土壤检测方法国家标准大全

土壤检测方法国家标准大全
土壤检测方法国家标准大全

土壤检测方法国家标准大全(共84种)

土壤国家标准(仅供参考)

1 GB 11728-1989 土壤中铜的卫生标准

2 GB 12297-1990 石灰性土壤有效磷测定方法

3 GB 12298-1990 土壤有效硼测定方法

4 GB 15618-199

5 土壤环境质量标准

5 GB 19062-2003 销毁日本遗弃在华化学武器土壤污染控制标准(试行)

6 GB 19615-2004 销毁日本遗弃在华化学武器环境土壤中污染物含量标准(试行)

7 GB 6260-1986 土壤中氧化稀土总量的测定对马尿酸偶氮氯膦分光光度法

8 GB 7172-1987 土壤水分测定法

9 GB 7173-1987 土壤全氮测定法(半微量开氏法)

10 GB 7833-1987 森林土壤含水量的测定

11 GB 7836-1987 森林土壤最大吸湿水的测定

12 GB 7838-1987 森林土壤渗透性的测定

13 GB 7839-1987 森林土壤温度的测定

14 GB 7843-1987 森林土壤坚实度的测定

15 GB 7844-1987 森林土壤比重的测定

16 GB 7845-1987 森林土壤颗粒组成(机械组成)的测定

17 GB 7846-1987 森林土壤微团聚体组成的测定

18 GB 7852-1987 森林土壤全磷的测定

19 GB 7853-1987 森林土壤有效磷的测定

20 GB 7854-1987 森林土壤全钾的测定

21 GB 7855-1987 森林土壤缓效钾的测定

22 GB 7856-1987 森林土壤速效钾的测定

23 GB 7857-1987 森林土壤有机质的测定及碳氮比的计算

24 GB 7858-1987 森林土壤腐殖质组成的测定

25 GB 7859-1987 森林土壤pH值的测定

26 GB 7860-1987 森林土壤交换性酸的测定

27 GB 7862-1987 森林土壤石灰施用量的测定

28 GB 7863-1987 森林土壤阳离子交换量的测定

29 GB 7864-1987 森林土壤交换性盐基总量的测定

30 GB 7865-1987 森林土壤交换性钙和镁的测定

31 GB 7866-1987 森林土壤交换性钾和钠的测定

32 GB 7868-1987 碱化土壤交换性钠的测定

33 GB 7870-1987 森林土壤碳酸钙的测定

34 GB 7871-1987 森林土壤水溶性盐分分析

35 GB 7872-1987 森林土壤粘粒的提取

36 GB 7873-1987 森林土壤矿质全量(二氧化硅、铁、铝、钛、锰、钙、镁、磷)分析方法

37 GB 7874-1987 森林土壤全钾、全钠的测定

38 GB 7875-1987 森林土壤全硫的测定

39 GB 7876-1987 森林土壤烧失量的测定

40 GB 7877-1987 森林土壤有效硼的测定

41 GB 7878-1987 森林土壤有效钼的测定

42 GB 7879-1987 森林土壤有效铜的测定

43 GB 7880-1987 森林土壤有效锌的测定

44 GB 7881-1987 森林土壤有效铁的测定

45 GB 7883-1987 森林土壤易还原锰的测定

46 GB 8915-1988 土壤中砷的卫生标准

47 GB 9834-1988 土壤有机质测定法

48 GB 9835-1988 土壤碳酸盐测定法

49 GB 9836-1988 土壤全钾测定法

50 GB 9837-1988 土壤全磷测定法

51 GB 9838-1988 N土壤、植物标准样品

52 GB/T 11219.1-1989 土壤中钚的测定萃取色层法

53 GB/T 11219.2-1989 土壤中钚的测定离子交换法

54 GB/T 11220.1-1989 土壤中铀的测定CL-5209萃淋树脂分离2-(5-溴-2-吡啶偶氮)-5-二乙氨基苯酚分光光度法

55 GB/T 11220.2-1989 土壤中铀的测定三烷基氧膦萃取-固体荧光法

56 GB/T 11743-1989 土壤中放射性核素的γ能谱分析方法

57 GB/T 14550-2003 土壤中六六六和滴滴涕测定的气相色谱法

58 GB/T 14643.2-1993 工业循环冷却水中土壤菌群的测定平皿计数法

59 GB/T 14643.4-1993 工业循环冷却水中土壤真菌的测定平皿计数法

60 GB/T 17134-1997 土壤质量总砷的测定二乙基二硫代氨基甲酸银分光光度法

61 GB/T 17135-1997 土壤质量总砷的测定硼氢化钾-销酸银分光光度法

62 GB/T 17136-1997 土壤质量总汞的测定冷原子吸收分光光度法

63 GB/T 17137-1997 土壤质量总铬的测定火焰原子吸收分光光度法

64 GB/T 17138-1997 土壤质量铜、锌的测定火焰原子吸收分光光度法

65 GB/T 17139-1997 土壤质量镍的测定火焰原子吸收分光光度法

66 GB/T 17140-1997 土壤质量铅、镉的测定KI-MIBK萃取火焰原子吸收分光光度法

67 GB/T 17141-1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法

68 GB/T 17296-2000 中国土壤分类与代码

69 GB/T 17949.1-2000 接地系统的土壤电阻率、接地阻抗和地面电位测量导则第1部分:常规测量

70 GB/T 18834-2002 土壤质量词汇

