有理分式函数的图象及性质

有理分式函数的图象及性质
有理分式函数的图象及性质

有理分式函数的图象及性质

【知识要点】 1.函数(0,)ax b y c ad bc cx d

+=

≠≠+

(1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠

单调区间为(,),(,+)d d c c

-∞--

∞(4)直线,d a x y c c =-

=

,对称中心为点(,)d a c c

-

(5)奇偶性:当0a d ==时为奇函数。(62.函数(0,0)b

y ax a b x =+

>>的图象和性质:

(1)定义域:{|0}x x ≠(2)值域:{|y y y ≥≤或(3)奇偶性:奇函数(4)单调性:在区间+),(∞上是增函数;在区间0)上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。

3.函数(0,0)b y ax a

b =+

><的图象和性质:

【例题精讲】 1.函数1

1+-

=x y 的图象是 ( )

A

B

C D 2.函数23

(1)1

x y x x +=

<-的反函数是

( )

3333.(2) . (2) . (1) .(1)2

2

2

2

x x x x A y x B y x C y x D y x x x x x ++++=

<=

≠=<=

≠----

3.若函数2()x f x x a

+=+的图象关于直线y x =对称,则a 的值是 ( )

. 1 . 1 . 2 .2A B C D --

4.若函数21

()x f x x a -=+存在反函数,则实数a 的取值范围为

( )

11. 1 . 1 . .2

2

A a

B a

C a

D a ≠-≠≠

≠-

5.不等式14x x

>

的解集为

( )

1111111. (,0)(

,) . (-,)(

,) . (,0)(0,,+) .(,0)(0,

)

22

2

2

2

2

2A B C D -

+∞∞-

+∞-∞-

6.已知函数2

()ax b

f x x c

+=

+的图象如图所示,则,,a b c 的大小关系为 ( )

. . . .A a b c B a c b C b a c D b c a >>>>>>>>

7.若正数a 、b 满足,3++=b a ab 则ab 的取值范围是_____ 。 8.函数2

34

x y x =

+的值域是 。

9.若函数1

a x y x a -=

--的反函数的图象关于点(1,4)-成中心对称,则实数

a = 。

10.函数11

x

x

e y e -=

+的反函数的定义域是 。

11.不等式

2113

x x ->+的解集是 。

12.函数2

2

1

x x y x x -=

-+的值域是 。

13.设(),[0,+)1

a f x x x x =+

∈∞+。

(1)当a =2时,求()f x 的最小值;

(2)当0<a <1时,判断()f x 的单调性,并写出()f x 的最小值。 14.设函数()(0)x a f x a b x b

+=>>+,求()f x 的单调区间,并证明()f x 在其单调区间上的单

调性. BABDAD

7.[9,+)∞ 8.33[,]44-

9.3 10.(1,1)- 11.3x <-或4x > 12.1

[,1)3

- 13.解:(1)a =2时,f (x )=x +12+x = x +1+12+x -1≥22-1,等号在x +1=1

2

+x ,

x =2-1(∵x ∈[0,+∞))时成立.

(2)当0<a <1时,设x 1,x 2 ∈[0,+∞),x 1<x 2 . 则f (x 2)- f (x 1)=(x 2-x 1)+

1

2+x a -

1

1+x a =(x 2-x 1)(1-

)

1)(1(21++x x a

).

∵ 0<a <1,∴

)

1)(1(21++x x a

<1,1-

)

1)(1(21++x x a

>0,

又 x 2-x 1>0,于是f (x 2)- f (x 1)=(x 2-x 1)(1-

)

1)(1(21++x x a

)>0,

f (x 2)> f (x 1),f (x )是增函数. 在x =0时,f (x )的最小值是a . 14.解:函数b

x a x x f ++=

)(的定义域为(,)(,)b b -∞--+∞

)(x f 在),(b --∞内是减函数,)(x f 在),(+∞-b 内也是减函数

证明

)

(x f 在),(+∞-b 内是减函数

取),(,21+∞-∈b x x ,且21x x <,那么

b

x a x b

x a x x f x f ++-

++=

-221121)()()

)(())(-( 2112b x b x x x b a ++-=

∵0))((,0,02112>++>->-b x b x x x b a ∴0)()(21>-x f x f 即

)

(x f 在),(+∞-b 内是减函数,同理可证

)

(x f 在),(b --∞内是减函数。

浅说函数的对称性

函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。

一、函数自身的对称性探究

定理1.函数y = f (x)的图像关于点A (a ,b)对称的充要条件是

f (x) + f (2a-x) = 2b

证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x)

即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。

(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)

∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。

推论:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0

定理2.函数y = f (x)的图像关于直线x = a对称的充要条件是

f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)

