两类,粘性土壤和非粘性土壤,土的强度问题,实质上就是抗剪强度问题。当地基受到载荷作用后,土中各点产生法向应力和剪应力,若某点的剪应力达到该点抗剪强度,土即沿着剪应力作用方向产生相对滑动(剪损),从而使桩体轻易地穿越该土层,进入更深的土层。较之坚硬、湿润的粘性土,振动桩锤在非粘性土壤中有更好的沉桩效果,因为在坚硬、湿润的粘性土壤中,振动沉桩过程中土壤的动抗剪强度不能像在松散的非粘性土壤中那样顺利地减小。

振动沉桩过程中,沿轴向和垂直方向的土壤动抗剪强度受到几个重要因素的影响。早期的研究结果表明,与土质相关的因素对振动桩锤的沉桩能力有很大的影响,包括土壤颗粒振动状态、土壤原始密度、土壤的液化状态和土层坚硬程度。其它影响振动桩锤沉桩能力的土质参数还有:土壤颗粒大小、土壤微粒的成分和土壤的内部摩擦

角,但它们对振动桩锤沉桩能力的影响都没有上述%个土壤参数那么明显。

近年来,国内建筑基础工程行业迅猛发展,使得液压振动桩锤在国内具有非常广阔的市场,但由于振动沉桩运动异常复杂,涉及多学科,尤其是地基土的多变性、振动状态的复杂性和难以预知性使得这种沉桩方法至今仍充满不确定性。本文对影响振动桩锤沉桩能力的土力因素进行探讨,以期对振动桩锤的设计起到推动作用。

5土壤颗粒振动状态的影响

将剪切箱直接放置在振动台上,驱动振动台的装置是可调的,可以控制振动频率和垂直方向的振幅。因为垂直方向的峰值加速度D是运动振幅6与频率平方!!的乘积,可对不同的频率采用不同的振幅来获得相同的加速度值。实验结果表明[&]:土壤内摩擦系数C4)随振幅的增加而显著地减小。然而,土壤内摩擦系数C4)的减小量比所研究的频率变化范围小,如图&所示。

图!表示砂土的内摩擦系数随振动加速度增大而减小的情况,从图!中可以看出,增大振动加速度比&,可以使内摩擦系数从静态值到动态值呈指数规律减小。

C a n)=+C a n)<.n-(C a n)95)C a n)<.n),)$&(&)式中)

=

***土壤动摩擦角;

)<.n***最小土壤动摩擦角;

!收稿日期"!""’)&!)"#

!通讯地址"胡均平!湖南省长沙市中南大学本部机电工程

学院液压所

)95***土壤静摩擦角;

$***振动土壤颗粒尺寸系数;

&***振动加速度比,&+&

4

,&为试验时的

振动加速度,4为重力加速度。

(曲线&、!、(、%相应的振动频率分别为($.*H2、

!!$!H2、!*$!H2和(($!H2)

图3改变振幅对土壤内摩擦系数的影响

图5改变振动加速度比对土壤内摩擦系数的影响

振动沉桩过程中,振幅为’",<<时,与静载相比,土壤的内摩擦系数C a n)的变化特征:对于干砂,减小!"D"("D;对于粘性土,只减小&"D"&’D。

土壤颗粒尺寸对减小内摩擦系数影响如图(所示。

(曲线&振动频率为!(H2;曲线!振动频率

为%"H2;两曲线振幅均为"$(’<<)

图6土壤颗粒直径对振动效果的影响

内摩擦系数减小率可以用下式表示:

*+

C a n)95)C a n)=

C a n)95

(!)式中****土壤内摩擦系数减小率;

)95***土壤静摩擦角;

)=***土壤动摩擦角。

由上述分析可以看出,在相同能量的作用下,

粗糙的非粘性土壤将会减小振动桩锤的沉桩能力,也就是说,在较大颗粒开始与周围颗粒失去接触前,需要更高的激振力。

6土壤原始密度的影响

显然,振动桩锤沉桩过程会改变土壤原始密度,大量实验结果表明,土壤原始密度对振动桩锤沉桩能力有很大影响。土壤的原始密度越大,土粒间的咬合(联锁)作用越强,沉桩时首先必须克服土粒咬合作用,才能使土产生相对滑动。

在一定的振动加速度&

.

作用下,土壤的孔隙比,

.会减小,也就意味着增大了土壤密度,使土壤颗粒接触更紧密,土壤内聚力增大。因此要想进一

步硬化土壤,往往需要比&

.

更大的振动加速度。Y8u P(&.#,)[!]实验发现振动沉桩过程中,一定的孔隙比对应于一定的振动加速度,随着土壤孔隙比的减小,振动沉桩的效果将会降低。

7土壤的液化状态的影响

振动沉桩过程中,土颗粒除受重力外,还受到动力的作用(其值等于振动加速度乘质量),在动力作用下,砂土有振密的趋势。这种快速的密实趋势使孔隙水压逐步上升而来不及消散,致使土中的有效应力减小。当有效应力完全消失时,土的抗剪强度为零,土粒在失重状态下随水漂流,从而使桩顺利地沉入。此时砂土的动抗剪强度为: +E=+,)C a n)=+(,)0)C a n)=+"(()

式中+

L P

***土的动抗剪强度,>I a;

,与,)***土中的法向应力和有效应

力,>I a;

0***孔隙水压,>I a;

)=***土的动内摩擦角,(;)。

?a n4(&..%)[(]结合有限元对振动桩锤模型的

#下转第F6页$

除安装了限位开关和极限开关外,还在吊笼上部安装了!个缓冲装置,当过卷冲顶时,缓冲装置变形,超载限制器动作,切断主电源,可避免断绳事故的发生。该机还安装了断绳保护装置和停层保护装置,当断绳时,安装在保护装置内的安全闸块会在重力和弹簧力作用下卡到导轨挡块上,将吊笼制停。为了防止非断绳超速坠落事故的发生,99型井道附着式施工升降机采用了渐进式钢丝绳超速保护装置(专利技术),能准确、可靠地直接将!根超速的提升钢丝绳制停。为了保证进出料时作业人员的安全,避免剪切事故发生,该施工升降机设置了可靠的门机系统和机械电气连锁装置。