71 GB/T 19987-2005 农业机械土壤工作部件S型弹齿试验方法

72 GB/T 19988-2005 农业机械土壤工作部件S型弹齿主要尺寸和间隙范围

73 GB/T 19989-2005 土壤耕作机械锄铲安装尺寸

74 GB/T 19990-2005 土壤耕作机械土壤工作部件固定螺栓

75 GB/T 20086-2006 土壤耕作机械镇压器联接方式和工作幅宽

76 GB/T 20087-2006 土壤耕作机械旋转式中耕机刀片安装尺寸

77 GB/T 20089-2006 土壤耕作机械铧式犁工作部件词汇

78 GB/T 20781-2006 固体肥料和土壤调理剂筛分试验

79 GB/T 22047-2008 土壤中塑料材料最终需氧生物分解能力的测定采用测定密闭呼吸计中需氧量或测定释放的二氧化碳的方法

80 GB/T 22104-2008 土壤质量氟化物的测定离子选择电极法

81 GB/T 22105.1-2008 土壤质量总汞、总砷、总铅的测定原子荧光法第1部分:土壤中总汞的测定

82 GB/T 22105.2-2008 土壤质量总汞、总砷、总铅的测定原子荧光法第2部分:土壤中总砷的测定

83 GB/T 22105.3-2008 土壤质量总汞、总砷、总铅的测定原子荧光法第3部分:土壤中总铅的测定

84 GB/T 6274-1997 肥料和土壤调理剂术语

土地分类国家标准

土地利用现状分类 1.1.概述 土地利用是人类根据自身需要和土地的特性,对土地资源进行的多种形式的利用。土地利用现状是土地资源的自然属性和经济特性的深刻反映。土地利用划分具有如下特点:是在自然、经济和技术条件的综合影响下,经过人类的劳动所形成的产物。 在一定的空间分布上服从社会经济条件,因此,它们在地域分布上不一定连成片。 种类、数量、分布是随着社会经济技术条件的进步而变化的。 1.1.1.土地分类方法 土地分类是国家为掌握土地资源现状、制定土地政策、合理利用土地的重要基础工作之一。土地分类由于目的不同,有着显著的差别,形成不同的土地分类系统。 1.土地自然分类系统: 指主要依据土地的自然属性的相同性和差异性对土地进行分类。一般按地貌、土壤、植被为具体标志进行分类。其目的是揭示土地类型的分异和演替规律,遵循土地构成要素的自然规律,最佳、最有效地挖掘土地生产力。 2.土地评价分类系统: 指主要依据一些评价指标的相同性和差异性对土地进行分类。一般按土地生产力水平、土地质量、土地生产潜力、土地适宜性等为具体标志进行分类。也称为土地的经济特性分类。其分类的主要依据是土地的自然属性和社会经济属性,其目的是为开展土地条件调查和适宜性调查服务,为实现土地资源最佳配置服务。 3.土地综合分类系统: 指主要依据土地的自然特性和社会经济特性、管理特性及其他因素对土地进行综合分类。土地利用分类是土地综合分类主要形式。土地利用分类一般按土地利用现状的土地覆盖特征、土地利用方式、土地用途、土地经营特点、土地利用效果等为具体标志进行分类。其目的是了解土地利用现状,反映国家各项管理措施的执行情况和效果,为国家和地区宏观管理和调控服务。 在这三种分类中,土地利用分类即土地综合分类是在土地资源管理中应用最广、全覆盖的基础分类。掌握土地利用现状是国家制定国民经济计划和有关政策,发挥土地资源在经济社会发展中的宏观调控作用,加强土地管理,合理利用土地资源,切实保护耕地的重要基础。 1.1. 2.国内外土地利用分类 国外土地分类工作至今约有半个多世纪的历史,到二十世纪六十年代和七十年代就出现了各种土地分类系统。国外土地利用分类多数以土地利用现状作为分类依据,具体到各国又有差异,如美国主要以土地功能作为分类的主要依据,英国和德国以土地覆盖(是否开发用于建设用地)作为分类依据,俄罗斯、乌克兰和日本以土地用途作为分类的主要依据,印度则以土地覆盖情况(自然属性)作为划分利用分类的依据。 国内土地分类研究起步较迟,而且主要工作是在解放以后。国内土地利用分类依据与国外基本相同,也是以土地利用现状作为分类依据,如土地利用现状调查(详查)采用的土地利用现状分类以土地用途、经营特点、利用方式和覆盖特征为分类依据,城镇地籍调查采用的城镇土地分类以土地用途为分类依据,中科院中国土地利用分类以利用方式和土地覆盖为分类依据。 虽然国内外土地利用分类依据基本相同,但由于国情差异,在具体划分的类型上却不尽相同,如我国是农业大国,人多地少,因此对农用地的分类较细,而国外则相对较粗。

土壤中重金属的测定

实验题目土壤中Cu的污染分析实验 一、实验目的与要求 一、实验目的与要求 (1)了解重金属Cu对生物的危害及其迁移影响因素。 (2)了解重金属Cu的污染及迁移影响因素。 (3)掌握土壤消解及其前处理技术。 (4)掌握原子吸收分析土壤中金属元素的方法。 (5)掌握土壤中Cu污染评价方法。 二、实验方案 1.仪器 原子吸收分光光度计 电热板 量筒100mL 烧杯(聚四氟乙烯) 吸量管、50mL比色管、电子天秤 2.试剂 浓硝酸GR、浓盐酸GR、氢氟酸GR、浓高氯酸GR Cu标准储备液、Cu的使用液 3.实验步骤 (1)三份待测土样,约0.5g分别置于3个聚四氟乙烯烧杯; (2)向烧杯加入2ml蒸馏水湿润土样后,再加入10ml HCl并在电热板上加热至近干; (3)往烧杯中加入10ml HNO3,置于电热板上加热至近干; (4)往烧杯中加入5mlHF,置于电热板上加热至近干; (5)往烧杯中加入5mLHClO4,于电热板上加热至冒白烟时取下冷却; (6)取3支50ml具塞比色管,分别向管中加入2mlHNO3,分别对应加入冷却好的消解土样后,再加水稀释至刻度线; (7)如果溶液比较混浊,则要过滤再进行测定。