推论:函数y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)

定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。

②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)

是周期函数,且2| a-b|是其一个周期。

③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠

b),则y = f (x)是周期函数,且4| a-b|是其一个周期。

①②的证明留给读者,以下给出③的证明:

∵函数y = f (x)图像既关于点A (a ,c) 成中心对称,

∴f (x) + f (2a-x) =2c,用2b-x代x得:

f (2b-x) + f [2a-(2b-x) ] =2c………………(*)

又∵函数y = f (x)图像直线x =b成轴对称,

∴ f (2b-x) = f (x)代入(*)得:

f (x) = 2c-f [2(a-b) + x]…………(**),用2(a-b)-x代x得

f [2 (a-b)+ x] = 2c-f [4(a-b) + x]代入(**)得:

f (x) = f [4(a-b) + x],故y = f (x)是周期函数,且4| a-b|是其一个周期。

二、不同函数对称性的探究

定理4.函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。

定理5.①函数y = f (x)与y = f (2a-x)的图像关于直线x = a成轴对称。

②函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。

③函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。

定理4与定理5中的①②证明留给读者,现证定理5中的③

设点P(x0 ,y0)是y = f (x)图像上任一点,则y0 = f (x0)。记点P( x ,y)关于直线x-y = a的轴对称点为P‘(x1,y1),则x1 = a + y0 , y1 = x0-a ,∴x0 = a + y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a = f (a + y1) ∴点P‘(x1,y1)在函数x-a = f (y + a)的图像上。

同理可证:函数x-a = f (y + a)的图像上任一点关于直线x-y = a的轴对称点也在函数y = f (x)的图像上。故定理5中的③成立。

推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。

三、函数对称性应用举例

例1:定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是()(第十二届希望杯高二第二试题)

(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数

(C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数

解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x).

∴f (x)有两条对称轴x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数,∴x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。

故选(A)

例2:设定义域为R 的函数y = f (x)、y = g(x)都有反函数,并且f(x -1)和g -1

(x -2)函数的图像关于直线y = x 对称,若g(5) = 1999,那么f(4)=( )。

(A ) 1999; (B )2000; (C )2001; (D )2002。

解:∵y = f(x -1)和y = g -1

(x -2)函数的图像关于直线y = x 对称,

∴y = g -1(x -2) 反函数是y = f(x -1),而y = g -1(x -2)的反函数是:y = 2 + g(x), ∴f(x -1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001 故f(4) = 2001,应选(C )

例3.设f(x)是定义在R 上的偶函数,且f(1+x)= f(1-x),当-1≤x ≤0时,

f (x) = -2

1x ,则f (8.6 ) = _________ (第八届希望杯高二 第一试题)

解:∵f(x)是定义在R 上的偶函数∴x = 0是y = f(x)对称轴;

又∵f(1+x)= f(1-x) ∴x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3

例4. 设f(x)是定义在R 上的奇函数,且f(x+2)= -f(x),当0≤x ≤1时, f (x) = x ,则f (7.5 ) = ( ) (A) 0.5

(B) -0.5

(C) 1.5

(D) -1.5

解:∵y = f (x)是定义在R 上的奇函数,∴点(0,0)是其对称中心;

又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x), ∴直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为2的周期函数。

∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故选(B)

分式函数的图像与性质

y ax =b a b a -2ab 2ab -x O y 高一数学选修课系列讲座(一) -----------------分式函数的图像与性质 一、概念提出 1、分式函数的概念 形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。如221x y x x +=+,212x y x +=-,41 3 x y x +=+等。 2、分式复合函数 形如 22 [()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。如 22112x x y +=-,sin 23sin 3 x y x +=-,12x y -+=等。 二、学习探究 探究任务一:函数(0)b y ax ab x =+≠的图像与性质 问题1:(,,,)ax b y a b c d R cx d +=∈+的图像就是怎样的? 例1 画出函数21 1 x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。 小结:(,,,)ax b y a b c d R cx d +=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处 理方法。 分式函数(,,,)ax b y a b c d R cx d += ∈+的图像与性质: (1)定义域: ; (2)值域: ; (3)单调性:单调区间为 ; (4)渐近线及对称中心:渐近线为直线 ,对称中心为点 ; (5)奇偶性:当 时为奇函数; (6)图象:如图所示 问题2:(0)b y ax ab x =+ ≠的图像就是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1 y x x =+的图像,并结合函数图像指出函数具有的性质。 小结:分式函数(,0)b y ax a b x =+>的图像与性质: (1)定义域: ; (2)值域: ; (3)奇偶性: ; (4)单调性:在区间 上就是增函数, 在区间 上为减函数; (5)渐近线:以 轴与直线 为渐近线; (6)图象:如右图所示 例3、根据y x =与1y x = 的函数图像,绘制函数1 y x x =-的图像,并结合函数图像指出函数具 x O y x O y