(!)99型井道附着式施工升降机吊笼的吊点是在其重心位置上,因此受力均匀,不存在偏载的现象,运行平稳、噪声低。由于利用电梯井道壁承重,节省了导轨架的费用;而采用传统的卷扬机驱动,降低了传动系统的制造成本和维修成本。由于该施工升降机是在电梯井道内作业,不需要制作、安装卸料走台和护墙架,从而节约了大量的施工辅助材料和人工制作费用,也避免了在搭设和使用卸料走台这一环节中工人操作的危险性。电梯井道一般都布置在建筑物的合理位置,因此通过井道附着式施工升降机可以方便快捷地将物料运至建筑物各个角落,缩短了施工运输距

离,减轻了工人劳动强度,大大提高了输送效率,降低了建筑成本。

(*)井道附着式施工升降机在井道内输送建筑材料,不受天气和外界条件限制,可以全天候施工,便于合理安排施工计划,确保施工进度,提高施工效率。周围环境的噪声和灰尘污染可降到最小,改变了以往那种喧哗、杂乱的施工场面,使宁静而有序的文明施工成为可能。

(%)井道附着式施工升降机由于不需要外井架和施工卸料走台,从而使建筑物外墙不留施工洞,避免了以往堵洞后造成的南方墙体渗水、北方墙体挂霜的现象。特别是对复杂造型的外墙装饰和玻璃幕墙施工,可以一次放线,一次整体完成,确保外墙色泽感观一致。

4应用实例

辽宁国际建设工程集团公司东莞公司’,,&(

!""&年利用井道附着式施工升降机进行施工,十年来未发生一起安全事故。在全天候使用该设备的情况下,井道附着式施工升降机的维修保养费用不到其它升降设备的’?,误工时间也不到’?。采用该设备施工可给施工企业提高*?!#?的经济效益。

!责任编辑%孔庆璐

""""""""""""""""""""""""""""""""""""""""""""""

"

#上接第52页$

分析,对孔隙水压力进行了测试。试验结果表明,孔隙水压力是周期变化的,在桩侧附近的孔隙水压力有很大变化幅值,随着桩半径方向的距离增大,孔隙水压力幅值衰减很快。孔隙水压力的变化对振动桩锤的沉桩能力有很大的影响,孔隙水压力越大,振动桩锤的沉桩能力越强。

6土层坚硬程度的影响

土层坚硬程度对振动桩锤的沉桩能力同样有很大的影响。天然的超压密状态的土,因历史上曾受过较现今作用压力为大的有效压力的压密,因此具有较正常压密土更高的抗剪强度。反之,欠压密状态的土,因压密程度不足,抗剪强度比正常压密土要低。@A-B(’,,%)的分析报告指出由于土壤密集层的存在使得振动桩锤的沉桩能力受到削弱。当振动桩锤从中等密度的土层进入到密度很大的土层时,桩侧阻力增加了’+?,而桩端阻力的增加值超过了’""?。

!参考文献"

+’,)$)$>A C D A-$682-E A=,8-F-B,-**C,-B A-EE C,G G,-B 7H I,7C A=,8-+*=08E+C,$;C8J$%=0I-=$C8-K$8-98,GL*J0A-,J

+!,T$L$M82E$F-B,-**C,-B;C8N*C=,*<8KC80*<,8-G*<< 98,G<)2C,-B:,7C A=,8-<+),$I8O AU-,I*C<,=H,I8-O A,U93,’,#+$

+*,@A-B H8-B D2A-$F P N*C,+*-=A G<=2E H A-E K,-,=**G*+*-= A-A G H<,<8KE C,I*A7,G,=H A-E<=A=,J7*0A I,82C8KI A C,82< N,G*<,-<=A G G*E7H I,7C A=8C H E C,I,-B+),$U-,I*C<,=H8K H82<=8-,T*P A<,U93,’,,%$

!责任编辑%杨晓光"

振动沉拔桩锤安全操作规程

编号:SM-ZD-50146 振动沉拔桩锤安全操作规 程 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

振动沉拔桩锤安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 作业场地至电源变压器或供电主干线的距离应在200m以内。 2 电源容量与导线截面应符合出厂说明书的规定。当电动机额定起动电压在-5%~10%的范围内时,可以额定功率连续运行,当超过时,则应控制负荷。 3 液压箱、配电箱应置于安全平坦的地方。配电箱和电动机保护接地或接零应符合本规程第十五章的有关规定。 4 长期停放重新使用前,应测定电动机的绝缘值,且不得小于0.5MΩ,并应对电缆芯线进行导通试验。电缆外包橡胶层应完好无损,并确认电气箱内各部件完好,接触无松动,接触器触点无烧蚀现象。 5 悬挂振动桩锤的起重机,其吊钩上必须有防松脱的保护装置。振动桩锤悬挂钢架的耳环上应加装保险钢丝绳。 6 启动振动桩锤应监视启动电流和电压,一次启动时

振动锤打桩机操作安全技术(标准版)

振动锤打桩机操作安全技术 (标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0960

振动锤打桩机操作安全技术(标准版) 1.作业场地至电源变压器或供电主干线的距离应在200m以内。 2.电源容量与导线截面应符合出厂使用说明书的规定,启动时,当电动机额定电压变动在—5%~+10%的范围时,可以额定功率连续运行;当超过时,应控制负荷。 3.液压箱、电气箱应置于安全平坦的地方。电气箱和电动机必须安装保护接地设施。 4.长期停放重新使用前,应测定电动机的绝缘值,且不得小于0.5MΩ,并应对电缆芯线进行导通试验。电缆外包橡胶层应完好无损。 5.应检查并确认电气箱内各部件完好,接触无松动,接触器触点无烧毛现象。 6.作业前,应检查振动桩锤减震器与连接螺栓的紧固性,不得

