理解线性相位与模拟滤波器选择

理解线性相位与模拟滤波器选择
理解线性相位与模拟滤波器选择

数字滤波器线性相位:

任何一个信号都可以按照傅里叶级数分解成无数个单一正弦信号的叠加,设

X1(t)=sin(ω1*t);

X2(t)=sin(ω2*t);

X3(t)=sin(ω3*t);

X(t)=X1(t)+ X2(t) +X3(t);

让X(t)通过一个线性延时系统,延时Δt,则通过该系统后,X(t)变为

X(t-Δt)= sin(ω1*t-ω1*Δt)+ sin(ω2*t-ω2*Δt)+ sin(ω3*t-ω3*Δt);

φ(f1)=-ω1*Δt=-2πΔt *f1;

φ(f2)=-ω2*Δt=-2πΔt *f2;

φ(f3)=-ω3*Δt=-2πΔt *f3;

通常地

φ(f)=-ω3*Δt=-2πΔt *f;———————— (1)

由式(1)可看出,相位延时是关于频率的线性函数,同时斜率(-2πΔt)即为系统延时,该值为常数表明为线性相位。

群延时:

1定义:

描述相位变化随着频率变化的快慢程度的量称为群延迟。线性相位表示相位随着频率的变化快慢程度是一样的。

是相频特性的负导数τ(ω)=-dφ(ω)/dω。

2特性:

群延迟直观上就是信号波形包络的时延,单个频率是不存在群延时的;

从公式来看是相频特性曲线的斜率,反映的是一个器件对带内每个频点信号相位的影响,群延迟恒定时传输波形失真最小。

相位延迟:

相位与频率的比叫相位延迟。用来描述信号中,对于每一个频率分量,对应的相位特征。也就是τ(ω)=-φ(ω)/ω。

注意:相位延迟不同于群延迟。相位延迟侧重于每一个频率分量,群延迟则是描述相位的变化率。

三种常用模拟滤波器的特点:

1 巴特沃斯滤波器:优点:通带幅度最大平坦缺点:过渡带太长;

2 切比雪夫滤波器:优点:过渡带小缺点:通带有纹波;

3 贝塞尔滤波器:优点:通带的线性相位和优异的瞬态性能缺点:幅度分辨率较低。

图1模拟滤波器的幅频度相位波特图

图2模拟滤波器的群延时

群延时就是相频特性曲线的导数。

图3FIR数字滤波器的幅度相位图(注意不是波特图)

图4FIR数字滤波器的群延时

图5FIR数字滤波器的相位延时

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

matlab仿真一阶低通滤波器幅频特性和相频特性

freqs 模拟滤波器的频率响应 语法: h = freqs(b,a,w) [h,w] = freqs(b,a) [h,w] = freqs(b,a,f) freqs(b,a) 描述: freqs返回一个模拟滤波器的H(jw)的复频域响应(拉普拉斯格式) 请给出分子b和分母a h = freqs(b, a, w) 根据系数向量计算返回模拟滤波器的复频域响应。freqs计算在复平面虚轴上的频率响应h,角频率w确定了输入的实向量,因此必须包含至少一个频率点。 [h, w] = freqs(b, a) 自动挑选200个频率点来计算频率响应h [h, w] = freqs(b, a, f) 挑选f个频率点来计算频率响应h 例子: 找到并画出下面传递函数的频率响应 Matlab代码: a = [1 0.4 1]; b = [0.2 0.3 1]; w = logspace(-1, 1);

logspace功能:生成从10的a次方到10的b次方之间按对数等分的n个元素的行向量。n如果省略,则默认值为50。 freqs(b, a, w); You can also create the plot with: h = freqs(b,a,w); mag = abs(h); phase = angle(h); subplot(2,1,1), loglog(w,mag) subplot(2,1,2), semilogx(w,phase) To convert to hertz, decibels, and degrees, use: f = w/(2*pi); mag = 20*log10(mag); phase = phase*180/pi; 算法: freqs evaluates the polynomials at each frequency point, then divides the numerator response by the denominator response: s = i*w; h = polyval(b,s)./polyval(a,s)