正弦函数、余弦函数的图象和性质教案

正弦函数、余弦函数的图象和性质 一、学情分析: 1、学习过指数函数和对数函数; 2、学习过周期函数的定义; 3、学习过正弦函数、余弦函数[]π2,0上的图象。 二、教学目标: 知识目标: 1、正弦函数的性质; 2、余弦函数的性质; 能力目标: 1、能够利用函数图象研究正弦函数、余弦函数的性质; 2、会求简单函数的单调区间; 德育目标: 渗透数形结合思想和类比学习的方法。 三、教学重点 正弦函数、余弦函数的性质 四、教学难点 正弦函数、余弦函数的性质的理解与简单应用 五、教学方法 通过引导学生观察正弦函数、余弦函数的图象,从而发现正弦函数、余弦函数的性质,加深对性质的理解。(启发诱导式)

六、教具准备 多媒体课件 七、教学过程 1、复习导入 (1) 我们是从哪个角度入手来研究指数函数和对数函数的? (2) 正弦、余弦函数的图象在[]π2,0上是什么样的? 2、讲授新课 (1)正弦函数的图象和性质(由教师讲解) 通过多媒体课件展示出正弦函数在[]ππ2,2-内的图象,利用函数 图象探究函数的性质: ⅰ 定义域 正弦函数的定义域是实数集R ⅱ 值域 从图象上可以看到正弦曲线在[]1,1-这个范围内,所以正弦函数的值域是[]1,1- ⅲ 单调性 结合正弦函数的周期性和函数图象,研究函数单调性,即: ⅳ 最值 观察正弦函数图象,可以容易发现正弦函数的图象与虚线的交点,都是函数的最值点,可以得出结论: 上是增函数;在)(22,22Z k k k ∈??????+-ππππ上是减函数;在)(232,22Z k k k ∈????? ?++ππππ1,22max =∈+=y Z k k x 时,当ππ1,2 2min -=∈-=y Z k k x 时,当ππ

4.4.1正弦函数图像与性质练习题.doc

正弦、余弦函数的图像及性质习题 一、选择题 1、若[]π2,0∈x ,函数x x y cos sin -+=的定义域是 A .[]π,0 B .???? ??23,2ππ C . ?? ?? ??ππ,2 D .?? ? ? ??ππ2,23 2、函数x y sin 1-=的最小值是 A .1- B .0 C .2- D .1 3、若cosx=0,则角x 等于( ) A .k π(k ∈Z ) B . 2π+k π(k ∈Z ) C .2 π +2k π(k ∈Z ) D .- 2 π +2k π(k ∈Z ) 4、使cosx=m m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1 D .m <-1或m >1 5、已知函数f(x)=2sin x(>0)在区间[,]上的最小值是-2,则的最小值等于( )A. B. C.2 D.3 6.若函数的图象相邻两条对称轴间距离为 ,则等于 . A . B . C .2 D .4 7.函数y=3cos ( 52x -6 π )的最小正周期是( ) A . 5 π2 B . 2 π 5 C .2π D .5π 8.下列函数中,同时满足①在(0, 2 π )上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2 x D .y=|sinx| 9、函数??? ?? ?- ∈=32,6,sin ππx x y 的值域是 ??3π- 4 π ?322 3 cos()3 y x π ω=+ (0)ω>2 π ω12 12

分式函数的图像及性质

高一数学选修课系列讲座(一) -----------------分式函数的图像与性质 一、概念提出 1、分式函数的概念 形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。如221x y x x +=+,212x y x +=-,41 3 x y x +=+等。 2、分式复合函数 形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。如22112x x y +=-,sin 2 3sin 3x y x += -,12 3x y x -+= +等。 二、学习探究 探究任务一:函数(0)b y ax ab x =+≠的图像与性质 问题1:(,,,)ax b y a b c d R cx d += ∈+的图像是怎样的? 例1画出函数21 1 x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。 小结:(,,,)ax b y a b c d R cx d += ∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。 分式函数(,,,)ax b y a b c d R cx d += ∈+的图像与性质: (1)定义域: ;(2)值域:; (3)单调性:单调区间为; (4)渐近线及对称中心:渐近线为直线,对称中心为点; (5)奇偶性:当时为奇函数; (6)图象:如图所示