在螺栓松动或缺件的状态下启动。 7.应检查并确认振动箱内润滑油位在规定范围内。用手盘转胶带轮时,振动箱内不得有任何异响。 8.应检查各传动胶带的松紧度,过松或过紧时应进行调整。胶带防护罩不应有破损。 9.夹持器与振动器连接处的紧固螺栓不得松动。液压缸根部的接头防护罩应齐全。 10.应检查夹持片的齿形。当齿形磨损超过4mm时,应更换或用堆焊修复。使用前,应在夹持片中间放一块10—15m厚的钢板进行试夹。试夹中液压缸应无渗漏,系统压力应正常,不得在夹持片之间无钢板时试夹。 11.悬挂振动桩锤的起重机,其吊钩上必须有防松脱的保护装置。振动桩锤悬挂钢架的耳环上应加装保险钢丝绳。 12.启动振动桩锤应监视启动电流和电压,一次启动时间不应超过los。当启动困难时,应查明原因,排除故障后,方可继续启动。启动后,应待电流降到正常值时,方可转到运转位置。

钢管桩计算书

边跨现浇直线段支架设计计算 一、计算何载(单幅) 1、直线段梁重:15#、16#、17#混凝土方量分别为22.26、25.18、48m3。端部1.0范围内的重量,直接作用在墩帽上,混凝土方量为: V=1×[6.25×2.5+2×3×0.15+2×2×0.25/2+2× 225 .0 65 .0 ×1-1.2×1.5]=16.125 m3 作用在支架的荷载: G1=(22.26+25.18+48-16.125)×22800×10=1957.78 KN 2、底模及侧模重(含翼缘板脚手架):估算G2=130KN 3、内模重:估算G3=58KN 4、施工活载:估算G4=80KN 5、合计重量:G5=1957.78+130+58+80=2226KN 二、支架形式 支架采用Φ800mm(壁厚为10mm)作为竖向支承杆件。纵桥向布置2排,横桥向每排2根,其中靠近10#(13#)墩侧的钢管桩支承在承台上,与墩身中心相距235cm,第二排钢管桩与第一排中心距为550cm,每排2根排的中心距离为585cm。钢管桩顶设置砂筒,砂筒上设纵横向工字钢作为分配梁,再在纵梁上敷设底模方木及模板。钢管桩之间及钢管桩与墩身之间设置较强的钢桁架梁联系,在平面上形成框架结构,以满足钢管桩受载后的稳定性要求,具体详见“直线段支架结构图”。

根据支架的具体结构,现将其简化成力学计算模型,如下图所示: 327.5 585 327.5 10×120 20 20 780 550 115 115 纵桥向横桥向 三、支架内力及变形验算 1、 横梁应力验算:横梁有长度为12.4m ,采用2I56a 工字钢,其上 承托12根I45a 工字钢。为简化计算横梁荷载采用均布荷载。 (1)纵梁上面荷载所生的均布荷载: Q 1=2226÷2÷12.25=90.86KN/m (2)纵梁的自重所生的均布荷载: Q 2=0.8038×(1.15+5.5/2)×11÷12.25=2.815N/m (3)横梁自身的重量所生的均布荷载: Q 3=2×1.0627=2.125N/m (4)横梁上的总均布荷载: Q=90.86+2.815+2.125=95.8N/m

振动锤工作原理

振动锤工作原理 振动锤是利用共振理论设计的。当桩的强迫振动频率与土壤颗粒的振频率一致时,土壤颗粒产生共振,此时,土壤颗粒有最大的振幅,足够的振动速度和加速度能迅速破坏桩和土壤间的粘合力,使桩身与土壤从压紧状态过渡到瞬间分离状态,沉桩阻力尤其侧面阻力迅速减小,桩在自重作用下下沉。由于振动锤靠减小桩与土壤间的摩擦力达到沉桩的目的,所以在桩和土壤间的摩擦力减小的情况下,可以用稍大于桩和桩身的力即可将桩拔起。因此,振动锤不仅适合于沉桩,而且适合于拔桩。沉桩、拔桩效率都很高。 主要参数:振幅A、激振频率ω、偏心力矩M,激震力F、参振重量Q、功率N 1.振动功率N的确定。振动功率N的计算公式为:N=K·M·n/9550 (kw)公式中,n为转速;K=1.25。 2.偏心力矩M的确定。振动锤偏心力矩越大克服硬质土层的能力越强,当已知振幅和参振总重量Q(桩体重量和振动锤重量)时,可以算出偏心力矩:M=Q·A (N·m) 3.激振频率ω的确定。振动锤的激振频率与振动系统的固有频率密切相关,当激振频率接近振动系统的固有频率时,振动沉桩达到最大效果。而振动系统的固有频率不仅和振动锤参数有关,还与土壤的参数有关,不同地层土壤的自振频率有着很大的差别。下面表格是根据经验得到的不同地层振动锤最佳频率范围。试验证明,其他参数一定的情况下,增大振动频率可以使得饱和沙土的液化加速,土壤阻力相应的快速减少,比起提高振幅更能有效提高桩的运动加速度,从而使沉桩效率得以显著提高,但激振频率提高过高会引起输出功率过大,所以确定激振频率时还应综合考虑。 激振频率参考 地层类型最佳频率ω/s 含饱和水的砂土100-200 塑性粘土及含砂粘土90-100 坚实粘土70-75 含砾石粘土60-70 含砂的砾石土50-60 4.参振重量Q的确定。振动锤除了要有必要的振幅和加速度,还必须有一定的参振重量以克服沉桩时的阻力,桩在土中的静阻力R与土层的贯入标准值N和截面积S之间的关系为: R=4N·S (KN) 因此,桩在受到振动而使摩擦力显著降低时,桩就可以被沉入到与参振重量相等的桩端阻力处,即Q=4N·S 5.激振力F的确定。激振力F是反映振动锤综合能力的参数,激振力F必须大于桩与土壤之间的静摩擦力f,在沉桩过程中会在激振力作用下急剧下降。有振动

振动桩锤安全操作规程

行业资料:________ 振动桩锤安全操作规程 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共7 页