有源滤波器中的相位关系考察

有源滤波器中的相位关系考察 有源滤波器中的相位关系考察 在使用滤波器的应用中,通常人们对幅值响应的兴趣要比对相位响应的兴趣更浓厚。但是,在某些应用中,滤波器的相位响应也很重要。一个实例是滤波器用于过程控制环路中的情形。这里,人们关心的是总的相移量,因为它影响到环路的稳定性。用来搭建滤波器的拓扑结构是否会造成在某些频率点处符号出现相反,是非常重要的。 将有源滤波器视为两个级联的滤波器是一个有用的方法。,其中一个滤波器是理想的滤波器,用于体现传递函数;另一个是构成滤波器的放大器。在闭环的负反馈环路中所采用的放大器可以被视为一个具有一阶响应的、简单的低通滤波器。当频率超过某一点后,增益将随着频率的增长而出现滚降现象。此外,如果放大器使用反相放大结构的话,则所有频率点上还将出现附加的180°相移。 图1.以两个级联的传递函数的形式表示的滤波器 滤波器设计过程可分为两步。首先选定滤波器的响应特性,接下来选出适当的电路结构来实现它。滤波器的响应是指衰减曲线的形状,这常常可以归为经典的响应特性中的一种,如Butterworth、Bessel或者某种Chebyshev型。虽然这些响应特性的选择往往会影响幅值响应特性,但它们也会影响相位响应特性的形状。在本文中,为了进行比较,忽略

幅值响应,认为其几乎不变。 滤波器的复杂性往往通过滤波器的“阶数”来定义,该参数与储能元件(电感和电容)的数量有关。滤波器传递函数分母的阶数定义了随着频率的上升而呈现的衰减速率。渐近线型的滤波器滚降速率为-6ndB/倍频程,或者-20ndB/十倍频程,其中n是极点的数量。倍频程是指频率的二倍或者一半,十倍频程是频率的十倍增长或者缩减。因此,一个一阶(或者单极点)滤波器的滚降速率为-6dB/倍频程或者-20dB/十倍频程。类似的,一个二阶(或者2极点)滤波器的滚降速率为-12dB/倍频程或者-40dB/十倍频程。更高阶次的滤波器往往是由级联的一阶和二阶基本单元所构成的。自然,我们可以利用单个有源放大电路级来构建三阶、甚至四阶滤波器,但是对于元件值的敏感,以及元件之间的相互作用对频率响应所造成影响的大幅度上升,会使这些选择不那么具有吸引力。 传递函数 首先,我们考察一下传递函数的相位响应。对于同样阶数的滤波器选项来说,它们的传递函数的相移特性都相同。 对于单极点、低通的情形,传递函数的相移为φ,由下式给出。 (1) 式中:ω=频率(弧度/秒) ω0=中心频率(弧度/秒) 以弧度/秒为单位的频率等于2π乘以以Hz为单位的频率,这是因

巴特沃斯数字低通滤波器要点说明

目录 1.题目........................................................ .................................. .2 2.要求........................................................ (2) 3.设计原理........................................................ . (2) 3.1 数字滤波器基本概念......................................................... (2) 3.2 数字滤波器工作原理......................................................... (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法......................................................... .. (4) 3.5实验所用MATLAB函数说

明 (5) 4.设计思路........................................................ .. (6) 5、实验内容........................................................ . (6) 5.1实验程序......................................................... . (6) 5.2实验结果分析......................................................... . (10) 6.心得体会........................................................ . (10) 7.参考文献........................................................ . (10) 一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。用此信号验证

利用相位特征判断故障的方法 (DEMO)

利用相位特征判断故障的方法 一、相位的基本概念 相位表示在给定时刻振动部件被测点相对于某一固定参考点或其他振动部件的位置。在实际应用中相位主要用于比较不同振动运动之间的关系,或确定一个部件相对于另一个部件的振动状况。 相位反映了振动信号与参考点之间时间关系或位置关系。相位是从单频率的简谐振动中引出的。因此、对于实际振动信号,也是考虑其中某频率分量与转子相位标志之间的相位差。比较有用的频率成分主要是基频及其倍频。相位测量可用于1)谐波分析;2)动平衡测定;3)振型测量; 4)判断共振点。 转子初相位代表着转子的质量高点在某一特定时刻的特定位置,可为故障分析诊断提供重要的依据。 监测振动的时域信号经过FFT变换,可以得到频域上的幅值谱和相位谱,幅值谱表明了振动中所含各振动分量以及它们的幅值大小,相位谱给出了各阶分量的初相位。相位谱的初相位是由各阶分量振幅的虚数和实数部分相比求反切而得到的,而在实际采样过程中采样的初始点是随机的,因而FFT得到各阶分量的初相位也将随之改变,无法得到各阶分量确定的初相位。由此可知、FFT直接变换得到的相位谱是无法确定各阶振动分量的初相位的。但各阶分量相对于基频分量的初相位的相位差将不受采样初始点的影响,因而只要精确地求出基频分量的初相位,问题将迎刃而解了。 故障分析中,在确定转子不平衡量的方向,以及不对中等一些由转子的几何形状、质量或受力不对称所引起的振动时,有时要考虑振动与转子相位标志之间的相位差。它同样也可以应用于构件空间面是否存在的力偶(弯矩)的判断(了