问题2:(0)b y ax ab x =+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1 y x x =+的图像,并结合函数图像指出函数具有的性质。 小结:分式函数(,0)b y ax a b x =+ >的图像与性质: (1)定义域:;(2)值域:; (3)奇偶性:; (4)单调性:在区间上是增函数, 在区间上为减函数; (5)渐近线:以轴和直线为渐近线; (6)图象:如右图所示 例3、根据y x =与1y x = 的函数图像,绘制函数1 y x x =-的图像,并结合函数图像指出函数具有的性质。 结合刚才的两个例子,思考1y x x =-- 与1 y x x =-的图像又是怎样的呢? 思考12+y x x =与23y x x =-的图像是怎样的呢?(,,0)b y ax a b R ab x =+∈≠的图像呢? 小结:(,,0)b y ax a b R ab x =+∈≠的图像如下: (i )(0,b y ax a b x =+>>

有理函数及三角函数有理式的积分

§3.6 有理函数及三角函数有理式的积分 教学目的:使学生理解有理函数及三角函数有理式积分法,掌握有理函数及三角函数有理式积分法的一般步骤及其应用。 重点:有理函数及三角函数有理式积分法及其应用 难点:有理函数及三角函数有理式积分法及其应用 教学过程: 一、问题的提出 前面两节我们利用基本积分表、不定积分性质和两种基本积分发(换元积分法与分部积分法)已经求出了一些不定积分。从求解过程中可见,求不定积分不像求导数那样,只要按照求导法则并利用基本求导公式就一定能求出一个函数的导数,而求不定积分却没有那样容易。即使一个看起来并不复杂的函数,要求出结果,有时候都需要一定的技巧,有些甚至还“积不出”。例如, ????+-31,,ln ,sin 2 x dx dx e x dx dx x x x , 被积函数都是初等函数,看起来也并不复杂,但是在初等函数范围内却积不出来,这是 因为被积函数的原函数不是初等函数。本节主要介绍几类常见的函数类型的积分方法与积分计算技巧。 求不定积分的主要方法有“拆、变、凑、换、分、套” “拆”,即将被积函数拆项,把积分变为两个或几个较简单的积分。“变”,即代数恒等变形:加一项减一项、乘一项除一项、分子分母有理化、提取公因子;三角恒等变形:半角、倍角公式,平方和公式,积化和差、和差化积、和角公式;陪完全平方:根号下配完全平方、分母配完全平方等;“凑”,即凑微法(第一类换元法)。“换”,即第二类换元法(三角代换、倒代换、指数代换法等)。“分”,即分部积分法。“套”,即套基本公式。 求不定积分的主要技巧在一个“巧”字和一个“练”字,即巧用上述方法和综合 运用上述方法。 二、 有理函数的积分 有理函数)(x R 是指由两个多项式的商所表函数,即 =)(x R m m m m n n n n b x b x b x b a x a x a x a x Q x P +++++++= ----11101110) ()(ΛΛ 其中m 和n 都是非负整数;n a a a a ,,,,2 10Λ及m b b b b ,,,,210Λ都是实数,通常总假定 分子多项式)(x P 与分母多项式)(x Q 之间没有公因式,并且00≠a ,00≠b . 当m n <时,称)(x R 为真分式;而当m n ≥时,称)(x R 为假分式. 一个假分式总可化为一个多项式和一个真分式之和的形式.例如 111122 234-++++=-+x x x x x x x .

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

有理函数之积分(部分分式法)

☆3一3 有理函數之積分(部分分式法) ●部分分式法 部分分式法:就是將一個分式化成數個分式的和。其步驟與原則如下 (1)檢查原分式,看分子的次數有沒有比分母低,如果沒有,依照公式 =+被除式餘式 商式除式除式 將原分式化成帶分式的形態 (2)將分母作因式分解,按照多項式的性質得知,得到的因式只可能出現 下面四種可能 ①ax b + ②2 ax bx c ++ ③()n ax b + ④2 ()n ax bx c ++ (3)按照下面的形態將原分式化成數個分式的和 ①所有的因式都是一次不重複的 12 11221122 () ()() () n n n n n A A A P x a x b a x b a x b a x b a x b a x b = ++ + ++++++ ②重複的一次因式 122 ()()() () n n n A A A P x ax b ax b ax b ax b =+++ ++++ ③所有的因式都是二次不重複的 222 111222() ()() () n n n P x a x b x c a x b x c a x b x c ++++++ 1122 22 2 111222n n n n n A x B A x B A x B a x b x c a x b x c a x b x c +++=+++++++++

④重複的二次因式 2()()n P x ax bx c ++112 2222 2() () n n n A x B A x B A x B ax bx c ax bx c ax bx c +++=+++ ++++++ 例題1. 求21 4 x dx x +-? Sol : 24(2)(2 )x x x -=+- 令 2 1422 x A B x x x +=+-+- 【等號兩邊同乘2 4(2)(2)x x x -+-或】 ?1(2)(2) x A x B x +=-++ 令2x =-代入? 41A -=-1 4 A ∴= 令2x =代入?43B =34 B ∴= ∴原式143413 ()ln 2ln 22244 dx x x C x x =+=++-++-? 提示: 公式 11 ln dx ax b C ax b a =+++? 例題2. 求32232 x x dx x x -++?