振动桩锤安全操作规程 一、作业场地至电源变压器或供电主干线的距离应在200m以内。 二、液压箱、电气箱应置于安全平坦的地方。电气箱和电动机必须安装保护接地设施。 三、长期停放重新使用前,应测定电动机的绝缘值,且不得小于 0.5MΩ,并应对电缆芯线进行导通试验。电缆外包橡胶层应完好无损。 四、应检查并确认电气箱内各部件完好,接触无松动,接触器触点无烧毛现象。 五、作业前,应检查振动桩锤减震器与连接螺栓的紧固性,不得在螺栓松动或缺件的状态下启动。 六、应检查并确认振动箱内润滑油位在规定范围内。用手盘转胶带轮时,振动箱内不得有任何异响。 七、应检查各传动胶带的松紧度,过松或过紧时应进行调整。胶带防护罩不应有破损。 八、夹持器与振动器连接处的紧固螺栓不得松动。液压缸根部的接头防护罩应齐全。 九、应检查夹持片的齿形。当齿形磨损超过4mm时,应更换或用堆焊修复。使用前,应在夹持片中间放一块10~15mm厚的钢板进行试夹。试夹中液压缸应无渗漏,系统压力应正常,不得在夹持片之间无钢板时试夹。 十、悬挂振动桩锤的起重机,其吊钩上必须有防松脱的保护装置。振动桩锤悬挂钢架的耳环上应加装保险钢丝绳。 十一、启动振动桩锤应监视启动电流和电压,一次启动时间不应超 第 2 页共 7 页

过10s。当启动困难时,应查明原因,排除故障后,方可继续启动。启动后,应待电流降到正常值时,方可转到运转位置。 十二、振动桩锤启动运转后,应待振幅达到规定值时,方可作业。当振幅正常后仍不能拨桩时,应改用功率较大的振动桩锤。十三、拔钢板桩时,应按沉入顺序的相反方向起拔,夹持器在夹持板桩时,应靠近相邻一根,对工字桩应夹紧腹板的中央。如钢板桩和工字桩的头部有钻孔时,应将钻孔焊平或将钻孔以上割掉,亦可在钻孔处焊加强板,应严防拔断钢板桩。 十四、夹桩时,不得在夹持器和桩的头部之间留有空隙,并应待压力表显示压力达到额定值后,方可指挥起重机起拔。 十五、拔桩时,当桩身埋入部分被拔起1.0~1.5m时,应停止振动,拴好吊桩用钢丝绳,再起振拔桩。当桩尖在地下只有1~2m时,应停止振动,由起重机直接拔桩。待桩完全拔出后,在吊桩钢丝绳未吊紧前,不得松开夹持器。 十六、沉桩前,应以桩的前端定位,调整导轨与桩的垂直度,不应使倾斜度超过20。 十七、沉桩时,吊桩的钢丝绳应紧跟桩下沉速度而放松。在桩入土3m之前,可利用桩机回转或导杆前后移动,校正桩的垂直度;在桩入土超过3m时,不得再进行校正。 十八、沉桩过程中,当电流表指数急剧上升时,应降低沉桩速度,使电动机不超载;但当桩沉入太慢时,可在振动桩锤上加一定量的配重。 十九、作业中,当遇液压软管破损、液压操纵箱失灵或停电(包括熔丝烧断)时,应立即停机,将换向开关放在“中间”位置,并应采取安全措施,不得让桩从夹持器中脱落。 第 3 页共 7 页

2021新版振动桩锤安全操作规程

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021新版振动桩锤安全操作规程

2021新版振动桩锤安全操作规程导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 一、作业场地至电源变压器或供电主干线的距离应在200m以内。 二、液压箱、电气箱应置于安全平坦的地方。电气箱和电动机必须安装保护接地设施。 三、长期停放重新使用前,应测定电动机的绝缘值,且不得小于 0.5MΩ,并应对电缆芯线进行导通试验。电缆外包橡胶层应完好无损。 四、应检查并确认电气箱内各部件完好,接触无松动,接触器触点无烧毛现象。 五、作业前,应检查振动桩锤减震器与连接螺栓的紧固性,不得在螺栓松动或缺件的状态下启动。 六、应检查并确认振动箱内润滑油位在规定范围内。用手盘转胶带轮时,振动箱内不得有任何异响。 七、应检查各传动胶带的松紧度,过松或过紧时应进行调整。胶带防护罩不应有破损。 八、夹持器与振动器连接处的紧固螺栓不得松动。液压缸根部的

接头防护罩应齐全。 九、应检查夹持片的齿形。当齿形磨损超过4mm时,应更换或用堆焊修复。使用前,应在夹持片中间放一块10~15mm厚的钢板进行试夹。试夹中液压缸应无渗漏,系统压力应正常,不得在夹持片之间无钢板时试夹。 十、悬挂振动桩锤的起重机,其吊钩上必须有防松脱的保护装置。振动桩锤悬挂钢架的耳环上应加装保险钢丝绳。 十一、启动振动桩锤应监视启动电流和电压,一次启动时间不应超过10s。当启动困难时,应查明原因,排除故障后,方可继续启动。启动后,应待电流降到正常值时,方可转到运转位置。 十二、振动桩锤启动运转后,应待振幅达到规定值时,方可作业。当振幅正常后仍不能拨桩时,应改用功率较大的振动桩锤。 十三、拔钢板桩时,应按沉入顺序的相反方向起拔,夹持器在夹持板桩时,应靠近相邻一根,对工字桩应夹紧腹板的中央。如钢板桩和工字桩的头部有钻孔时,应将钻孔焊平或将钻孔以上割掉,亦可在钻孔处焊加强板,应严防拔断钢板桩。 十四、夹桩时,不得在夹持器和桩的头部之间留有空隙,并应待压力表显示压力达到额定值后,方可指挥起重机起拔。

最全面的桩基计算总结

最全面的桩基计算总结 桩基础计算 一.桩基竖向承载力《建筑桩基技术规范》 5.2.2 单桩竖向承载力特征值Ra应按下式确定: Ra=Quk/K 式中 Quk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 5.2.3对于端承型桩基、桩数少于4根的摩擦型柱下独立桩基、或由于地层土性、使用条件等因素不宜考虑承台效应时,基桩竖向承载力特征值应取单桩竖向承载力特征值。5.2.4对于符合下列条件之一的摩擦型桩基,宜考虑承台效应确定其复合基桩的竖向承载力特征值: 1 上部结构整体刚度较好、体型简单的建(构)筑物; 2 对差异沉降适应性较强的排架结构和柔性构筑物; 3 按变刚度调平原则设计的桩基刚度相对弱化区; 4 软土地基的减沉复合疏桩基础。 当承台底为可液化土、湿陷性土、高灵敏度软土、欠固结土、新填土时,沉桩引起超孔隙水压力和土体隆起时,不考虑承台效应,取η=0。