解构件是否存在变形应力)。 初相位定义:转子键相信号的脉冲下降沿与频率的高点之差,称为初始相位。 二、振动信号相位分析 相位分析分类: 1)绝对相位是指从键相器信号触发到振动信号第一正峰值之间的角度。 2)相对相位是角度表示的从一个信号波形的某一点到另一信号最近的对应点之间的关系。 相位监测可以判断设备振动状态有无发生变化。比如一台设备,其振动幅值没有变化,但相位变化了140°,如果仅仅对比振幅变化,说明运行没有改变。但相位的突变说明事实上设备运行状态已经有了巨大的变化,很可能是转子叶片松动,转轴裂纹或者其它潜在的严重问题引起的。 轴早期出现裂纹时,振幅无太大的变化,但相位有突变;当轴发生摩擦时,振幅会变小,但轴与轴承会受到破坏。 如果相位发生偏转,说明振动形态发生了巨大的变化。轴心轨迹椭圆中有一直边,说明转子不排出单方向摩擦的可能。 相位(φ): 相位表示在给定时刻振动部件被测点相对于某一固定参考点或其他振动部件的位置。 在实际应用中相位主要用于比较不同振动运动之间的关系,或确定一个部件相对于另一个部件的振动状况。例如,在图1—1—4中给出了A和B两个弹簧质量系统。假设A、B两质量块的振幅和频率相同,但A位于上限位置,而B则位于其下限位置。在给定的起始时刻位移峰值相差180o,也就是说这两个振动180o异相。在图l—1-5中质量A和B在同一时刻分别位于上限位置和平衡位置(向下),于是我们说质量A和B的振动相位差为90o。而在图1—1—6中质量A、B 在同一时刻位于同一位置,因此其振动同步,或者说它们的振动相位差为0o。

数字信号处理实验 matlab版 线性相位FIR数字滤波器

实验23 线性相位FIR数字滤波器 (完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word格式会让很多部分格式错误,谢谢) XXXX学号姓名处XXXX 一、实验目的 1 加深对线性相位FIR数字滤波器特性的理解。 2 掌握线性相位滤波器符幅特性和零极点分布的研究方法。 3 了解用MATLAB研究线性相位滤波器特性时程序编写的思路和方法。 二、实验内容 1 线性相位FIR滤波器的特性 2 第一类线性相位滤波器(类型Ⅰ) 3 第二类线性相位滤波器(类型Ⅱ) 4 第三类线性相位滤波器(类型Ⅲ) 5 第四类线性相位滤波器(类型Ⅳ) 6 线性相位FIR数字滤波器零点分布特点 三、实验环境 MATLAB7.0 四、实验原理 1.线性相位FIR滤波器的特性 与IIR滤波器相比,FIR滤波器在保证幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。设FIR滤波器单位脉冲响应h(n)长度为N,其系统函数为 ∑-=- = 1 N n n z h(n) H(z) 当滤波器的系数N满足一定的对称条件时,就可以获得线性相位。线性相位FIR滤波器共分为四种类型,分别为: (1)类型Ⅰ,系数对称,即h(n)=h(N-1-n),N为奇数。 (2)类型Ⅱ,系数对称,即h(n)=h(N-1-n),N为偶数。 (3)类型Ⅲ,系数反对称,即h(n)=-h(N-1-n),N为奇数。 (4)类型Ⅳ,系数反对称,即h(n)=-h(N-1-n),N为偶数。 对于上述四类线性相位FIR滤波器,参考文献[1]中提供了一段通用程序,对考虑正负号的幅度频率特性(简称符幅特性)进行求解,程序名为amplres.m,程序如下:function[A,w,type,tao]=amplres(h) N=length(h);tao=(N-1)/2; L=floor((N-1)/2); n=1:L+1; w=[0:500]*2*pi/500; if all(abs(h(n)-h(N-n+1))<1e-10)

