TSP及蚁群算法在数学建模中的应用

TSP及蚁群算法在数学建模中的应用
TSP及蚁群算法在数学建模中的应用

TSP 及蚁群算法在数学建模中的应用

关键词:TSP 蚁群算法 数学建模

摘要:TSP ,即Traveling Salesman Problem ,也就是旅行商问题,是最基本的路线问题。该问题是在寻求单一旅行者由起点出发,通过所有给定的需求点之后,最后再回到原点的最小路径成本。由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上单位时间走过的蚂蚁越多,表明该路线的可用性越好,则后来者选择该路径的概率就越大.蚂蚁个体之间就是通过这种信息的交流寻找最优的到达食物源的线路.蚁群算法具有实现简单、正反馈、分布式的优点.本文通过对蚁群算法和TSP 的分析利用2012年西南交大新秀杯数学建模大赛的试题进行应用研究加以阐述

TSP ,即Traveling Salesman Problem ,也就是旅行商问题,是最基本的路线问题。该问题是在寻求单一旅行者由起点出发,通过所有给定的需求点之后,最后再回到原点的最小路径成本。

赋权连通图(,)G V E ,在权图G 中,i v ∈()V G 对应示意图中的固定停车点及

需求点,0v 表示始发站所在地,j e ∈()E G 对应示意图中路径.边权()j e ω∈对应示

意图中的路径长度.

建立的数学模型如下: {}0(),(),(G),(),e E G e N v V v T V v V ωω?∈?∈?∈?∈?∈

求G 中回路12,,

,(1)k L L L k >,

使得满足: (1)0(),1,2,

,;i v V L i k ∈=(2)1()();k i i V L V G ==

(3)1()()min(i n i e E L e ω=∈=∑∑目标为总距离最短)

或 1()()max ()()min(i i j k e E L e V L e v ωω≤≤∈∈????+=??????

∑∑目标为时间最短) 为了讨论方便,先给出图论中相关的一些定义.

定义1 经过图G 的每个顶点正好一次的圈,称为G 的哈密顿环路,也称Hamilton 圈.

定义2 在加权图(,)G V E =中

(1)权最小的哈米顿圈称为最佳Hamilton 圈;

(2)经过每个顶点至少一次且权最小的闭通路称为TSP 回路问题.

由定义2可知,寻找TSP 回路的问题.TSP 回路的问题可转化为最佳Hamilton 圈的问题.方法是由给定的图(,)G V E =构造一个以V 为顶点集的完备图(,)G V E ''=,E '中每条边(,)x y 的权等于顶点x 与y 在图中最短路径的权,即

111min{,}m m m m ij im mj ij d d d d ---=+

在图论中有以下定理:

定理1 加权图G 的校车回来的权和G '的最佳Hamilton 圈的权相同; 定理2 在加权完备图中求最佳Hamilton 圈的问题是NPC 问题.

由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上单位时间走过的蚂蚁越多,表明该路线的可用性越好,则后来者选择该路径的概率就越大.蚂蚁个体之间就是通过这种信息的交流寻找最优的到达食物源的线路.蚁群算法具有实现简单、正反馈、分布式的优点.

蚁群算法是一种本质上并行的算法。每只蚂蚁搜索的过程彼此独立,仅通过信息激素进行通信。所以蚁群算法则可以看作是一个分布式的多agent 系统,它在问题空间的多点同时开始进行独立的解搜索,不仅增加了算法的可靠性,也使得算法具有较强的全局搜索能力。

蚁群算法中有三个参数,分别是信息重要程度的参数α,启发式因子重要程度的参数β以及信息素蒸发系数ρ。α值的大小表明留在每个结点上的信息量受重视的程度,α值越大,蚂蚁选择以前经过的路线的可能性越大,但过大会使搜索过早陷于局部最小解;β的大小表明启发式信息受重视的程越大,蚂蚁选择离它近的城市的可能性也越大;ρ为信息素的蒸发系数,如果它的值取得不恰当,得到的结果会很差。对比蚁群算法模型中,α、β、ρ的取值情况发现若β、ρ取默认值,α=1时所得最优值和平均值比α取其他值更好,此时它的最优值和最差值之差也最小。这说明解的质量和稳定性都是最好的,所以模型中α的最佳设置应为1。对于β,其值在1~5之间逐渐增大,取αβ、默认值时,模型所得解的质量越来越高。当β的取值超过5时,所得解的质量开始下降,所以它们的β最佳设置为5;蒸发系数决定了收敛到局部最优解的速度,较大的ρ会使算法很快收敛到局部最优解,但解的质量往往较差;而太小的ρ会使得算法很难收敛到比较理想的解,本文ρ取0.1。