单桩竖向承载力标准值的确定: 方法一:原位测试 1.单桥探头静力触探(仅能测量探头的端阻力,再换算成探头的侧阻力)计算公式见《建筑桩基技术规范》5.3.3 2.双桥探头静力触探(能测量探头的端阻力和侧阻力)计算公式见《建筑桩基技术规 范》5.3.4 方法二:经验参数法 1.根据土的物理指标与承载力参数之间的关系确定单桩承载力标准值《建筑桩基技术规范》5.3.5 2.当确定大直径桩(d>800mm)时,应考虑侧阻、端阻效应系数,参见5. 3.6 钢桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.7 混凝土空心桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.8 嵌岩桩桩承载力标准值的确定: 1.桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。 后注浆灌注桩承载力标准值的确定: 1.承载力由后注浆非竖向增强段的总极限侧阻力标准值、后注浆竖向增强段的总极限侧阻力标准值,后注浆总极限端阻力标准值; 特殊条件下的考虑 液化效应: 对于桩身周围有液化土层的低承台桩基,当承台底面上下分别有厚度不小于1.5m、1.0m 的非液化土或非软弱土层时,可将液化土层极限侧阻力乘以土层液化折减系数计算单桩

振动锤打桩机操作安全技术(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 振动锤打桩机操作安全技术(通 用版)

振动锤打桩机操作安全技术(通用版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1.作业场地至电源变压器或供电主干线的距离应在200m以内。 2.电源容量与导线截面应符合出厂使用说明书的规定,启动时,当电动机额定电压变动在—5%~+10%的范围时,可以额定功率连续运行;当超过时,应控制负荷。 3.液压箱、电气箱应置于安全平坦的地方。电气箱和电动机必须安装保护接地设施。 4.长期停放重新使用前,应测定电动机的绝缘值,且不得小于0.5M Ω,并应对电缆芯线进行导通试验。电缆外包橡胶层应完好无损。 5.应检查并确认电气箱内各部件完好,接触无松动,接触器触点无烧毛现象。 6.作业前,应检查振动桩锤减震器与连接螺栓的紧固性,不得在螺栓松动或缺件的状态下启动。 7.应检查并确认振动箱内润滑油位在规定范围内。用手盘转胶带轮时,振动箱内不得有任何异响。

8.应检查各传动胶带的松紧度,过松或过紧时应进行调整。胶带防护罩不应有破损。 9.夹持器与振动器连接处的紧固螺栓不得松动。液压缸根部的接头防护罩应齐全。 10.应检查夹持片的齿形。当齿形磨损超过4mm时,应更换或用堆焊修复。使用前,应在夹持片中间放一块10—15m厚的钢板进行试夹。试夹中液压缸应无渗漏,系统压力应正常,不得在夹持片之间无钢板时试夹。 11.悬挂振动桩锤的起重机,其吊钩上必须有防松脱的保护装置。振动桩锤悬挂钢架的耳环上应加装保险钢丝绳。 12.启动振动桩锤应监视启动电流和电压,一次启动时间不应超过los。当启动困难时,应查明原因,排除故障后,方可继续启动。启动后,应待电流降到正常值时,方可转到运转位置。 13.振动桩锤启动运转后,应待振幅达到规定值时,方可作业。当振幅正常后仍不能拔桩时,应改用功率较大的振动桩锤。 14.拔钢板桩时,应按沉人顺序的相反方向起拔,夹持器在夹持板桩时,应靠近相邻一根,对工字桩应夹紧腹板的中央。如钢板桩和工字桩的头部有钻孔时,应将钻孔焊平或将钻孔以上割掉,亦可在钻

振动打桩锤安全操作规程(新编版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 振动打桩锤安全操作规程(新编 版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

振动打桩锤安全操作规程(新编版) 1作业场地至电源变压器或供电主干线的距离应在200米以内。 2电源容量与导线截面应符合厂家使用说明书的规定,启动时,电压降应控制在规定的范围内。 3液压箱、电气箱应置于安全平坦的地方、电气箱和电动机必须安装保护接地措施。 4长期停放重新使用前,应测定电动机的绝缘值,且不得小于5MΩ,并应对电缆芯线进行导通试验。电缆外包橡胶层应完好无损。 5应检查并确认电气箱内各部件完好,接触无松动,接触器触点无烧毛现象。 6作业前,应检查振动桩锤减震器与连接螺栓的紧固性,不得在螺栓松动或缺件的状态下启动。 7应检查并确认振动箱内润滑油位在规定范围内。用手盘转胶带

轮时,振动箱内部的有任何异响。 8应检查并确认各传动胶带的松紧度,过松或过紧是应进行调整。胶带防护罩不应有破损。 9夹持器与振动器的连接处的紧固螺栓不得松动。液压缸根部的接头防护罩应齐全。 10应检查加夹持片的齿形。当齿形磨损超过4mm时,应更换或用堆焊修复。使用前,应在夹持片中间放一块10-15mm厚的钢板进行试夹。试夹中液压缸应无渗漏,系统压力应正常,不得在夹持片之间无钢板时试夹。 11悬挂振动锤的起重机,其吊钩上必须有防松脱的保护装置。振动锤悬挂钢架的耳环上应加装保险钢丝绳。 12启动振动锤应监视启动电流和电压,一次启动时间不应超过10s,当启动困难时,应查明原因,排除故障后,方可继续启动。启动后,应待电流降到正常值时,方可转到运转位置。 13振动桩锤启动运转后,应待振幅达到规定值时,方可作业。当振幅正常后仍不能拔桩时,应改用功率较大的振动桩锤。

钢管桩测摩阻力计算

钢管桩设计与验算 钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I= 64 π (80.04-78.04)=1.936×10-3M 4。依据设计桩高度,钢管桩最大桩长为46.2m 。 1、桩的稳定性验算 桩的失稳临界力Pcr 计算 Pcr= 2 2 l EI π= 3 2 822 .4610 936.1101.2-????π =1878kN >R=658.3 kN 2、桩的强度计算 桩身面积 A=4π(D 2-a 2) =4 π (802-782)=248.18cm 2 钢桩自身重量 P=A.L.r=248.18×46.2×102×7.85*10-3 =90000kg=90kN 桩身荷载 p=658.3+90=748.3 kN б=p /A=748.3×102/248.18=301.5kg /cm 2=30.15Mpa 3、桩的入土深度设计 通过上述计算可知,每根钢管桩的支承力近658.3kN ,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为658.3×2=1316.6kN ,管桩周长 U=πD=3.1416×0.8=2.5133m 。依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为: 第一层 粉质黏土 厚度为3m , τ=120 Kpa