(8) AAS测定。 三、实验结果与数据处理 Cu标准溶液曲线 各个区域土壤中Cu的含量 mg/kg 教学区 1 2 3 4 5 6 7 8 实(1-2)2 实(1-2)4 实(2-3)1 工(3-4)3 教1 教2 教5 图1 17.83 13.01 24.78 8.56 16.76 6.30 12.49 7.09 生活区 1 2 3 4 5 6 东1 东2 东12 东14 二饭教寓5.49 19.27 6.20 2.11 13.70 16.18 其他区 1 2 3 4 5 6 7 8 行山3 行山4 行山5 体1 体4 南商1 南商4 中心湖1 15.96 7.75 9.93 9.65 8.46 16.80 9.47 9.30 外环区 1 2 3 4 5 6 7 8 外1 外2 外6 外4 公4 公10 农田2 农田4 14.80 14.13 15.53 12.41 59.07 10.88 10.46 24.24 四、结论 1.数据可靠性评价 由图可知标准曲线的相关系数均为R2=0.9995,可知在数据处理的过程中,由标准溶液产生的误差是可忽略不计的。但是本次实验,人为的误差相 当大,在整个实验过程中发现,有好几个组的几个样品都已经蒸干了,这已

土壤中重金属全量测定方法

精心整理 精心整理 版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm 筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),电热板上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升盐酸溶题,版本1) 2) 3) 4) 5) 6) 附: 现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l 重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞. 1 土壤消化(王水+HClO 4法) 称取风干土壤(过100目筛)0.1 g (精确到0.0001 g )于消化管中,加数滴水湿润,再加入3 ml HCl 和1 ml HNO 3(或加入配好的王水4~5mL ),盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min 、100~110℃消解30 min 、120~130℃消解1 h ,取下置于通风处冷却。

精心整理 加入1 ml HClO4于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 注:最高温度不可超过130℃。消化管底部只残留少许浅黄色或白色固体残渣时,说明消化已完全。如果还有较多土壤色固体存在,说明消化未完全,应继续120~130℃消化直至完全。 2植物消化(HNO3+H2O2法) 称取待测植物1~2g(具体根据该植物对重金属吸收能力的强弱而定)于消化管中,加入5ml HNO3,盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入1 ml H2O2,于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 精心整理

土壤中重金属全量测定方法(精)

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm筛于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同,电热板上高温档加热(数显的控制温度300~350度1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1盐酸溶解残渣,完全转移到25毫升容量瓶中,加0.5毫升的100g/L的氯化铵溶液,定容,然后原子吸收分光光度计检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1称量0.5000g样品放入PTFE(聚四氟乙烯烧杯中(先称量样品,后称量标 样,用少量去离子水润湿; 2缓缓加入10.0mLHF和4.0mLHClO4(如果在开始加热蒸发前先把样品在混合 酸中静置几个小时,酸溶效果会更好一些,加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖至形成粘稠状结晶为止(2~3小时; 3视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入都 需要蒸发至尽干;若消化完全则直接进行下一步; 4加入4.0mLHClO4,蒸发至近干,以除尽残留的HF; 5加入10.0mL的5mol/L HNO3,微热至溶液清亮为止。检查溶液中有无被分解 的物料。如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸; 6待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶

土壤中重金属含量测定与污染评价

实验题目土壤中重金属含量测定与污染评价 一、实验目的与要求 1、了解土壤的组成,了解土壤中重金属Cu对生物的危害及其迁移影响因素。 2、了解Cu, Pb, Cr, Cd, Zn ,Tl污染的GB标准。 3、掌握土壤消解及其前处理技术和原子吸收分析土壤中金属元素的方法。 4、掌握土壤中Cu的污染评价方法。掌握土壤中其它重金属的污染评价方法。 二、实验方案 1、实验原理 用盐酸-硝酸-氢氟酸-高氯酸混合酸体系消解土壤样品,使待测元素全部进入试液,同时所有的Cu都被氧化。在消解液中加入氯化铵溶液(消除共存金属离子的干扰)后定容,喷入原子吸收分光光度计原子化器的富燃性空气-乙炔火焰中进行原子化,产生的铜基态原子蒸汽对铜和铅空心阴极灯发射的特征波长进行选择性吸收,测定其吸光度,用标准曲线法定量。 2、实验试剂。 大学城各采样点土壤、盐酸GR、硝酸GR、氢氟酸GR、高氯酸GR、蒸馏水、(1+5)HNO 3 2、实验仪器: 原子吸收分光光度计、铜空心阴极灯、烧杯50mL(聚四氟乙烯)、移液管(1,2,5,10mL),滴管、50ml比色管,量筒及实验室常用仪器等。 3、实验步骤(土壤样品已经制备好,直接用就可以了)。 (1)土壤样品的消解。分别称取0.5g左右的三种土壤样品与50mL聚四氟乙烯烧杯中,用移液管量取2mL的水湿润,加入10mL的盐酸,在电热板上加热到溶液接近干燥,然后加入10 mL硝酸,继续加热到溶解物近干,用滴管加入5mL 氢氟酸并加热分解去除硅化物,接近干后加入5mL高氯酸加热至消解物不再冒白烟时,取下冷却。 (2)冷却完毕后,将残留物洗至50mL比色管,后加入2mL浓硝酸,并定容至标线,摇匀,静置. (3)由于溶液比较浑浊,干过滤后所得清液,用原子吸收分光光度计测其Cu