下面我们用西南交大2012年新秀杯数学建模竞赛的赛题来进行具体解释。、

问题重述

随着时间发展,犀浦校区的规模和人数都在日渐扩大。因此出现了因校园面积大而引发的交通需求。为解决这一问题,校园内出现了便捷通行车,师生只用花费一元钱就可以在校内往返。

目前,这种通行车采取招手即停的方式,校园内的任意地点都基本可以到达。但是为了使这种运行方式更加合理、规范,就需要通过数学建模确定新的运行模式,路线等。

利用题目所给平面图及网络数据,采用合适的建模方法,解决以下问题:

1、设置一些固定停车点,说明其合理性;

2、将固定停车和招手即停结合起来,给出每周通行车从上午7点到晚上10点的运行车辆数、运行路线及时刻表;

3、预测校园通行车在您安排的行驶方案下的运载能力。

具体解决

打开matlab,读出散点图坐标。编译出我们需要的函数并调用,即获得以下图像。(由于matlab本身的原因,所有坐标图均是纵向为x轴,横向为y轴)

1、南北区生活路线,需求点包含南北区体育场,南北区宿舍,西二门,校医院,建行,圆通等快递。

最佳Hamilton圈图最佳Hamilton圈搜素过程

图相中的交叉点为北区体育场,这说明围绕北区体育场绕比走学校外环线更加合理。具体线路在学校平面图中的分布随后给出。

2、生活区教学区连接线,主要方便早上北区学生上学,放学。以及南区学生去图书馆。进过需求点为南北区校车站,12教学楼,图书馆等。

最佳Hamilton 圈图 最佳Hamilton 圈搜索过程

观察图像我们发现,连接生活区和教学区的行车线路是一条环线。实际上,在现在开通的线路中,这条线是一条直线,往返都在一二教门前的那条路上。将其改进为环线,有几大好处。第一,一二教门前这条路本身不宽,尤其是在上下学高峰期时在这条路上行驶速度慢,让车难,还不安全。因此将其改造为环线,去程不变,回程走学校中轴线,速度快又安全,还可以顺便经过南区校车站接人。

数学建模算法分类

数学模型按照不同的分类标准有许多种类: 1.按照模型的数学方法分,有几何模型,图论模型,微分方程模型。概率模型,最优控制模型,规划论模型,马氏链模型。 2.按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型。 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。) 图像处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab来处理问题。) 数学建模方法 统计:1.预测与预报2.评价与决策3.分类与判别4.关联与因果 优化:5.优化与控制 预测与预报 ①灰色预测模型(必须掌握) 满足两个条件可用: a数据样本点个数少,6-15个 b数据呈现指数或曲线的形式 ②微分方程预测(备用) 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式

蚁群算法简述及实现

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

数学建模算法大全层次分析法

第八章 层次分析法 层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。 §1 层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 运用层次分析法建模,大体上可按下面四个步骤进行: (i )建立递阶层次结构模型; (ii )构造出各层次中的所有判断矩阵; (iii )层次单排序及一致性检验; (iv )层次总排序及一致性检验。 下面分别说明这四个步骤的实现过程。 1.1 递阶层次结构的建立与特点 应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。在这个模型下,复杂问题被分解为元素的组成部分。这些元素又按其属性及关系形成若干层次。上一层次的元素作为准则对下一层次有关元素起支配作用。这些层次可以分为三类: (i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。 (ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。 (iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。 递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。每一层次中各元素所支配的元素一般不要超过9个。这是因为支配的元素过多会给两两比较判断带来困难。 下面结合一个实例来说明递阶层次结构的建立。 例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。 在此问题中,你会根据诸如景色、费用、居住、饮食和旅途条件等一些准则去反复比较3个侯选地点。可以建立如下的层次结构模型。 目标层O 选择旅游地 准则层C 景色 费用 居住 饮食 旅途 措施层P 1P 2P 3P 1.2 构造判断矩阵 层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重并不一定相同,在决策者的心目中,它们各占有一定的比例。 在确定影响某因素的诸因子在该因素中所占的比重时,遇到的主要困难是这些比重常常不易定量化。此外,当影响某因素的因子较多时,直接考虑各因子对该因素有多大程度的影响时,常常会因考虑不周全、顾此失彼而使决策者提出与他实际认为的