第二层 淤泥粉质黏土 厚度为4m ,τ=60 Kpa 第三层 粉砂 厚度为1.8m ,τ=90Kpa N=∑τi u h i N =120×2.5133×3+60×2.5133×4+90×2.5133×h 3=1316.6 kN =904.7+603.1+226.1 h 2 =1316.6kN 解得 h 3=-0.84m 证明钢管桩不需要进入第三层土,即满足设计承载力。 钢管桩实际入土深度: ∑h=3+4=7 m 4、打桩机选型 拟选用DZ90,查表得知激振动570 kN ,空载振幅≮0.8mm ,桩锤全高4.2 m ,电机功率90kw 。 5、振动沉桩承载力计算 根据所耗机械能量计算桩的容许承载力 []P =m 1 { ()[] v a A f m x 12 231111 βμα+-+Q } m —安全系数,临时结构取1.5 m 1—振动体系的质量 m 1=Q/g=57000/981=58.1 Q 1—振动体系重力 N g —重力加速度=981 cm /s 2 A X —振动沉桩机空转时振幅 A X = 10.3 mm M —振动沉桩机偏心锤的静力矩 N. cm μ—振动沉桩机振幅增大系数 μ= A n / A x

DZ60振动打桩锤的设计

摘要 振动桩锤是惯性振动机械的一种,属于振动利用机械中的平面双轴式激振器。振动桩锤是利用机械振动减少桩与土壤间的摩擦力,并依靠其自重或外加压力作用下达到沉桩的目的。振动桩锤分机械式和液压式两类,液压振动锤应用较少。振动桩锤采用机械式定向激振器。它由两根装有相同的偏心块并相向转动的轴组成,两根轴上的偏心块所产生的离心力在水平方向上的分力相互抵消,而垂直方向上的分力叠加。振动桩锤主要由电动机、导杆、压缩弹簧、减振粱、振动箱、皮带轮等组成。具有贯入力强、沉桩质量好、坚固耐用、故障少、结构紧凑、低噪音、高效率、无污染等优点。 关键词:振动机械、振动桩锤、惯性振动、减振弹簧

Abstract The vibration hammer is one kind of the inertial oscillation machinery, belongs to in the vibration use machinery the plane double shaft type driver. The vibration hammer uses friction to reduce the force between the mechanical vibrations pile and the soil, and depends upon it to be self-possessed or the sur- pressure function issues the goal of stake sinking. The vibration hammer divides the mechanical type and the hydraulic pressure type two kinds, the hydraulic pressure vibration hammer application are less. The vibration hammeruses the mechanical type direction detection driver. It is loaded with same lack of impartiality the piece and the opposite direction rotation axis by two is composed, on two axes lack of impartiality the piece produces the centrifugal force offsets or counteract one another in the horizontal side upward force component, but in vertical direction force component superimposition. The vibration hammer mainly by the electric motor, the guide rod, the compression spring, horizontal beam reducing inspires, a vibration box of body, the belt pulley and so on is composed. Has the penetrating power strongly, the quality of stake sinking is good, firm durable, the breakdown few, the structure is compact, the low noise, the high efficiency, does not have merit and so on pollution. Key words: Vibrates the machinery Vibratory pile hammer the inertial oscillation the spring reducing inspires

振动沉拔桩锤安全操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 振动沉拔桩锤安全操作规 程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1528-17 振动沉拔桩锤安全操作规程(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 作业场地至电源变压器或供电主干线的距离应在200m以内。 2 电源容量与导线截面应符合出厂说明书的规定。当电动机额定起动电压在-5%~10%的范围内时,可以额定功率连续运行,当超过时,则应控制负荷。 3 液压箱、配电箱应置于安全平坦的地方。配电箱和电动机保护接地或接零应符合本规程第十五章的有关规定。 4 长期停放重新使用前,应测定电动机的绝缘值,且不得小于0.5MΩ,并应对电缆芯线进行导通试验。电缆外包橡胶层应完好无损,并确认电气箱内各部件完好,接触无松动,接触器触点无烧蚀现象。 5 悬挂振动桩锤的起重机,其吊钩上必须有防松脱的保护装置。振动桩锤悬挂钢架的耳环上应加装

保险钢丝绳。 6 启动振动桩锤应监视启动电流和电压,一次启动时间不应超过10s。当启动困难时,应查明原因,排除故障后,方可继续启动。启动后,应待电流降到正常值时,方可运转位置。 7 振动桩锤启动运转后,应待振幅达到规定值时,方可作业。当振幅正常后仍不能拔桩时,应改用功率较大的振动桩锤。 8 拔钢板桩时,应按沉入顺序的相反方向起拔,夹持器在夹持板桩时,应靠近相邻一根,对工字桩应夹紧腹板的中央。如钢板桩和工字桩的头部有钻孔时,应将钻孔焊平或将钻孔以上割掉,亦可在钻孔处焊加强板,应严防拔断钢板桩。 9 夹桩时,不得在夹持器和桩的头部之间留有空隙,并应持压力表显示压力达到额定值后,方可指挥起重机起拔。 10 拔桩时,当桩身埋入部分被拔起1.0~1.5m时,应停止振动,拴好吊桩用钢丝绳,在起振拔桩。当桩