2017年国家标准《土地利用现状分类》

2017年国家标准《土地利用现状分类》《土地利用现状分类》国家标准出台共分为12个一级类、57个二级类 中华人民共和国质量监督检验检疫总局和中国国家标准化管理委员会于8月10日联合发布《土地利用现状分类》,标志着我国土地资源分类第一次拥有了全国统一的国家标准。 《土地利用现状分类》国家标准采用一级、二级两个层次的分类体系,共分12个一级类、57个二级类。其中一级类包括:耕地、园地、林地、草地、商服用地、工矿仓储用地、住宅用地、公共管理与公共服务用地、特殊用地、交通运输用地、水域及水利设施用地、其他土地。 《土地利用现状分类》国家标准确定的土地利用现状分类,严格按照管理需要和分类学的要求,对土地利用现状类型进行归纳和划分。一是区分“类型”和“区域”,按照类型的唯一性进行划分,不依“区域”确定“类型”;二是按照土地用途、经营特点、利用方式和覆盖特征四个主要指标进行分类,一级类主要按土地用途,二级类按经营特点、利用方式和覆盖特征进行续分,所采用的指标具有唯一性;三是体现城乡一体化原则,按照统一的指标,城乡土地同时划分,实现了土地分类的“全覆盖”。这个分类系统既能与各部门使用的分类相衔接,又与时俱进,满足当前和今后的需要,为土地管理和调控提供基本信息,具有很强的实用性。同时,还可根据管理和应用需要进行续分,开放性强。本分类系统能够与以往的土地分类进行有效衔接,不至于由于新分类造成土地基本信息的“断档”。 据国土资源部有关负责人介绍,由于客观历史原因,多年来,我国土地资源分类标准不统一,土地资源基础数据数出多门、口径不一、数据矛盾,对国土资源规范化管理和国家宏观管理科学决策带来了不利影响。土地利用现状分类标准的统一,将避免各部门因土地利用分类不一致引起的统计重复、数据矛盾、难以分析应

土壤中重金属

土壤中重金属 镉的迁移转化 由于土壤的强吸附作用,镉很少发生向下的再迁移而累积于土壤表层,在降水的影响下,土壤表层的镉的可溶态部分随水流动就可能发生水平迁移,进入界面土壤和附近的河流或湖泊而造成次生污染土壤中水溶性镉和非水溶镉在一定的条件下可相互转化,其主要影响因素为土壤的酸碱度氧化- 还原条件和碳酸盐的含量。与铅铜锌砷及铬等相比较,土壤中镉的环境容量要小得多,这是土壤镉污染的一个重要特点。 铅的迁移转化 铅是人体的非必需元素土壤中铅的污染主要来自大气污染中的铅沉降和铅应用工业的三废排放土壤中铅的污染主要是通过空气水等介质形成的二次污染铅在土壤中主要以二价态的无机化合物形式存在,极少数为四价态多以 2)(PbOH、3PbCO或243)(POPb等难溶态形式存在,故铅的移动性和被作物吸收的作用都大大降低在酸性土壤中可溶性铅含量一般较高,因为酸性土壤中的 H+ 可将铅从不溶的铅化合物中溶解出来植物吸收的铅是土壤溶液中的可溶性铅绝大多数积累于植物根部,转移到茎叶种子中的很少。植物除通过根系吸收土壤中的铅以外,还可以通过叶片上的气孔吸收污染空气中的铅。 铬的迁移转化 铬是人类和动物的必需元素,但其浓度较高时对生物有害土壤中铬的污染主要来源于铁铬电镀金属酸洗皮革鞣制耐火材料铬酸盐和三氧化铬工业的三废排放及燃煤污水灌溉或污泥施用等土壤中铬通常以四种化合形态存在,两种三价铬离子3Cr 2CrO,两种六价铬阴离子Cr2O7和Cr2O4其中3)(OHCr的溶解性较小,是铬最稳定的存在形式,而水溶性六价铬的含量一般较低,但六价铬的毒性远大于三价铬的毒性土壤中的有机质如腐殖质具有很强的还原能力,能很快地把六价铬还原为三价铬,一般当土壤有机质含量大于 2 时,六价铬就几乎全部被还原为三价铬[7-9] 由于土壤中的铬多为难溶性化合物,其迁移能力一般较弱,而含铬废水中的铬进人土壤后,也多转变为难溶性铬,故通过污染进入土壤中的铬主要残留积累于土壤表层铬在土壤中多以难溶性且不能被植物所吸收利用的形式存在,因而铬的生物移作用较小,故铬对植物的危害不像 Cd、Hg等重属那么严重有研究结果表明,植物从土壤溶液吸收的铬,绝大多数保留在根部,而转移到种子果实中的铬则很少。 砷的迁移转化 砷是类金属元素,不是重金属但从它的环境污染效应来看,常把它作为重金属来研究土壤中砷的污染主要来自化工冶金炼焦火力发电造纸玻璃皮革及电子等工业排放的三废冶金与化学工业含砷农药的使用砷主要以正三价和正五价存在于土壤环境中 ,其存在形式可分为水溶性砷,吸附态砷和难溶性砷三者之间在一定的条件下可以相互转化当土壤中含硫量较高且在还原性条件下,可以形成稳定的难溶性32AsS。在土壤嫌气条件下,砷与汞相似,可经微生物的甲基化过程转化为二甲基砷 [sHACH23)(]之类的化合物由于土壤中砷主要以非水溶性形式存在,因而土壤中的砷,特别是排污进入土壤的砷,主 要累积于土壤表层,难于向下移动.一般认为,砷不是植物动物和人体的必需元素但植物对砷有强烈的吸收积累作用,其吸收作用与土壤中砷的含量植物品种等有关砷在植物中主要分布在根部在浸水土壤中生长的作物,砷含量较高.