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

蚁群算法

蚁群算法报告及代码 一、狼群算法 狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。 算法采用基于人工狼主体的自下而上的设计方法和基 于职责分工的协作式搜索路径结构。如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。 二、布谷鸟算法 布谷鸟算法 布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS 算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS 也采用相关的Levy 飞行搜索机制 蚁群算法介绍及其源代码。 具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。 应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能 三、差分算法 差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。 算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体

的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。 四、免疫算法 免疫算法是一种具有生成+检测的迭代过程的搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。 五、人工蜂群算法 人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。为了解决多变量函数优化问题,科学家提出了人工蜂群算法ABC模型。 六、万有引力算法 万有引力算法是一种基于万有引力定律和牛顿第二定律的种群优化算法。该算法通过种群的粒子位置移动来寻找最优解,即随着算法的循环,粒子靠它们之间的万有引力在搜索空间内不断运动,当粒子移动到最优位置时,最优解便找到了。 GSA即引力搜索算法,是一种优化算法的基础上的重力和质量相互作用的算法。GSA 的机制是基于宇宙万有引力定律中两个质量的相互作用。 七、萤火虫算法 萤火虫算法源于模拟自然界萤火虫在晚上的群聚活动的自然现象而提出的,在萤火虫的群聚活动中,每只萤火虫通过散发荧光素与同伴进行寻觅食物以及求偶等信息交流。一般来说,荧光素越亮的萤火虫其号召力也就越强,最终会出现很多萤火虫聚集在一些荧光素较亮的萤火虫周围。人工萤火虫算法就是根据这种现象而提出的一种新型的仿生群智能优化算法。在人工萤火虫群优化算法中,每只萤火虫被视为解空间的一个解,萤火虫种群作为初始解随机的分布在搜索空间中,然后根据自然界萤火虫的移动方式进行解空间中每只萤火虫的移动。通过每一代的移动,最终使的萤火虫聚集到较好的萤火虫周围,也即是找到多个极值

数学建模十种常用算法

数学建模有下面十种常用算法, 可供参考: 1.蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问 题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中 也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)

用蚁群算法用于数据挖掘

用蚁群算法用于数据挖掘 一.数据挖掘背景介绍: 数据挖掘和知识发现(Date Mining and Knowledge Discovery,简称DMKD)技术是指从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含的、未知的、潜在的、有用的信息的过程。 随着计算机技术迅速发展,数据库技术也得到了广泛的应用。现在的数据库系统可以高效地实现数据的录入、查询、统计计算等功能。如果用数据库管理系统来存储数据,用机器算法来分析数据,挖掘数据背后的知识,这样就产生了数据库中的知识发现(即KDD)和数据挖掘(即DM)。KDD和DM是指识别出存在于数据库中有效的、新颖的、具有潜在效用的、最终可理解的模式的非平凡过程。 数据挖掘的任务分成很多种,包括数据描述(characterization)、数据分类(classification)、数据关联(association)、区别分析(discrimination)、数据回归、数据聚类(clustering)、数据预测(prediction)。 我们这里要用蚁群算法解决的是数据分类这样一个问题:我们预先定义一组类,然后把数据系中的每一个数据根据该数据的属性,归入这些类中的一个。 比如说病情诊断:在医院里,病人感觉不适,进行检查,并且医生对一些以前的状况进行询问,可以得到很多各种方面的参数,比方对于SARS病情,可以得到的一些相关参数:体温,咳嗽,肺部X照射是否有阴影,以及各种症状持续时间,病人前一段时间接触过何种人群等等,这些大量的数据比较容易得到,但是如何根据这些大量的病人的病情参数来判断是否确实为SARS病症并不是一件很简单的事情,这就是我们的数据分类工作要做的事情。 我们要对数据进行分类,首先要有进行分类的规则,我们把判别规则表示为如下形式:IF < conditions > THEN < class > 其中判别规则的前导部分(IF 部分)是一个条件项的集合.条件项就是一个只有<属性,关系符,属性取值>三个元素的简单的条件。不同的条件项用逻辑运算符连接,一般是AND。所以规则的前导部分就是一个由许多简单的条件由逻辑连接而成的复合条件。符合这个条件的数据将被纳入规则后部的class中。 从规则有意义和可理解性来考虑,简单条件不能太多,而属于规则的数目也不能太多。