正弦函数的图像和性质(一)

正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、问题导学 1、函数的图像的画法: 描点法 步骤:列表→描点→连线 补全上述表格,并根据表格中数据在直角坐标系中画出的图像。 几何法 阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出的图像。 五点法

观察的图像,发现有五个点起着关键的作用,它们是图像与轴的交点和图像的最高点及最低点: ______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出的图像。 2、 因为正弦函数是以为周期的周期函数,所以函数在区间上的图像与在区间上的图像形状完全一样,只是位置不同,因此我们只需将函数的图像向左、向右平行移动(每次移动个单位)就可以得到的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 3、 合作探究 例1、用五点法画出下列函数在区间上的简图。 (1) (2) 例2、在上,利用的图像求满足下列不等式的的取值范围。 (1) (2)

正弦函数的图像和性质(一)

x y 等分圆 平移三角函数线作正弦函数的图像 三角函数线 圆 O O 正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:x y sin =图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数x y sin =的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同 角度观察、研究问题的思维习惯。 二、问题导学 1、函数] 2,0[ sinπ ∈ =x x y,的图像的画法: 补全上述表格,并根据表格中数据在直角坐标系中画出] 2,0[ sinπ ∈ =x x y,的图像。 ②几何法阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出 ] 2,0[ sinπ ∈ =x x y,的图像。 ③五点法 观察] 2,0[ sinπ ∈ =x x y,的图像,发现有五个点起着关键的作用,它们是图像与x轴的 交点和图像的最高点及最低点:______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然 后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出] 2,0[ sinπ ∈ =x x y,的图像。 2、因为正弦函数是以π2为周期的周期函数,所以函数x y sin =在区间 )0 ] )1 2, 2[≠ ∈ +k Z k k k且 ( (π π上的图像与在区间] 2,0[π上的图像形状完全一样,只是位置 不同,因此我们只需将函数] 2,0[ sinπ ∈ =x x y,的图像向左、向右平行移动(每次移动π2 个单位)就可以得到R sin∈ =x x y,的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 三、合作探究 例1、用五点法画出下列函数在区间] 2,0[π上的简图。 (1)x y sin 3 =(2)x y sin -1 =

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

分式函数的图像与性质

分式函数的图像与性质 1、分式函数的概念 形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。如221 x y x x +=+, 212x y x +=-,41 3 x y x +=+等。 2、分式复合函数 形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。如221 12x x y +=-,sin 2 3sin 3x y x += - ,y = 等。 ※ 学习探究 探究任务一:函数(0)b y ax ab x =+≠的图像与性质 问题1:(,,,)ax b y a b c d R cx d += ∈+的图像是怎样的? 例1、画出函数21 1 x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。 【分析】212(1)112111x x y x x x --+===+---, 即函数211 x y x -=-的图像可以经由函数1 y x =的图像向右平移1个单位,再向上平移2个单位得到。如下表所示: 12 111211 y y y x x x = ??→=??→=+--右上 由此可以画出函数21 1 x y x -= -的图像,如下: 单调减区间:(,1),(1,)-∞+∞; 值域:(,2)(2,)-∞+∞; 对称中心:(1,2)。 【反思】(,,,)ax b y a b c d R cx d +=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定? 【小结】(,,,)ax b y a b c d R cx d += ∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。

1.5正弦函数的图像与性质基础练习题

1.5正弦函数的图像与性质基础练习题 一、单选题 1.已知函数()sin 022f x x ππ??????=+<< ???????的图象过点0,2? ?? ,则()f x 图象的一个对称中心为( ) A .1,03?? ??? B .()1,0 C .4,03?? ??? D .()2,0 22sin 0x -≥成立的x 的取值集合是( ) A .()32244x k x k k Z ππππ?? +≤≤+∈???? B .()72244x k x k k Z ππππ?? +≤≤+∈???? C .()52244x k x k k Z π πππ?? -≤≤+∈???? D .()572244x k x k k Z π πππ?? +≤≤+∈???? 3.函数π ()sin(2)3f x x =+的最小正周期为( ) A .4π B .2π C .π D .π 2 4.函数sin 26y x π?? =+ ???的最小正周期是( ) A .2π B .π C .2π D .4π 5.函数1sin y x =-的最大值为( ) A .1 B .0 C .2 D .1- 6.已知函数()()sin 2f x x ?=+的图像关于直线3x π =对称,则?可能取值是( ). A .2π B .12π - C .6π D .6π- 7.函数sin 26y x π? ? =+ ???的一条对称轴是( ) A .6x π =- B .0x = C .6x π = D .3x π =