土壤中重金属全量测定方法

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解.用氢氟酸-高氯酸-硝酸消解法,物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取克土壤样品(过筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1)盐酸溶解残渣,完全转移到25毫升容量瓶中,加毫升的100g/L的氯化铵溶液,定容,然后检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1)称量样品放入PTFE(聚四氟乙烯)烧杯中(先称量样品,后称量标样),用少量 去离子水润湿; 2)缓缓加入和(如果在开始加热蒸发前先把样品在混合酸中静置几个小时,酸溶效 果会更好一些),加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖)至形成粘稠状结晶为止(2~3小时); 3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO ,每次加入都需要 4 蒸发至尽干;若消化完全则直接进行下一步; 4)加入,蒸发至近干,以除尽残留的HF; 5)加入的5mol/L HNO ,微热至溶液清亮为止。检查溶液中有无被分解的物料。如 3 有,蒸发至近干,执行步骤4(此时可以酌情减半加酸); 6)待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶液中 硝酸含量为1mol/L),然后立即转移到新聚丙烯瓶中储存。 附: 现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞. 1 土壤消化(王水+HClO4法) 称取风干土壤(过100目筛)0.1 g(精确到0.0001 g)于消化管中,加数滴水 (或加入配好的王水4~5mL),盖上小漏斗置于湿润,再加入3 ml HCl和1 ml HNO 3 通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入1 ml HClO 于100~110℃条件 4 下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。

土地利用现状分类和编码

《土地利用现状分类》国家标准采用一级、二级两个层次的分类体系,共分12个一级类、56个二级类。其中一级类包括:耕地、园地、林地、草地、商服用地、工矿仓储用地、住宅用地、公共管理与公共服务用地、特殊用地、交通运输用地、水域及水利设施用地、其他土地。

土地用途分区

土地用途分区主要是作为土地利用总体规划的一项规划内容而存在,是在土地用途管制制度下派生出的分区,将区域土地资源根据用途管制需要、经济社会发展客观要求和管理目标,划分出不同空间区域,并制定各区域土地用途管制规则,通过用途变更许可制度,实现对土地用途的管制。当前,我国的土地用途分区主要应用于县、乡级土地利用总体规划,一般分为基本农田保护区、耕地开垦区、一般耕地区、林业用地区、牧业用地区、城镇建设用地区、村镇建设用地区、独立工矿用地区、风景旅游用地区、自然和人文景观保护区以及其他用地区等。 土地利用分区 发表时间:2011/8/2 11:33:26 作者:来源:浏览:1530 【土地用途分区类型】 根据东兴市土地利用现状、土地适宜性和规划需要,将全市土地划分为城镇建设用地区、农村居民点用地区、采矿与独立建设用地区、基本农田保护区、一般农业用地区、林牧综合用地区、风景名胜和自然人文景观保护区等七类土地用途区,并明确各类分区土地主导用途和管制规则。 【城镇建设用地区】 1、规模范围 城镇建设用地区面积2918.6公顷,占全市土地总面积的5.32%,包括东兴中心城区、江平镇区、马路镇区和国有火光农场场部的现状城镇建设用地、规划新增城镇建设用地。 2、土地主导用途 该区是为城镇建设发展需要划定的土地用途区,区内土地主要用于城市、城镇和依托城镇的各类工业园区的建设。 3、土地利用管制规则

土地利用分类系统标准84、89、02、07各版(全)

《土地利用分类系统标准》 土地分类是指在研究分析各类土地的特点及它们之间的相同性和差异性的基础上划分土地类型。 土地分类成果可直接用于生产和土地科学的研究。土地分类的目的是如实反映土地的利用现状,分析在土地利用方面存在的问题,为科学管理土地提供依据。 一,我国主要采用三种土地分类系统 1.土地自然分类系统:主要依据土地自然特性的差异性分类,也可以依据土地的某一自然特性分类,还可以依据土地的自然综合特性分类; 2.土地评价分类系统:主要依据土地的经济特性分类; 3.土地利用分类系统:主要依据土地的综合特性分类。 我国城镇土地的分类是根据土地用途的差异、利用的方式、经营的特点和覆盖的特征等因素对土地进行的分类。 二,土地利用分类系统标准的发展过程 我国的土地分类体系有一个不断发展、完善的过程。 1984 年全国农业区划委员会发布的《土地利用现状调查技术规程》规定了《土地利用现状分类及含义》。 1989 年 9 月原国家土地管理局发布的《城镇地籍调查规程》规定了《城镇土地分类及含义》。 在研究、分析两个现行土地分类基础上,国土资源部于 2001年8月21日下发了“关于印发试行《土地分类》的通知”,制定了城乡统一的全国土地分类体系,并于 2002 年 1 月 1 日起在全国试行。 中华人民共和国质量监督检验检疫总局和中国国家标准化管理委员会于2007年8月10日联合发布《土地利用现状分类》。 1.老八类 全国农业区划委员会1984 年 9 月颁布发的《土地利用现状调查技术规程》制定了《土

地利用现状分类及含义》,规定全国土地利用现状采用两级分类,统一编码排列。其中一级分 8 类,二级分 46 类。具体分类的名称及含义见表1。 表1 土地利用现状分类及含义(1984年标准)