振动沉管灌注桩成桩深度分析

振动沉管灌注桩成桩深度分析 庞英杰,江宇京 (浙江建协工程咨询监理有限公司,杭州,310009) 摘 要:在一般多层房屋的桩基础中,振动沉管灌注桩占有很大的比例,尤其在沿海软土地基区域。正确估计下沉深度是提高振动沉管灌注桩经济效益和社会效益的必要手段。作者根据多年实践经验,推导出振动沉管成桩深度的经验公式,为桩基设计、施工的同时提出一个实用有效的方法。 关键词:振动沉管灌注桩,下沉深度,下沉阻力 在一般多层房屋的桩基础中,振动沉管灌注桩占有很大的比例,尤其在沿海软土地基区域。正确估计下沉深度是提高振动沉管灌注桩经济效益和社会效益的必要手段。本文根据多年实践经验,推导出振动沉管成桩深度的经验公式,为桩基设计、施工的同时提出一个实用有效的方法。 一、 振动沉管基理 振动沉管是将振动打桩机和沉管(φ325、φ377、φ425)连接起来形成一个振动体系, 启动电动机时,锤内两组对称偏心块在驱动齿轮带动下,以相同的速度相反的方向作旋转运动,转动产生的水平离心力相互抵消,垂直分力大小相等方向相同,从而产生上下周期性的激振力,使沉管上下振动。当沉管的振动频率与地基土的自振频率一致时,土体发生共振。对于粘性土,土中定向排列的结合水分子被打乱,弱结合水丧失分子引力的约束而成为自由水,颗粒间粘聚力急剧下降,土体产生触变现象;对于饱和无粘性土,在振动荷载作用下将产生液化现象,这将大大降低沉管侧磨阻力和沉管的端阻力,从而使沉管在自重和附加荷载的作用下沉入地层;对于淤泥和淤泥质粘土,往往在桩锤和沉管的自重作用下,无需振动,切割内摩擦角偏低的土体,土体发生剪切和挤压破坏,沉管下沉。 二、 影响振动沉管成桩深度的主要因素 1. 地基土的物理力学性质。沉管下沉过程中受到地基的阻力,地基土物理力学性质(主 要是抗剪强度)的差异决定了振动沉管下沉阻力的大小。沉管时,在土层中将产生很高的孔隙压力,对于饱和粘性土,孔隙水压力短时间内很难消散,土体难于被挤压密实,其强度大幅度下降,沉管较容易,同时土体发生隆起现象。在砂土和粉土中,孔隙水压力很快消散,土体被挤密,沉管难度增大,因此砂土和粉土层的厚度与密度是影响沉管成桩深度的重要因素。当非粘性土层较薄(小于桩径的3倍时)沉管在振动下可穿透该土层;当非粘性土层较厚时,桩尖沉入该土层深度为5倍的桩径较为困难。由于振动能量传递到桩尖时已有很大消耗,所以桩尖穿越深度密实土层难度更大。 2.桩机设备。通常各打桩的施工单位都不大可能具备大而全的施工用桩机设备,如振动锤DZ—90型(电动机功率达90KW)的就很少。现场打桩施工时经常出现机械设备不配套的现象,人为地造成资源的浪费或不满足设计需要,如桩机底盘偏小,型钢主梁抗弯刚度小,压重堆不足等。应而施工单位应全面地了解当地地质条件、设计意图确定需要的设备。 3.现场条件。现场的电源供电能力、电源至桩机施工点的距离、电缆规格,同时施工的各种机械的总

振动锤选型计算书

附件1 柬埔寨Stueng Trang-Kouch Chhmar 湄公河大桥工程 振动锤选型计算书 1 计算依据 a 《建筑桩基技术规范》(JGJ94-2008) b 《港口工程荷载规范》(JTS 144-1-2010) c 《港口工程桩基规范》(JTJ254-99) 2计算内容 2、1设备选型 2、2振动锤沉桩可行性验算 2、3振沉深度计算 2、1设备选型 现初步拟定主墩钢护筒参数如下: 现选取180KW型振动锤,技术参数如下:

所选振动锤需满足以下三个基本条件,方可沉桩成功: 1、振动锤得激振力F max 大于被振构件与土得动侧摩阻力Q st ; 2、振动系统得工作振幅A大于振沉到要求深度所需得最小振幅; 3、振动系统得总质量Q 大于振沉构件得动端阻力R。 2、2振动锤沉桩可行性验算 2、2、1激振力验算 根据日本经验公式,振动锤沉桩所需满足得条件如下: F max≥Q st=μQ s μ=μmin+(1-μmin)e-βη 式中η为振动加速度比 根据经验推荐:砂质土:μmin=0、15,淤泥质黏土:μmin=0、06,黏土:μmin=0、13,钢材得β值为0、52。 根据DZJ180型振动锤技术参数,可计算 μ=μmin+(1-μmin)e-βη=0、1508 按照15#墩最长钢护筒计算动侧摩阻力值为 则Q st=0、1508*3、14*2、3*(35*2、4+40*12、7+45*6、7+50*2、89)=1130、46KN<F max=1240KN 结论:180KW振动锤激振力满足振动沉桩要求。 2、2、2振幅验算 当激振器振幅很小时,沉入并不发生,只有当振幅超过某一定值时,才可实现沉桩,这一A0称为起始振幅。在水下得砂质土壤中,起始振幅达到2mm可以实现振沉。 工作振幅A=偏心力矩/振动质量 =1500*103/53、174*104=2、82mm>A0=2mm 结论:180KW振动锤工作振幅满足振动沉桩要求。 2、2、3动端阻力验算 振动锤系统得总重量Q0需大于振沉构件得动端阻力R

振动打桩锤安全操作规程

编号:CZ-GC-00580 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 振动打桩锤安全操作规程 Safety operation rules for vibratory pile hammer

振动打桩锤安全操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程 在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重 的会危及生命安全,造成终身无法弥补遗憾。 1作业场地至电源变压器或供电主干线的距离应在200米以内。 2电源容量与导线截面应符合厂家使用说明书的规定,启动时,电压降应控制在规定的范围内。 3液压箱、电气箱应置于安全平坦的地方、电气箱和电动机必须安装保护接地措施。 4长期停放重新使用前,应测定电动机的绝缘值,且不得小于5MΩ,并应对电缆芯线进行导通试验。电缆外包橡胶层应完好无损。 5应检查并确认电气箱内各部件完好,接触无松动,接触器触点无烧毛现象。 6作业前,应检查振动桩锤减震器与连接螺栓的紧固性,不得在螺栓松动或缺件的状态下启动。 7应检查并确认振动箱内润滑油位在规定范围内。用手盘转胶带轮时,振动箱内部的有任何异响。