8.函数2sin y x =的最小值是( ) A .2- B .1- C .1 D .2 9.已知集合{}20M x x x =-≤, {}sin ,N y y x x R ==∈,则M N =( ) A .[]1,0- B .()0,1 C .[]0,1 D .? 10.已知函数()sin()()2f x x x R π =-∈,下面结论错误的是( ) A .函数()f x 的最小正周期为2π B .函数()f x 在区间0, 2π??????上是增函数 C .函数()f x 的图像关于直线0x =对称 D .函数()f x 是奇函数 11.函数()sin 4f x x π? ?=+ ??? 图象的一条对称轴方程为( ) A .4πx =- B .4x π = C .2x π = D .x π= 12.函数12sin()24y x π=+ 的周期,振幅,初相分别是( ) A .,2,44ππ B .4,2,4π π-- C .4,2,4π π D .2,2,4π π 二、填空题 13.函数sin 2y x =的最小正周期为_____________ 14.函数1sin 223y x π??=+ ?? ?的最小正周期是_______ 15.y =3sin 26x π??- ???在区间0,2π?? ????上的值域是________. 三、双空题 16.设函数()sin f x A B x =+,当0B <时,()f x 的最大值是 32,最小值是12-,则A =_____,B =_____. 17.函数sin 24y x π??=+ ???的对称轴为_________,对称中心为_____________. 四、解答题 18.已知函数2sin 23y x π? ?=+ ??? .

高中各种函数图像画法与函数性质

一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 二次函数

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =--- 2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2 y a x h k =-+关于原点对称后,得到的解析式是()2 y a x h k =-+- 4. 关于顶点对称(即:抛物线绕顶点旋转180°) 2 y ax bx c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2 y a x h k =--+. 5. 关于点()m n , 对称 ()2 y a x h k =-+关于点()m n , 对称后,得到的解析式是()222y a x h m n k =-+-+-

一次函数的图像与性质

一次函数的性质和图像

目录一、函数的定义 (一)、一次函数的定义函数。

(二)、正比例函数的定义 二、函数的性质 (一)、一次函数的性质 (二)、正比例函数的性质 三、函数的图像 (一)、一次函数和正比例函数图像在坐标上的位置 (二)、一次函数的图像 1、一次函数图像的形状 2、一次函数图像的画法 (三)、正比例函数的图像 1、正比例函数图像的形状 2、正比例函数图像的画法 3、举例说明正比例函数图像的画法 四、k、b两个字母对图像位置的影响 K、b两个字母的具体分工是: (一次项系数)k决定图象的倾斜度。 (常数项)b决定图象与y轴交点位置。 五、解析式的确定 (一)一个点坐标决定正比,两个点坐标决定一次 (二)用待定系数法确定解析式

六、两条函数直线的四种位置关系 两直线平行,k1= k2,b1≠b2 两直线重合,k1= k2,b1=b2 两直线相交,k1≠k2 两直线垂直,k1×k2=-1 (一)两条函数直线的平行 (二)两条函数直线的相交 (三)两条函数直线的垂直 一次函数、反比例函数中自变量x前面的字母k称为比例系数 这一节我们要学习正比例函数和一次函数。一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。因此,正比例函数是一次函数当b=0时的特殊情况。正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。 在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。

高等数学中有理分式定积分解法总结

由十个例题掌握有理分式定积解法 【摘要】 当被积函数为两多项式的商 () () P x Q x 的有理函数时,解法各种各样、不易掌握,在此由易到难将其解法进行整理、总结 【关键词】 有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分 两个多项式的商 () () P x Q x 称为有理函数,又称为有理分式,我们总假定分子多项式()P x 与分母多项式()Q x 之间无公因式,当分子多项式()P x 的次数小与分母多项式()Q x ,称有理式为真分式,否则称为假分式. 1.对于假分式的积分:利用多项式除法,总可将其化为一个多项式与一个真分式之和的形式. 例1.2 422 23 1 x x dx x +++? ()222 2 2131 x x x dx x ++-=+? 解 原式 2 2 2212311 x x dx dx dx x x =+-++??? ()42 2222 2 22 222223321.11 311 31 13111 31 arctan x x dx x x x x dx x x x dx dx x x dx dx x x dx dx dx x x x x C +++-=+=-+? ?=-- ?+?? =-++=--+?????????例 解 原式