2007年国家标准《土地利用现状分类》

《土地利用现状分类》国家标准出台共分为12个一级类、57个二级类 中华人民共和国质量监督检验检疫总局和中国国家标准化管理委员会于8月10日联合发布《土地利用现状分类》,标志着我国土地资源分类第一次拥有了全国统一的国家标准。 《土地利用现状分类》国家标准采用一级、二级两个层次的分类体系,共分12个一级类、57个二级类。其中一级类包括:耕地、园地、林地、草地、商服用地、工矿仓储用地、住宅用地、公共管理与公共服务用地、特殊用地、交通运输用地、水域及水利设施用地、其他土地。 《土地利用现状分类》国家标准确定的土地利用现状分类,严格按照管理需要和分类学的要求,对土地利用现状类型进行归纳和划分。一是区分“类型”和“区域”,按照类型的唯一性进行划分,不依“区域”确定“类型”;二是按照土地用途、经营特点、利用方式和覆盖特征四个主要指标进行分类,一级类主要按土地用途,二级类按经营特点、利用方式和覆盖特征进行续分,所采用的指标具有唯一性;三是体现城乡一体化原则,按照统一的指标,城乡土地同时划分,实现了土地分类的“全覆盖”。这个分类系统既能与各部门使用的分类相衔接,又与时俱进,满足当前和今后的需要,为土地管理和调控提供基本信息,具有很强的实用性。同时,还可根据管理和应用需要进行续分,开放性强。本分类系统能够与以往的土地分类进行有效衔接,不至于由于新分类造成土地基本信息的“断档”。 据国土资源部有关负责人介绍,由于客观历史原因,多年来,我国土地资源分类标准不统一,土地资源基础数据数出多门、口径不一、数据矛盾,对国土资源规范化管理和国家宏观管理科学决策带来了不利影响。土地利用现状分类标准的统一,将避免各部门因土地利用分类不一致引起的统计重复、数据矛盾、难以分析应用等问题,对科学划分土地利用类型、掌握真实可靠的土地基础数据、实施全国土地和城乡地政统一管理乃至国家宏观管理和决策具有重大意义。 《土地利用现状分类》国家标准编制工作从2000年开始筹备,于2002年列入国家标准计划正式启动。2005年报国家标准化管理委员会审查。后经国务院办公厅专门召开土地分类协调会议,最终形成《土地利用现状分类》国家标准。

土壤中不同重金属元素含量的测定及分布研究

目录 1 引言 (1) 1.1 研究背景及意义 (2) 1.2 国内外研究概况 (3) 1.3 研究内容及路线 (5) 2 研究区域概况 (5) 2.1 自然环境概况 (5) 2.2 社会经济概况 (6) 2.3 现场周边概况 (7) 3 材料与方法 (7) 3.1 仪器与试剂 (7) 3.2 标准曲线的测定 (8) 3.3 土壤样品的采集与制备 (8) 3.4 土壤样品预处理 (9) 3.5 土壤样品重金属含量测定 (10) 3.6 准确度、精密度、检出限的测定 (10) 4 结果与讨论 (10) 4.1 标准曲线测定结果 (10) 4.2 土壤样品中重金属含量测定结果 (13) 4.3 准确度和精密度测定结果 (19) 4.4 土壤样品中重金属元素的空间分布 (19) 结论 (23) 致谢 (24) 参考文献 (25) 1 引言 土壤是决定土地功能和生态系统服务的包含物理、化学和生物成分的异质混合物。土壤可以提供营养,为生物提供栖息地和支持。它也可以是有机化合物和无机化合物的

大型汇合场所,包括重金属和类金属。自然和人为改变过程都可以导致重金属释放到生态系统中。作为一种特殊的污染物,重金属原是指密度大于4.0g/cm3的约60种元素或密度大于5.0g/cm3的45种元素[1],如镉、铅、锌、铜等,它被普遍应用于工业生产中。由于未能进行合理的处理,它们最后将通过各种渠道被排放进环境里并大量积累于土壤中。土壤中的重金属污染由于高毒性、隐蔽性、持久性和生物积累而在世界许多地方成为严重的问题。重金属污染不仅造成农业土壤成分、结构和功能的变化,而且还抑制作物根系生长,甚至减少作物产量。此外,土壤重金属污染会直接或间接地通过食物链对人类健康产生有害影响。因此,土壤重金属的生物危害性质的污染问题引起了社会的关注。研究并建立一个正确、高效的分析方法,寻找并发现重金属元素在土壤中的分布、迁移转化规律,对人类健康和其它生物正常生长具有极其重要的意义[2]。 1.1 研究背景及意义 1.1.1 土壤重金属的研究背景 随着近几十年来工业化和城市化的快速发展,土壤重金属污染加剧,生态环境质量也大幅度下降。土壤重金属的来源具有多样性。一般分为自然来源和人为来源。部分重金属元素天然存在于自然系统的土壤母质中,这部分重金属主要是以不易使生物循环利用的形式存在,土壤中重金属的天然含量往往保持在较低水平。因此,重金属的富集通常是人类活动因素造成的,而人类活动污染源一般又分为农业生产污染源、工业生产污染源和生活污染源。在农业生产中,含有重金属的受污染水体经过灌溉会将重金属转移至土壤。除此之外,还有化肥的不恰当使用。农业生产频繁使用的石灰和超磷酸盐肥料不仅含有植物生长所必需的营养元素,还含有As、Cd和Pb等有毒金属元素。煤燃烧导致的大气污染,也极易使重金属污染扩散到土壤。金属矿石的开采和加工以及交通运输都可能会加重土壤中重金属的污染程度。还有部分工业污染源是基于重金属和有机污染物的流动,例如,在石油泄漏的情况下,从肥料进入土壤,改善土壤等方式。这种类型的重金属污染性相对较弱。在生活中,常见的有随手乱扔含汞、镍、铅的电池以及体温计和血压计等危险物品,都很可能造成土壤大面积污染的严重后果。因此,土壤污染控制需明确土壤中重金属的主要来源,根据其来源来进行研究并制定相关的污染控制措施[3-6]。 1.1.2 重金属元素的危害 (1)重金属对人类的危害

土壤中重金属的含量

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):A甲 我们的参赛报名号为(如果赛区设置报名号的话):00119 所属学校(请填写完整的全名):滨州学院 参赛队员(打印并签名) :1. 刘超 2. 张杰 3. 王雪超 指导教师或指导教师组负责人(打印并签名):高合理 日期: 2011 年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