8应检查并确认各传动胶带的松紧度,过松或过紧是应进行调整。胶带防护罩不应有破损。 9夹持器与振动器的连接处的紧固螺栓不得松动。液压缸根部的接头防护罩应齐全。 10应检查加夹持片的齿形。当齿形磨损超过4mm时,应更换或用堆焊修复。使用前,应在夹持片中间放一块10-15mm厚的钢板进行试夹。试夹中液压缸应无渗漏,系统压力应正常,不得在夹持片之间无钢板时试夹。 11悬挂振动锤的起重机,其吊钩上必须有防松脱的保护装置。振动锤悬挂钢架的耳环上应加装保险钢丝绳。 12启动振动锤应监视启动电流和电压,一次启动时间不应超过10s,当启动困难时,应查明原因,排除故障后,方可继续启动。启动后,应待电流降到正常值时,方可转到运转位置。 13振动桩锤启动运转后,应待振幅达到规定值时,方可作业。当振幅正常后仍不能拔桩时,应改用功率较大的振动桩锤。 14拔钢板桩时,应按沉入顺序的相反方向起拔,夹持器在夹持

单桩承载力计算

城南路(高浪路~吴都路)工程水中钢管桩承载力计算 本工程桩机平台及现浇箱梁水中部分的基础均采用Φ377的钢管桩作为主要受力构件,上铺14#、20#方钢作为纵横梁与下部的钢管桩有效连接,形成整个基础受力体系。实测水位1.74m ,河床-1.00m ,钢管桩总长7m ,出水1m (桩顶标高2.74m ),入土深度3.26m(桩底标高-4.26) 考虑到钢管桩为开口式打入,承载力计算时主要以摩擦力为主。 参考本工程水中范围内的地质报告,我部钢管桩主要进入的地质层为③2层及④层,分别为粉质粘土夹粉土和粉土层。其地基承载力特征值及侧壁摩擦阻力分别为: ③2粉质粘土夹粉土:τi=49.2kPa ,бR=140kPa ,土层范围(-0.69~-3.29) ④粉土:τi=66.1kPa ,бR=160kPa ,土层范围(-3.29~-9.39) 单桩容许承载力[P]=K 1安全系数[桩侧极限摩阻力P su +桩底极限阻力P pu ] (1)打入桩容许承载力按下式计算 ][2 1][R i i i A l U P σατα+=∑ P -单桩轴向受压容许承载力kN U -桩周长m l i -桩在承台底面或最大冲刷线一下的第i 层土层中的长度m i τ-于l i 相对应的各土层与桩侧的极限摩擦阻力kPa A -桩底面积㎡ R σ-桩底处土的极限承载力kPa

αi α-分别为振动下沉对各土层桩侧摩阻力和桩底抵抗力的影响系数,打入桩其值均为1 单根容许承载力: [P]=0.5×(αA бR +U ∑αiLi τi ) =0.5*(1*0.377*3.14*0.2*140+3.14*0.377*(2.29*49.2+0.97*66.1)) =121.2KN=12.12T ㎡ ㎡ 断面范围内为水中满堂支架施工,长度L=10.4m ,该段混凝土方量为: )(21213 1S S S S l V ?++??= =1/3*10.5*(11.5+8.65+65.8*5.11) =105m 3 荷载P=105*2.5=262.5T 取总荷载Q=1.2P=1.2*262.5=315T 需要钢管桩N=Q/[P]=315/12.12=26根 通航孔范围内的现浇段为贝雷架施工,长度L=21m ,该段混凝土方量为:

振动锤设备的性能研究及选择计算

振动锤设备的性能研究及选择计算 一、振动锤的总体工作原理 通过液压动力源使液压马达作机械旋转运动,从而实现振动箱内每组成对的偏心轮以相同的角速度反向转动;这两个偏心轮旋转产生的离心力,在转轴中心连线方向上的分量在同一时间内将相互抵消,而在转轴中心连线垂直方向的分量则相互叠加,并最终形成沉桩激振力。 二、常用振动锤的类型及具体参数 根据振动锤能够达到的最高频率,分为低频(≤15Hz)、中频(15~25Hz)、高频(25~60Hz)、超高频(≥60Hz)。根据所产生激振力的大小,分为小型、中型、大型、联动型。目前国内常用的是中频,国外高频较多。 1、小型 分DZ-45、DZ-60、DZ-90三种,技术参数分别如下:

2、中型 分DZJ-120、DZJ-135、DZJ-150三种,技术参数分别如下:

3、大型 分DZJ-180、DZJ-200、DZJ-240、DZJ-300四种,技术参数分别如下: 4、联动型 分DZJ-400、DZJ-480、DZJ-600三种,技术参数分别如下:

5、夹具(X型、单、双型)

三、振动沉(拔)桩的工作原理 下沉过程中振动锤与待下沉的桩经过刚性连接形成一个振动体系。振动锤运行时,总数为偶数的偏心轮高速旋转产生振动力,这个力使桩体产生正弦波的垂直振动,强迫桩体的周围土壤产生液化、位移,由于土层移动,在桩体自身重量和振动锤重量的作用下,使桩体切入地层。当振动停止,土壤逐渐恢复原状。同样的作用原理,在施工中,通过起重机吊钩的吊力,也可将桩体拔出。 四、振动锤选型及国内外不同计算方法分析比较 1、振动式沉桩适用的土质 最适合进行振动法沉桩的土为非粘性土、砾石或砂,特别是饱水的非粘性土、砾石或砂。对于混合土或粘性土,只有当它们具有很高的含水量时,才可使用振动锤沉桩。对于干硬性的粘土或经过人工排水的砂中进行振动法沉桩,其沉桩阻力可能很大。 2、选择振动锤型 所选的振动锤需要满足以下三个基本条件: 2.1振动锤的激振力P0大于被振沉构件与土的动侧摩擦阻力T; 2.2振动锤系统的总重量Q0大于振沉构件的动端阻力R; 2.3振动锤系统的工作振幅A。大于振沉到要求深度所需最小振幅A。 3、计算方法 3.1桩侧摩阻计算 要求P0>T;其中T=U∑Tvi*Hi U为桩横断面周长,单位m;Tvi为第i层土的极限动摩阻力,单位

相关文档
最新文档