人工蚁群算法的实现与性能分析

目录..................................................................... I 摘要.................................................................... V Abstract ................................................................. VI 第一章引言.. (1) 非对称TSP问题(ATSP)及其求解方法概述 (1) 人工蚁群算法的主要思想和特点 (1) 主要工作 (2) 第二章 ATSP问题分析 (3) ATSP问题的数学模型 (3) ATSP问题与TSP问题的比较 (3) 第三章求解ATSP问题的人工蚁群算法 (4) ATSP问题的蚁群算法表示 (4) 人工蚁群算法的实现 (4) 人工蚁群算法的流程图 (5) 蚁群的规模、算法终止条件 (6) 路径选择方法和信息素的更新方法 (7) 第四章实验和分析 (10) 测试环境 (10) 测试用例 (10) 实验结果及参数分析 (10) 的测试结果 (10) 的测试结果 (12) 的测试结果 (13) 的测试结果 (13) 相关参数修改后的测试结果 (14) 第五章总结 (16) 致谢 (17) 参考文献 (17)

摘要 旅行商问题(TSP问题)是组合优化的著名难题。它具有广泛的应用背景,如计算机、网络、电气布线、加工排序、通信调度等。已经证明TSP问题是NP难题,鉴于其重要的工程与理论价值,TSP常作为算法性能研究的典型算例。TSP的最简单形象描述是:给定n个城市,有一个旅行商从某一城市出发,访问各城市一次且仅有一次后再回到原出发城市,要求找出一条最短的巡回路径。TSP分为对称TSP和非对称TSP两大类,若两城市往返距离相同,则为对称TSP,否则为非对称TSP 。本文研究的是对称的ATSP。 实质上,ATSP问题是在TSP问题上发展而来的,它们的区别就在于两座城市之间的往返距离是否相同。例如,有A,B两个城市,在TSP问题中,从A到B的距离是等于从B到A得距离的,是一个单向选择的连通问题。而在ATSP问题中,从A到B的距离就不一定等于从B到A的距离,所以这是双向选择的联通问题。 本文主要阐述了用人工蚁群算法的原理和一些与其相关联的知识结构点。通过对算法原理的理解,及在函数优化问题上的应用,与优化组合问题的研究来了解ATSP问题以及人工蚁群算法解决实际问题上的应用与研究。 关键词:ATSP ;组合优化;人工蚁群算法;TSP

数学建模方法详解种最常用算法

数学建模方法详解--三种最常用算法 一、层次分析法 层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案 排序、政策制定、冲突问题、性能评价等方面都有广泛的应用. (一) 层次分析法的基本原理 层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍. 1.递阶层次结构原理 一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这 些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配 关系.具有这种性质的层次称为递阶层次. 2.测度原理 决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对 于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理

层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤 层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1] . 1.成对比较矩阵和权向量 为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因 素放在一起比较,而是两两相互对比,二是对比时采用相对尺度. 假设要比较某一层n 个因素n C C ,,1对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比, 全部比较 结 果 可 用 成 对 比 较 阵 1 ,0,ij ij ji n n ij A a a a a 表示,A 称为正互反矩阵.一般地,如果一个正互反阵 A 满足: , ij jk ik a a a ,,1,2,,i j k n (1) 则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根 n 的特征向量. 如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,, 1对 上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