城市表层土壤重金属污染分析 摘要 土壤重金属污染可能造成现存的或潜在的土壤质量退化、生态与环境恶化的现象。科学分析数据资料对于搞清楚城市土壤重金属的空间分布格局、污染强度,揭示重金属污染的主要原因、确定污染源位置和污染物防治等具有重要的科学意义. 问题一主要涉及插值作图及评价指标的构建。我们首先对八种不同重金属形态浓度进行初步描述性统计分析,排序得出各不同污染因子对不同功能区的影响。然后,采用克里格插值法,借助Surfer8.0软件,绘制出了八种重金属的浓度等值线分布图,直观的给出了八种主要重金属元素在该城区的空间分布。最后,将单因子分析法和尼梅罗综合指数法相结合,计算得出每一区域的综合污染指数,与尼梅罗评价等级进行对比,分析出了不同区域重金属的污染程度:工业区属极度污染区,主干道路区属重度污染,生活区属中度污染区,山区和公园绿地区区属轻度污染区。 对于问题二,为了分析重金属污染的主要原因,我们把八种重金属元素的浓度看做八个变量,采用因子分析方法,借助SPSS软件对数据进行降维处理。结果表明有两个主因子,其中因子1的累积贡献率为44.512%,因子2的累积贡献率为58.885%。因子1在代表Ni 跟 Pb浓度的变量上得分较大,而因子2在代表Hg浓度的变量上得分最大。结合相关文献来看,该城区污染严重的有Ni、Pb、Hg元素,污染原因主要有二:Ni、Pb污染主要由工业“三废”的排放、车辆尾气的排放和汽车轮胎的磨损引起;Hg污染主要因工业或居民用煤引起。 问题三涉及方程构建及其最优化解。综合分析污染物传播特征及八种重金属的浓度等值线分布图,我们认为该城区重金属污染主要通过空气沉降。结合大气扩散理论,我们建立了点源扩散高斯模型来模拟重金属浓度与平面位置的关系,并根据最小二乘法,借助Lingo软件找到了两个主要污染源的大体位置(3624,3499)和(13648,1761) 。 针对问题四,我们分析了所建模型的优缺点,认为为更好地研究城市地质环境的演变模式,还应考虑时间因素,在系列时间点上对土壤取样。修正点源扩散高斯模型,将其常系数改进为时间的函数,并且可以根据样本点数据将其拟合出来。 关键词:克里格插值法、因子分析、点源扩散高斯模型、最小二乘法

根据中华人民共和国土地管理法的规定

为了加强土地管理,维护土地的社会主义公有制,保护、开发土地资源,合理利用土地,切实保护耕地,促进社会经济的可持续发展,根据宪法,制定本法。 第一章总则 第一条为了加强土地管理,维护土地的社会主义公有制,保护、开发土地资源,合理利用土地,切实保护耕地,促进社会经济的可持续发展,根据宪法,制定本法。 第二条中华人民共和国实行土地的社会主义公有制,即全民所有制和劳动群众集体所有制。 全民所有,即国家所有土地的所有权由国务院代表国家行使。 任何单位和个人不得侵占、买卖或者以其他形式非法转让土地。土地使用权可以依法转让。 国家为了公共利益的需要,可以依法对土地实行征收或者征用并给予补偿。 国家依法实行国有土地有偿使用制度。但是,国家在法律规定的范围内划拨国有土地使用权的除外。 第三条十分珍惜、合理利用土地和切实保护耕地是我国的基本国策。各级人民政府应当采取措施,全面规划,严格管理,保护、开发土地资源,制止非法占用土地的行为。 第四条国家实行土地用途管制制度。 国家编制土地利用总体规划,规定土地用途,将土地分为农用地、建设用地和未利用地。严格限制农用地转为建设用地,控制建设用地

总量,对耕地实行特殊保护。 前款所称农用地是指直接用于农业生产的土地,包括耕地、林地、草地、农田水利用地、养殖水面等;建设用地是指建造建筑物、构筑物的土地,包括城乡住宅和公共设施用地、工矿用地、交通水利设施用地、旅游用地、军事设施用地等;未利用地是指农用地和建设用地以外的土地。 使用土地的单位和个人必须严格按照土地利用总体规划确定的用途使用土地。 第五条国务院自然资源主管部门统一负责全国土地的管理和监督工作。 县级以上地方人民政府自然资源主管部门的设置及其职责,由省、自治区、直辖市人民政府根据国务院有关规定确定。 第六条国务院授权的机构对省、自治区、直辖市人民政府以及国务院确定的城市人民政府土地利用和土地管理情况进行督察。 第七条任何单位和个人都有遵守土地管理法律、法规的义务,并有权对违反土地管理法律、法规的行为提出检举和控告。 第八条在保护和开发土地资源、合理利用土地以及进行有关的科学研究等方面成绩显著的单位和个人,由人民政府给予奖励。 第二章土地的所有权和使用权 第九条城市市区的土地属于国家所有。 农村和城市郊区的土地,除由法律规定属于国家所有的以外,属于农民集体所有;宅基地和自留地、自留山,属于农民集体所有。