3 24arctan 3 x x x C = +-+ 总结:解被积函数为假分式的有理函数时,用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分.对于一些常见函数积分进行记忆,有助于提高解题速度,例如: 2221111x dx dx x x ? ?=- ?++?? ?? 对于真分式 () () P x Q x ,若分母可分解为两个多项式乘积()Q x =()()12Q x Q x ,且()1Q x ,()2Q x 无公因式,则可拆分成两个真分式之和: ()()P x Q x ()()()() 1 212P x P x Q x Q x =+,上述过程称为 把真分式化为两个部分分式之和.若()1Q x 或()2Q x 再分解为两个没有公因式的多项式乘积,则最后有理函数分解式中出现多项式、() () 1k P x x a -、 () () 22 l P x x px q ++等三类函数,则多项 式的积分容易求的 2.先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分 2.1 类型一 ()m k ax b dx cx +? 例2.1.1 () 3 2 1x dx x -? 322 331 =x x x dx x -+-?解 原式 211 =33xdx dx dx dx x x -+-???? 211 =332x x In x C x -+++ 总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数, 然后利用常见积分公式进行运算 2.2 类型二 () k m cx dx ax b +?

正弦函数的图像与性质教案

《正弦函数的图像与性质》(第一课时)(教案) 神木职教中心 数学组 刘伟 教学目标:1、理解正弦函数的周期性; 2、掌握用“五点法”作正弦函数的简图; 3、掌握利用正弦函数的图像观察其性质; 4、掌握求简单正弦函数的定义域、值域和单调区间; 5、初步理解“数形结合”的思想; 6、培养学生的观察能力、分析能力、归纳能力和表达能力等 教学重点:1、用“五点法”画正弦函数在一个周期上的图像; 2、利用函数图像观察正弦函数的性质; 3、给学生逐渐渗透“数形结合”的思想 教学难点:正弦函数性质的理解和应用 教学方法:多媒体辅助教学、讨论式教学、讲议结合教学、分层教学 教学过程: Ⅰ 知识回顾 终边相同角的诱导公式: )(sin )2sin(Z ∈=+k k απα 所以正弦函数是周期函数,即 ,6-,4-,2-,6,4,2ππππππ及都是它的周期,其中π2是它的最小正周期,也直接叫周期,故正弦函数的周期为π2 Ⅱ 新知识 1、用描点法作出正弦函数在最小正周期上的图象 x y sin =,[]π2,0∈x (1)、列表

(2)、描点 (3)、连线 因为终边相同的角的三角函数值相同,所以x y sin =的图像在…, [][][][]ππππππ4,2,2,0,0,2,2,4--- ,…与x y sin =,[]π2,0∈x 的图像相 同 2、正弦函数的奇偶性 由诱导公式x x sin )sin(-=-,R x ∈得: ①定义域关于原点对称 ②满足)()(x f x f -=- 所以,正弦函数为奇函数(观察上图,图像关于原点对称) 3、正弦函数单调性 、值域 由图像观察可得: 正弦函数在??????++- ππ ππ k k 22, 22 是增函数,在?? ? ???++ππππk k 223,22是减函数 得到最大值为1,最小值为-1,所以值域为[]1,1-

有理分式函数的图象及性质

有理分式函数的图象及性质 【知识要点】 1.函数(0,)ax b y c ad bc cx d += ≠≠+ (1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠ 单调区间为(,),(,+)d d c c -∞-- ∞(4)直线,d a x y c c =- = ,对称中心为点(,)d a c c - (5)奇偶性:当0a d ==时为奇函数。(62.函数(0,0)b y ax a b x =+ >>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥≤或(3)奇偶性:奇函数(4)单调性:在区间+),(∞上是增函数;在区间0)上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。 3.函数(0,0)b y ax a b =+ ><的图象和性质:

【例题精讲】 1.函数1 1+- =x y 的图象是 ( ) A B C D 2.函数23 (1)1 x y x x += <-的反函数是 ( ) 3333.(2) . (2) . (1) .(1)2 2 2 2 x x x x A y x B y x C y x D y x x x x x ++++= <= ≠=<= ≠---- 3.若函数2()x f x x a +=+的图象关于直线y x =对称,则a 的值是 ( ) . 1 . 1 . 2 .2A B C D -- 4.若函数21 ()x f x x a -=+存在反函数,则实数a 的取值范围为 ( ) 11. 1 . 1 . .2 2 A a B a C a D a ≠-≠≠ ≠- 5.不等式14x x > 的解集为 ( ) 1111111. (,0)( ,) . (-,)( ,) . (,0)(0,,+) .(,0)(0, ) 22 2 2 2 2 2A B C D - +∞∞- +∞-∞- 6.已知函数2 ()ax b f x x c += +的图象如图所示,则,,a b c 的大小关系为 ( ) . . . .A a b c B a c b C b a c D b c a >>>>>>>> 7.若正数a 、b 满足,3++=b a ab 则ab 的取值范围是_____ 。 8.函数2 34 x y x = +的值域是 。 9.若函数1 a x y x a -= --的反函数的图象关于点(1,4)-成中心对称,则实数 a = 。 10.函数11 x x e y e -= +的反函数的定义域是 。 11.不等式 2113 x x ->+的解集是 。 12.函数2 2 1 x x y x x -= -+的值域是 。