蚁群算法

蚁群算法的改进与应用 摘要:蚁群算法是一种仿生优化算法,其本质是一个复杂的智能系统,它具有较强的鲁棒性、优良的分布式计算机制和易于与其他方法结合等优点。但是现在蚁群算法还是存在着缺点和不足,需要我们进一歩改进,如:搜索时间长、容易出现搜索停滞现象、数学基础还不完整。本文首先说明蚁群算法的基本思想,阐述了蚁群算法的原始模型及其特点,其次讨论如何利用遗传算法选取蚁群算法的参数,然后结合对边缘检测的蚁群算法具体实现过程进行研究分析,最后对本论文所做的工作进行全面总结,提出不足之处,并展望了今后要继续研究学习的工作内容。 关键词:蚁群算法;边缘检测;阈值;信息素;遗传算法; 1 前言 蚁群算法是近年来提出的一种群体智能仿生优化算法,是受到自然界中真实的蚂蚁群寻觅食物过程的启发而发现的。蚂蚁之所以能够找到蚁穴到食物之间的最短路径是因为它们的个体之间通过一种化学物质来传递信息,蚁群算法正是利用了真实蚁群的这种行为特征,解决了在离散系统中存在的一些寻优问题。该算法起源于意大利学者 Dorigo M 等人于 1991 年首先提出的一种基于种群寻优的启发式搜索算法,经观察发现,蚂蚁在寻找食物的过程中其自身能够将一种化学物质遗留在它们所经过的路径上,这种化学物质被学者们称为信息素。这种信息素能够沉积在路径表面,并且可以随着时间慢慢的挥发。在蚂蚁寻觅食物的过程中,蚂蚁会向着积累信息素多的方向移动,这样下去最终所有蚂蚁都会选择最短路径。该算法首先用于求解著名的旅行商问题(Traveling Salesman Problem,简称 TSP)并获得了较好的效果,随后该算法被用于求解组合优化、函数优化、系统辨识、机器人路径规划、数据挖掘、网络路由等问题。 尽管目前对 ACO 的研究刚刚起步,一些思想尚处于萌芽时期,但人们已隐隐约约认识到,人类诞生于大自然,解决问题的灵感似乎也应该来自大自然,因此越来越多人开始关注和研究 ACO,初步的研究结果已显示出该算法在求解复杂优化问题(特别是离散优化问题)方面的优越性。虽然 ACO 的严格理论基础尚未奠定,国内外的有关研究仍停留在实验探索阶段,但从当前的应用效果来看,这种自然生物的新型系统寻优思想无疑具有十分光明的前景。但该算法存在收敛速度慢且容易出现停滞现象的缺点,这是因为并不是所有的候选解都是最优解,而候选解却影响了蚂蚁的判断以及在蚂蚁群体中,单个蚂蚁的运动没有固定的规则,是随机的,蚂蚁与蚂蚁之间通过信息素来交换信息,但是对于较大规模的优化问题,这个信息传递和搜索过程比较繁琐,难以在较短的时间内找到一个最优的解。 由于依靠经验来选择蚁群参数存在复杂性和随机性,因此本文最后讨论如何利用遗传算法选取蚁群算法的参数。遗传算法得到的蚁群参数减少了人工选参的不确定性以及盲目性。 2 基本蚁群算法 2.1 蚁群算法基本原理 根据仿生学家的研究结果表明,单只蚂蚁不能找到从巢穴到食物源的最短路 径,而大量蚂蚁之间通过相互适应与协作组成的群体则可以,蚂蚁是没有视觉的,但是是通过蚂蚁在它经过的路径上留下一种彼此可以识别的物质,叫信息素,来相互传递信息,达到协作的。蚂蚁在搜索食物源的过程中,在所经过的路径上留下信息素,同时又可以感知并根据信息素的浓度来选择下一条路径,一条路径上的浓度越浓,蚂蚁选择该条路径的概率越大,并留下信息素使这条路径上的浓度加强,这样会有更多的蚂蚁选择次路径。相反,信息素浓度少的路

数学建模算法大全排队论

第六章排队论模型 排队论起源于1909年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。1917年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。 排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机性。可以说排队现象几乎是不可避免的。 排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。它研究的内容有下列三部分: (i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。 (ii)最优化问题,又分静态最优和动态最优,前者指最优设计。后者指现有排队系统的最优运营。 (iii)排队系统的统计推断,即判断一个给定的排队系统符合于那种模型,以便根据排队理论进行分析研究。 这里将介绍排队论的一些基本知识,分析几个常见的排队模型。 §1 基本概念 1.1 排队过程的一般表示 下图是排队论的一般模型。 凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。因此,顾客总希望服务机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权衡决策,使其达到合理的平衡。 1.2 排队系统的组成和特征 一般的排队过程都由输入过程、排队规则、服务过程三部分组成,现分述如下: 1.2.1 输入过程 输入过程是指顾客到来时间的规律性,可能有下列不同情况: (i)顾客的组成可能是有限的,也可能是无限的。 (ii)顾客到达的方式可能是一个—个的,也可能是成批的。 (iii)顾客到达可以是相互独立的,即以前的到达情况对以后的到达没有影响;否则是相关的。 (iv)输入过程可以是平稳的,即相继到达的间隔时间分布及其数学期望、方差等数字特征都与时间无关,否则是非平稳的。