有源滤波器中的相位关系

在使用滤波器的应用中,通常人们对幅值响应的兴趣要比对相位响应的兴趣更浓厚。但是,在某些应用中,滤波器的相位响应也很重要。一个实例是滤波器用于过程控制环路中的情形。这里,人们关心的是总的相移量,因为它影响到环路的稳定性。用来搭建滤波器的拓扑结构是否会造成在某些频率点处符号出现相反,是非常重要的。 将有源滤波器视为两个级联的滤波器是一个有用的方法。如图1所示,其中一个滤波器是理想的滤波器,用于体现传递函数;另一个是构成滤波器的放大器。在闭环的负反馈环路中所采用的放大器可以被视为一个具有一阶响应的、简单的低通滤波器。当频率超过某一点后,增益将随着频率的增长而出现滚降现象。此外,如果放大器使用反相放大结构的话,则所有频率点上还将出现附加的180°相移。 图1. 以两个级联的传递函数的形式表示的滤波器 滤波器设计过程可分为两步。首先选定滤波器的响应特性,接下来选出适当的电路结构来实现它。滤波器的响应是指衰减曲线的形状,这常常可以归为经典的响应特性中的一种,如Butterworth、Bessel或者某种Chebyshev型。虽然这些响应特性的选择往往会影响幅值响应特性,但它们也会影响相位响应特性的形状。在本文中,为了进行比较,忽略幅值响应,认为其几乎不变。 滤波器的复杂性往往通过滤波器的―阶数‖来定义,该参数与储能元件(电感和电容)的数量有关。滤波器传递函数分母的阶数定义了随着频率的上升而呈现的衰减速率。渐近线型的滤波器滚降速率为-6ndB/倍频程,或者-20ndB/十倍频程,其中n是极点的数量。倍频程是指频率的二倍或者一半,十倍频程是频率的十倍增长或者缩减。因此,一个一阶(或者单极点)滤波器的滚降速率为-6dB/倍频程或者-20dB/十倍频程。类似的,一个二阶(或者2极点)滤波器的滚降速率为-12dB/倍频程或者-40dB/十倍频程。更高阶次的滤波器往往是由级联的一阶和二阶基本单元所构成的。自然,我们可以利用单个有源放大电路级来构建三阶、甚至四阶滤波器,但是对于元件值的敏感,以及元件之间的相互作用对频率响应所造成影响的大幅度上升,会使这些选择不那么具有吸引力。 传递函数 首先,我们考察一下传递函数的相位响应。对于同样阶数的滤波器选项来说,它们的传递函数的相移特性都相同。 对于单极点、低通的情形,传递函数的相移为φ,由下式给出。

简单易用的RC低通滤波器设计

低通滤波器 1、电路的组成 所谓的低通滤波器就是允许低频信号通过,而将高频信号衰减的电路,RC低通滤波器电路的组成如图3-17所示。 2、电压放大倍数 在电子技术中,将电路输出电压与输入电压的比定义为电路的电压放大倍数,或称为传递函数,用符号A u来表示,在这里A u为复数,即 令,则 (3-19) 的模和幅角为 (3-20) (3-21)

式3-19称为RC低通电路的频响特性,式3-20称为RC低通电路的幅频特性,式3-21称为RC低通电路的相频特性。在电子电路中,描述电路幅频特性和相频特性的单位通常用对数传输单位分贝。 3、对数传输单位分贝(dB)的定义 在电信号的传输过程中,为了估计线路对信号传输的有效性,经常要计算的值。式中的P0和P i 分别为线路输出端和输入端信号的功率。当多级线路相串联时,总的的值为: 对上式取对数可简化计算,利用对数来描述的,被定义为对数传输单位贝尔(B)。即 (3-22) 贝尔的单位太大了,在实际上通常用贝尔的十分之一为计量单位,称为分贝(dB)。即,1B=10dB。 因为,所以,对于等电阻的一段网络,贝尔也可用输出电压和输入电压的比来定义。即 (3-23) 当电压放大倍数用dB做单位来计量时,常称为增益。根据增益的概念,我们通常将对信号电压的放大作用是100倍的电路,说成电路的增益是40dB,电压放大作用是1000倍的电路,说成电路的增益是60dB,当输出电压小于输入电压时,电路增益的分贝数是负值。例-20dB说明输入信号被电路衰减了10倍。 4.低通滤波器的波特图 利用对数传输单位,可将低通滤波器的幅频特性写成

(3-24) 下面分几种情况来讨论低通滤波的幅频特性: (1)当f等于通带截止频率f P时 当f=f P时,式3-24变成 (3-25) 由上式可得通带截止频率f P的物理意义是:因低通电路的增益随频率的增大而下降,当低通电路的增益下降了3dB时所对应的频率就是通带截止频率f P。若不用增益来表示,也可以说,当电路的放大倍数下降到原来的0.707时所对应的频率。对于低通滤波器,该频率通常又称为上限截止频率,用符号f H来表示。根据f P的定义可得f H的表达式为: (3-26) (2)当f>10f P时 当f>10f P时,式3-24中的项比10大,公式中的1可忽略,式3-24的结果为 (3-27) 3-27式说明频率每增加10倍,增益下降20dB,说明该电路对高频信号有很强的衰减作用,在幅频特性曲线上,3-27式称为-20dB/十倍频线。 (3)当f<0.1f P时 当f<0.1f P时,式3-24中的项比0.1小,可忽略,式3-24的结果为0dB。说明该电路对低频信号没有任何的衰减作用,低频信号可以很顺利的通过该电路,所以该电路称为低通滤波器。 根据上面讨论的结果所画的幅频特性曲线称为波特图,RC低通滤波器的波特图如图3-18所示。