高等数学中有理分式定积分解法汇总

高等数学中有理分式定积分解法汇总

————————————————————————————————作者:————————————————————————————————日期:

由十个例题掌握有理分式定积解法 【摘要】 当被积函数为两多项式的商 () () P x Q x 的有理函数时,解法各种各样、不易掌握,在此由易到难将其解法进行整理、总结 【关键词】 有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分 两个多项式的商 () () P x Q x 称为有理函数,又称为有理分式,我们总假定分子多项式()P x 与分母多项式()Q x 之间无公因式,当分子多项式()P x 的次数小与分母多项式()Q x ,称有理式为真分式,否则称为假分式. 1.对于假分式的积分:利用多项式除法,总可将其化为一个多项式与一个真分式之和的形式. 例1.2 422 23 1 x x dx x +++? ()222 22131 x x x dx x ++-=+? 解 原式 2 2 2212311 x x dx dx dx x x =+-++??? 3 24arctan 3 x x x C = +-+ ()42 2222 2 22 222223321.11 311 31 13111 31 arctan x x dx x x x x dx x x x dx dx x x dx dx x x dx dx dx x x x x C +++-=+=-+? ?=-- ?+?? =-++=--+?????????例 解 原式

总结:解被积函数为假分式的有理函数时,用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分.对于一些常见函数积分进行记忆,有助于提高解题速度,例如: 2221111x dx dx x x ? ?=- ?++?? ?? 对于真分式 () () P x Q x ,若分母可分解为两个多项式乘积()Q x =()()12Q x Q x ,且()1Q x ,()2Q x 无公因式,则可拆分成两个真分式之和: ()()P x Q x ()()()() 1 212P x P x Q x Q x =+,上述过程称为 把真分式化为两个部分分式之和.若()1Q x 或()2Q x 再分解为两个没有公因式的多项式乘积,则最后有理函数分解式中出现多项式、() () 1k P x x a -、 () () 22 l P x x px q ++等三类函数,则多项 式的积分容易求的 2.先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分 2.1 类型一 ()m k ax b dx cx +? 例2.1.1 () 3 2 1x dx x -? 322 331 =x x x dx x -+-?解 原式 211 =33xdx dx dx dx x x -+-???? 211 =332x x In x C x -+++ 总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数, 然后利用常见积分公式进行运算 2.2 类型二 () k m cx dx ax b +? 例2.2.1 ()2 3 2x dx x +? 解 令x+2=t ,则2x t =-,∴有dx dt =

分式函数的图像与性质

分式函数的图像与性质 1、分式函数的概念 形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。如221x y x x +=+,212x y x +=-,413 x y x +=+等。 2、分式复合函数 形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。如22112x x y +=-, sin 23sin 3x y x +=-,y =等。 ※ 学习探究 探究任务一:函数(0)b y ax ab x =+≠的图像与性质 问题1:(,,,)ax b y a b c d R cx d += ∈+的图像是怎样的? 例1、画出函数211 x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。 【分析】212(1)112111x x y x x x --+===+---,即函数211 x y x -=-的图像可以经由函数1y x =的图像向右平移1个单位,再向上平移2个单位得到。如下表所示:

由此可以画出函数211 x y x -=-的图像,如下: 单调减区间:(,1),(1,)-∞+∞; 值域:(,2)(2,)-∞+∞; 对称中心:(1,2)。 【反思】(,,,)ax b y a b c d R cx d += ∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定? 【小结】(,,,)ax b y a b c d R cx d +=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。 分式函数(,,,)ax b y a b c d R cx d += ∈+的图像与性质 (1)定义域:{|}d x x c ≠- ; (2)值域:{|}a y y c ≠; (3)单调性:单调区间为(,),(,+)d d c c -∞--∞; (4)渐近线及对称中心:渐近线为直线,d a x y c c =-=,对称中心为点(,)d a c c -; (5)奇偶性:当0a d ==时为奇函数;

相关文档
最新文档