蚁群算法的数学模型

蚁群算法的数学模型 蚂蚁),2,1(k m k ???=在运动过程中,运动转移的方向由各条路径上的信息量浓度决定。为方便记录可用),,2,1(t m k abu k ???=来记录第 k 只蚂蚁当前已走过的所有节点,这里可以称存放节点的表为禁忌表;这个存放节点的集合会随着蚂蚁的运动动态的调整。在算法的搜索过程中,蚂蚁会智能地选择下一步所要走的路径。 设 m 表示蚂蚁总数量,用)1,,1,0,(d -???=n j i ij 表示节点 i 和节点 j 之间的距离,)(ij t τ表示在 t 时刻ij 连线上的信息素浓度。 在初始时刻,m 只蚂蚁会被随机地放置,各路径上的初始信息素浓度是相同的。在 t 时刻,蚂蚁 k 从节点i 转移到节点 j 的状态转移概率为 ??? ????=∈=∑∈other p allowed t t t t k ij k allowed k ij ij ij ij k ij ,0j ,) ()()()(p k βαβαητητ ()1-2 其中,{}k k tabu c allowed -=表示蚂蚁 k 下一步可以选择的所有节 点,C 为全部节点集合;α为信息启发式因子,在算法中代表轨迹相对重要程度,反映路径上的信息量对蚂蚁选择路径所起的影响程度,该值越大,蚂蚁间的协作性就越强;β可称为期望启发式因子,在算法中代表能见度的相对重要性。ij η是启发函数,在算法中表示由节点i 转移到节点 j 的期望程度,通常可取ij ij d /1=η。在算法运行时每只蚂蚁将根据(2-1)式进行搜索前进。 在蚂蚁运动过程中,为了避免在路上残留过多的信息素而使启发

数学建模常用算法模型

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

数学建模方法详解--三十四种常用算法

数学建模方法详解--三十四种常用算法 目录 一、主成分分析法 (2) 二、因子分析法 (5) 三、聚类分析 (9) 四、最小二乘法与多项式拟合 (16) 五、回归分析(略) (22) 六、概率分布方法(略) (22) 七、插值与拟合(略) (22) 八、方差分析法 (23) 九、逼近理想点排序法 (28) 十、动态加权法 (29) 十一、灰色关联分析法 (31) 十二、灰色预测法 (33) 十三、模糊综合评价 (35) 十四、隶属函数的刻画(略) (37) 十五、时间序列分析法 (38) 十六、蒙特卡罗(MC)仿真模型 (42) 十七、BP神经网络方法 (44) 十八、数据包络分析法(DEA) (51) 十九、多因素方差分析法()基于SPSS) (54) 二十、拉格朗日插值 (70) 二十一、回归分析(略) (75) 二十二、概率分布方法(略) (75) 二十三、插值与拟合(略) (75) 二十四、隶属函数的刻画(参考《数学建模及其方法应用》) (75) 二十五、0-1整数规划模型(参看书籍) (75) 二十六、Board评价法(略) (75) 二十七、纳什均衡(参看书籍) (75) 二十八、微分方程方法与差分方程方法(参看书籍) (75) 二十九、莱斯利离散人口模型(参看数据) (75) 三十、一次指数平滑预测法(主要是软件的使用) (75) 三十一、二次曲线回归方程(主要是软件的使用) (75) 三十二、成本-效用分析(略) (75) 三十三、逐步回归法(主要是软件的使用) (75) 三十四、双因子方差分析(略) (75)

一、主成分分析法 一)、主成分分析法介绍: 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法。旨在利用降维的思想,把多指标转化为少数几个综合指标。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 二)、主成分分析法的基本思想: 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 三)、主成分分析法的数学模型: 其中:

数学建模算法

数学建模的十大算法 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)

相关文档
最新文档