简单二阶有源低通滤波器电路及幅频特性

简单二阶有源低通滤波器电路及幅频特性 为了使输出电压在高频段以更快的速率下降,以改善滤波效果,再加一节RC o (1)通带增益 当f=0时,各电容器可视为开路,通带内的增益为 低通滤波环节,称为二阶有源滤波电路。它比一阶低通滤波器的滤波效果更好二阶LPF的电路图如图6所示,幅频特性曲线如图7所示。 1- (2)二阶低通有源滤波器传递函数根据图8-2.06可以写出

丄“盘斗丄〕 俯二一礎 通常有,联立求解以上三式,可得滤波器的传递函数 臥)—九… (3)通带截止频率 将s 换成j 3,令3 0 = 2n f o=1/(RC)可得 当f=fp时,上式分母的模 ="丿厶 I Vo Z 与理想的二阶波特图相比,在超过fO以后,幅频特性以-40 dB/dec的速率下降,比一阶的下降快。但在通带截止频率fp -fO之间幅频特性下降的还不够快。 摘要设计一种压控电压源型二阶有源低通滤波电路,并利用MultisimIO仿真软件对电路的频率特性、特征参量等进行了仿真分析,仿真结果与理论设计一致,为有源滤波器的电路设计提供了EDA手段和依据。 关键词二阶有源低通滤波器;电路设计自动化;仿真分析;MultisimIO 滤波器是一种使用信号通过而同时抑制无用频率信号的电子装置,在信息处理、数据传送和抑制干扰等自动控制、通信及其它电子系统中应用广泛。滤波一般可分为有源滤波和无源滤波,有源滤波可以使幅频特性比较陡峭,而无源滤波设计简单易行,但幅频特性不如有源滤波器,而且体积较大。从滤波器阶数可分为一阶和高阶,阶数越高,幅频特性越陡峭。高阶滤波器通常可由一阶和二阶滤波器级联而成。采用集成运放构成的RC有源滤波器具有输入阻抗高,输出阻抗低,可提供一定增益,截止频率可调等特点。压控电压源型二阶低通滤波电路是有源滤波电路的重要一种,适合作为多级放大器的级联。本文根据实际要求设计一种压控电压源型二阶有源低通滤波电路,采用EDA仿真软件Multisim1O对压控电压源型二阶有源低通滤波电路进行仿真分析、调试,从而实现电路的优化设计。 1设计分析 1.1二阶有源滤波器的典型结构 二阶有源滤波器的典型结构如图1所示。其中,丫1?丫5为导纳,考虑到UP=UN

理解线性相位与模拟滤波器选择

数字滤波器线性相位: 任何一个信号都可以按照傅里叶级数分解成无数个单一正弦信号的叠加,设 X1(t)=sin(ω1*t); X2(t)=sin(ω2*t); X3(t)=sin(ω3*t); X(t)=X1(t)+ X2(t) +X3(t); 让X(t)通过一个线性延时系统,延时Δt,则通过该系统后,X(t)变为 X(t-Δt)= sin(ω1*t-ω1*Δt)+ sin(ω2*t-ω2*Δt)+ sin(ω3*t-ω3*Δt); φ(f1)=-ω1*Δt=-2πΔt *f1; φ(f2)=-ω2*Δt=-2πΔt *f2; φ(f3)=-ω3*Δt=-2πΔt *f3; 通常地 φ(f)=-ω3*Δt=-2πΔt *f;———————— (1) 由式(1)可看出,相位延时是关于频率的线性函数,同时斜率(-2πΔt)即为系统延时,该值为常数表明为线性相位。 群延时: 1定义: 描述相位变化随着频率变化的快慢程度的量称为群延迟。线性相位表示相位随着频率的变化快慢程度是一样的。 是相频特性的负导数τ(ω)=-dφ(ω)/dω。 2特性: 群延迟直观上就是信号波形包络的时延,单个频率是不存在群延时的; 从公式来看是相频特性曲线的斜率,反映的是一个器件对带内每个频点信号相位的影响,群延迟恒定时传输波形失真最小。 相位延迟: 相位与频率的比叫相位延迟。用来描述信号中,对于每一个频率分量,对应的相位特征。也就是τ(ω)=-φ(ω)/ω。 注意:相位延迟不同于群延迟。相位延迟侧重于每一个频率分量,群延迟则是描述相位的变化率。

三种常用模拟滤波器的特点: 1 巴特沃斯滤波器:优点:通带幅度最大平坦缺点:过渡带太长; 2 切比雪夫滤波器:优点:过渡带小缺点:通带有纹波; 3 贝塞尔滤波器:优点:通带的线性相位和优异的瞬态性能缺点:幅度分辨率较低。 图1模拟滤波器的幅频度相位波特图 图2模拟滤波器的群延时 群延时就是相频特性曲线的导数。

低通滤波器设计实验报告

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K ? 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1=1.286 5、根据求出K 值,确定Ra 与Rb 的值

Ra=2 K=1+ Rb Ra=Rb 这里取Ra=Rb=10K?; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2?=31.847KHz 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得: 通过对给定参数指标的地滤波器的仿真设计,一方面学会了在

四种滤波器的幅频特性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。本 次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。 1. 低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10K Ω,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+=+12V , Vcc-=-12V ,低通滤波器的传递函数20 02 2 )(ω αωω++= s s K s H p , ,其中 2 221102 12100 1111; 1;1C R K R R C C C R R R R K K f f p -+???? ??+= = + ==αωω带入数据w 。=10000rad/s ,Kp =1.8,α=1.2, ()( ) 2 2 2202 2 25/2425/78.1)(ωωω ωω+-= j H ; 当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时,)(ωj H 减小,;w 趋 近无穷时, )(ωj H 趋近于0。此时wc=1.17rad/s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为100mV

范围10~6kHz 输出不失真 绘出的幅频特性图如下: 2、高通滤波器 其电路图如下: 其中R1=R2=R=10K,C1=C2=0.01uF,Ro=0.8R=8K 高通的传递函数为20 02 2 )(ω αω++= s s s K s H p ,()() 2 220 2 2 )(ωαωω ω ωω+-= p K j H , 1121 2 021******** ; 1 ; 1C R K C C R C C R R R R K K f f p -+???? ??+= = +==αωω带入数值 后,Kp =1.8, W=0时 )(ωj H =0;w<4800rad/s 时)(ωj H 增加;w 趋近于无穷时,)(ωj H 保持不变。 对于不同的α,滤波器的幅频特性也不相同 绘制的幅频特性图如下: 3带通滤波器 其电路图如下所示: 其中R1=R2=R3=R=10K,C1=C2=0.01uF ,Ro=8K , 带通的传递函数为 2 02 0)/()/()(ω ωω++= s Q s s Q K s H p ,()H j ω; ()1 223131102 13212 101 213 1211111; ; 111C R K C R C R C R Q C C R R R R R R R K R R C C K K f f f p -+++=+= ??????-+???? ??++=-ωω

滤波器幅频特性的测试

实验一 1-1 滤波器幅频特性的测试 一.实验目的 1.了解无源和有源滤波器的工作原理及应用。 2.掌握滤波器幅频特性的测试方法。 二.实验原理 滤波器是一种选频装置,可以使某给定频率范围内的信号通过而对该频率范围以外的信号极大地衰减。 1.RC 无源低通滤波器 RC 无源低通滤波器原理如图1-1所示。这种滤波器是典型的一阶RC 低通滤波器,它的电路简单,抗干扰性强,有较好的低频性能,构成的组件是标准电阻、电容,容易实现。其传递函数为 =)(s H 1 1 )()(+= s s u s u i o τ (1-1) 式中:τ=RC 。 低通滤波器频率特性为 ωτ ωj j H += 11 )( (1-2) 图1-1 RC 低通滤波器 其幅频特性 )(ωA 为 2 )(11)(ωτω+= A (1-3) 低通滤波器的截止频率为 RC f c π21 = (1-4) 图1-2 一阶有源低通滤波器 2.RC 有源低通滤波器 RC 有源低通滤波器原理如图1-2所示。它是将一阶RC 低通滤波网络接入运算放大器输入端构成的。运算放大器在这里起隔离负载影响、提高增益和带负载能力的作用。有源低通滤波器的传递函数为 1 )()()(+= = s K s u s u s H i o τ (1-5) 式中:1 1R R K F + =(R 1、R F 参数可参考图1-2,也可自选)。 频率特性为 ωτ ωj K j H += 1)( (1-6) R

式(1-5)与式(1-1)相似,只是增益不同。 3.幅频特性的测试 本实验是对以上两种低通滤波器进行幅频特性测试。滤波器的幅频特性采用稳态正弦激励试验的办法求得。对滤波器输入正弦信号x(t)=x0sinωt,在其输出达到稳态后测量输出和输入的幅值比。这样可得到该输入信号频率ω下滤波器的传输特性。逐次改变输入信号的频率,即可得到幅频特性曲线。 三.实验仪器和设备 1.低频信号发生器一台 2.毫伏表一台 3.直流稳压电源一台 4.RC无源滤波器接线板一块 5.有源低通滤波器线路板一块 四.实验步骤 1.将RC滤波器接线板低通滤波器部分的R值调到适当的位置。将低频信号发生器输出端接入RC低通滤波器输入端,双路毫伏表中的一路接低通滤波器的输入端,另一路接输出端。 2.由信号发生器输出一定幅度的正弦信号电压。先检查低频信号发生器幅值调节旋钮,使之在最小(逆时针旋转到底)位置,输出信号频率调到20Hz,然后逐渐调大信号电压使监测毫伏表指示约1伏,记下滤波器输入和输出的信号电压值。 3.不断由小到大改变滤波器输入信号频率,每改变一次信号频率,待毫伏表读数稳定了以后读取一组滤波器输入和输出信号电压值,记录到原始数据记录纸上。 4.将信号发生器幅值调节旋钮调到最小,按图1-3连接测试系统。考虑到有源低通滤波器具有放大作用,注意监测滤波器输出信号的毫伏表测量档位要比监测输入信号的相应加大。 图1-3 5.重复实验步骤2、3。 五.实验数据处理 1.用对数坐标纸绘出RC无源低通滤波器和有源低通滤波器的幅频特性曲线。 2.比较两种滤波器的特性,分析有源滤波器的优点。 六.思考题 1.若要能自动绘出滤波器的幅频特性曲线,实验系统如何设计?试绘出仪器组合框图,并作简要说明。 2.滤波器的建立时间T e如何测定?

四种滤波器的幅频特性教程文件

四种滤波器的幅频特 性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。本次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。 1.低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10KΩ,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+= +12V,

Vcc-=-12V ,低通滤波器的传递函数20 02 2 )( ω αωω++=s s K s H p , ,其中 2 221102 121001111; 1; 1C R K R R C C C R R R R K K f f p -+???? ??+== +==αωω带入数据w 。=10000rad/s ,Kp =1.8,α=1.2, ()( ) 2 2 2202 2 25/2425/78.1)(ωωω ωω+-= j H ; 当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时, )(ωj H 减小,;w 趋近无穷时, )(ωj H 趋近于0。此时wc=1.17rad/s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为100mV 频率f (Hz ) 输出V (v ) 频率f (Hz ) 输出V (v ) 10 1.965 2200 0.756 30 1.965 2300 0.698 50 1.960 2400 0.650 100 1.950 2500 0.596 200 1.945 2600 0.548

常用滤波器的频率特性分析

常用滤波器的频率特性分析 摘要:滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。滤波器对实现电磁兼容性是很重要的。本文所述内容主要有滤波器概述及原理、种类等。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。故对常见滤波器中低通滤波器、高通滤波器、带通滤波器和带阻滤波器,EMI 滤波器,从频率出发,进行特性分析。 一、引言 滤波器,是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。 滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。 二、原理 滤波器一般有两个端口,一个输入信号、一个输出信号 利用这个特性可以将通过滤波器的一个方波群或复合噪波,而得到一个特定频率的正弦波。 滤波器是由电感器和电容器构成的网路,可使混合的交直流电流分开。电源整流器中,即借助此网路滤净脉动直流中的涟波,而获得比较纯净的直流输出。最基本的滤波器,是由一个电容器和一个电感器构成,称为L型滤波。所有各型的滤波器,都是集合L型单节滤波器而成。基本单节式滤波器由一个串联臂及一个并联臂所组成,串联臂为电感器,并联臂为电容器。在电源及声频电路中之滤波器,最通用者为L型及π型两种。就L型单节滤波器而言,其电感抗XL与电容抗XC,对任一频率为一常数,其关系为 XL·XC=K2 故L型滤波器又称为K常数滤波器。倘若一滤波器的构成部分,较K常数型具有较尖锐的截止频率(即对频率范围选择性强),而同时对此截止频率以外的其他频率只有较小的衰减率

五数字滤波器幅频特性的测试

实验三 低通、高通滤波器的幅频特性 一、实验目的 ㈠ 进一步熟悉DSP 实验系统的结构、组成及使用方法。 ㈡ 了解数字低通、高通滤波器的特点,学习数字滤波器幅频特性的测量方法。 ㈢ 观察数字滤波器频响特性的周期延拓性。 二、实验原理 ㈠ 用DSP 实验系统实现数字滤波器 一个线性时不变离散系统,或者说一个数字系统可以用系统函数来表示: ∑∑=-=--= N i i i N i i i z a z b z H 1 01)(

也可以用差分方程表示: ∑∑==-+-= N i i N i i i n y a i n x b n y 1 )()()( 由以上两个公式中,当i a 至少有一个不为0时,表达的是一个IIR 数字滤波器;当i a 全都为0时,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器i a 全都为0时的一个特例。 通常,我们把FIR 滤波器的系统函数表示为 H Z h n Z n N n ()()= =--∑01 其差分方程表示为 y n h i x n i i N ()()()= -=-∑0 1 例如:已知一个用双线性变换法设计的三阶低通IIR 数字滤波器,采样频率F s =4KHz,其3dB 截止频率为1KHz,它的传递函数 2 3 21333121)(----++++=z z z z z H 为了用数字信号处理实验系统实现这个滤波器,我们对上式还需进行处理,将其化成一 般表示式 2 32123213333.0116667.05.05.016667.03 1161212161)(--------++++=++++=z z z z z z z z z H 由上式可知,传递函数的各系数为 16667.00=b 5.01=b 5.02=b 16667 .03=b 01=a 3333.02-=a 03=a 相应的差分方程为 ) 2(3333.0)3(16667.0)2(5.0)1(5.0)(16667.0)3()2()1()3()2()1()()(3213210---+-+-+=-+-+-+-+-+-+=n y n x n x n x n x n y a n y a n y a n x b n x b n x b n x b n y 将以上差分方程的计算过程及采样频率Fs 、电路阶数N =3编写成TMS320Cxx 执行程序,输入实验系统,即可实现这个IIR 数字低通滤波器。图7-5-1为实现IIR 数字滤波器的DSP 汇编程序流程图。 ㈡.数字滤波器幅频特性的测量 任一电信网络幅频特性的测量均可采用两种方法:逐点描绘法和扫频测量法。

零相移滤波器

零相移滤波器原理 -----对matlab中filtfilt函数的初步研究 孙骁自74 2007012250 在信号与系统这门课程的学习过程中,我知道了设计数字滤波器有两种方法,分别为有限冲激响应法(FIR)和无限冲激响应法(IIR)。对于FIR滤波器,实现线性相位滤波是可行的,而对于IIR滤波器,则有着高度的相位失真。前几天,我在看有关于信号与系统matlab的实现方面的书籍时,偶然发现了一个叫做filtfilt的函数,它竟然可以实现对信号的零相移滤波,于是我不得不对它产生了兴趣。下图是对信号x=sin(6πt)+0.25sin(80πt)的两种滤波方式结果的比较,其中蓝色曲线为原函数,绿色曲线为利用filtfilt函数滤波结果,红色曲线为用filter 函数滤波结果。可以看到,相对于普通滤波而言,filtfilt函数滤波后实现了相对原信号的零相移。可以想见,假若我们能在实际中利用这种滤波原理进行零相移滤波,那将是十分诱人的。那么,这种滤波函数的原理是什么呢?它的实际可实施性又如何呢?另外,在图中我们可以看到,filtfilt滤波后的波形相对于其他滤波后的波形幅度上有所减小,这又是什么原因呢?带着这些问题,我对这个函数进行了初步的研究。 在matlab的帮助中,我们可以看到以下一段话:

这段话的意思是说,通过前向滤波之后,序列被反转并再次通过滤波器,最后输出的序列是对第二次通过滤波器的波形的再反转。这是一段有点绕的话,它实现的过程如下所示: 那为什么经过这样的一个过程之后可以实现零相移呢?现进行如下的推导: 假设系统函数为H(z),输入序列的z 变化为X(z),那么这个过程可以表示如下: );()();()()();()();()()(3)1(4231)1(21ω ωωωωωωωωωωωj N j j j j j j N j j j j j e Y e e Y e H e Y e Y e Y e e Y e H e X e Y ------==== 从以上的推导可以看出,最终输入和输出可以表示为: 2 )()()(ωωωj j j e H e X e Y = 即实现了零相移滤波,注意到x 序列是和系统函数模的平方相乘,因此滤波器阶数加倍,并且因为平方相乘,所以与别的滤波方法相比,幅值会有所降低。 以上是根据matlab 所说的方法进行的推导,还可以想到,如果把这个操作的先后顺序改变,结果会怎么样呢?经过验证,如果先对序列进行反转,再对它滤波,之后再次反转,再滤波,这样操作之后的结果是完全一样的。过程如下:

低通滤波器设计实验报告完整版

低通滤波器设计实验报 告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择 R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容 C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1 =

5、根据求出K值,确定Ra与Rb的值 Ra=2 K=1+ Rb Ra=Rb 这里取 Ra=Rb=10K; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2= 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得:

相关文档
最新文档