土壤中重金属的测定方法

摘要:随着工业的快速发展,重金属带来的土壤污染问题日益严重。基于此,针对土壤重金属的来源与危害,对近年来广泛使用的土壤样品前处理和重金属含量测定方法进行了综述。常见的样品处理方法有湿式消解法、干灰化法和微波消解法3种消解方法;常用的重金属含量测定方法主要有:分光光度法、原子吸收光谱法、原子荧光光谱法、电感耦合等离子体质谱法和电感耦合等离子体原子发射光谱法。 关键词:重金属;土壤;危害;测定方法 近年来,冶金、建筑、化工等诸多行业的快速发展,导致对资源的需求量日益加大,但随之而来的是污染问题的日益严重。重金属的污染给生产和生活带来的危害已经向人们敲响了警钟。首先,要正确面对重金属污染情况,并积极采取相应的措施加以改善;其次,要建立高效、快速、简单、便于操作的重金属样品前处理方法和分析检测方法,对土壤进行合理和及时地监控,防止污染问题的发生和发展;最后,环境的保护和改善人人有责,从生活中不乱扔废旧电池等一些小事做起,时刻践行保护环境。 1土壤中重金属的主要危害 随着开采矿产、冶炼加工活动的增加,废水、废气和废渣的大肆排放,导致土壤中铅、铬、镉等一些重金属严重超标,而通过食物链的传递,人类的健康受到了严峻的挑战。研究表明,食用含镉的大米之后,人体会产生多重影响。例如,尿液中镉元素含量的增高;贫血、骨痛病、癌症等疾病的发病率也会升高,对健康造成严重而长久的危害。 2土壤中重金属的样品前处理方法 目前,常见的样品处理方法主要有干灰化法、湿法消解法和微波消解法3种。下面将详细介绍该3种方法. 2.1 湿法消解法 湿法消解采用具有强氧化性的有机酸,加热破坏样品中有机物,将目标产物无机成分充分释放出来,进而形成较为稳定的无机化合物,以便于下一步进行分析测定。由于湿法消解所需条件简单,便于操作。因此,是制备重金属样品时经常采用的前处理方法[1]。 2.2 干灰化法 与湿法消解法相比,干灰化法是通过高温加热的方式除去样品中的有机物,然后采用酸对其剩余的灰分进行溶解。该方法简单,快速,但该法会造成一些元素的挥发,造成元素回收率降低[2]。 2.3 微波消解法 微波消解法一般是选择酸、碱或者盐溶液作为消解液,在一个封闭容器中将其与一定量的样品溶液充分混合后,采用微波加热,在高温高压的状态下将样品充分消解完全,释放出游离的元素进行分析测定。虽然微波消解法具有消解较为快速和完全,且空白本底影响较小等优点,但因为工作环境为高压状态,有一定的危险性,而且消解样品量相对较小。这就要求相关工作者结合自己的实验实际情况,选择最佳的消解方法,获得较为理想的实验结果。 3土壤中重金属的测定方法 目前,土壤中重金属的测定方法较多,下面将具体介绍最为常用的五种测定方法。 3.1 分光光度法 分光光度法是依据朗伯比尔定律,在一定的波长下,一定浓度的样品溶液的吸光度值与其含量成正比。由于分光光度计工作原理较为简单,紫外-可见分光光度法由于价格相对便宜,使

第三次全国土地调查土地利用数据库标准 试行

土地利用数据库标准 (试行) 国务院第三次全国土地调查领导小组办公室 2018年3月

目次 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 数据库内容和要素分类编码 (2) 5 数据库结构定义 (6) 6 数据交换文件命名规则 (25) 7 数据交换内容与格式 (28) 8 元数据 (28)

土地利用数据库标准 1 范围 本标准规定了土地利用数据库的内容、要素分类代码、空间要素分层、要素属性结构、数据交换格式和元数据等。 本标准适用于县级土地利用数据库建设与数据交换。 2 规范性引用文件 下列文件中对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2260 中华人民共和国行政区划代码 GB/T 13923 基础地理信息要素分类与代码 GB/T 13989 国家基本比例尺地形图分幅和编号 GB/T 16820 地图学术语 GB/T 17798 地理空间数据交换格式 GB/T 19231 土地基本术语 GB/T 33469 耕地质量等级 CH/T 1007 基础地理信息数字产品元数据 TD/T 1014 全国土地调查技术规程 TD/T 1016 国土资源信息核心元数据标准 TD/T 1019 基本农田数据库标准 3 术语和定义 下列术语和定义适用于本标准。 3.1 要素 feature 真实世界现象的抽象。[ ISO 19101] 3.2 要素属性feature attribute 要素的性质。[ ISO 19109] 3.3 类 class 具有共同特性和关系的一组要素的集合。 3.4 对象object 具有明确定义的边界和封装状态与行为特征的实体。[GB/T 17798] 3.5 实体 entity 具有共同性质的对象类。[GB/T 17798]

1 土壤中重金属污染物来历与分布

1 土壤中重金属污染物来源与分布 土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。 1.1 大气中重金属沉降 大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。它们主要分布在工矿的周围和公路、铁路的两侧。大气中的大多数重金属是经自然沉降[2]和雨淋沉降进入土壤的。如瑞典中部Falun市区的铅污染[3],它主要来自于市区铜矿工业厂、硫酸厂、油漆厂、采矿和化学工业产生大量废物,由于风的输送,这些细微颗粒的铅,从工业废物堆扩散至周围地区。南京某生产铬的重工业厂[4]铬污染叠加已超过当地背景值 4.4倍,污染以车间烟囱为中心,范围达1.5 km2,污染范围最大延伸下限 1.38 km。俄罗斯的一个硫酸生产厂[5]也是由工厂烟囱排放造成S、V、As的 污染。 公路、铁路两侧土壤中的重金属污染,主要是Pb、Zn、Cd、Cr、Co、Cu的 污染为主。它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含锌粉尘等。它们成条带状分布,以公路、铁路为轴向两侧重金属污染强度逐渐减弱;随着时间的推移,公路、铁路土壤重金属污染具有很强的叠加性。在宁—杭公路南京段[6]两侧的土壤形成Pb、Cr、Co污染晕带,且沿公路延长方向分布,自公路向两侧污染强度减弱。在宁—连一级公路淮阴段[7]两侧的土壤铅含量增高,向两侧含量逐渐降低,且在地表0~30 cm铅的含量较高。在法国索洛涅地区A71号高速公路[8]沿途严重污染重金属Pb、Zn、Cd,其沉降粒子浓度超过当地土壤背景值2~8倍,而公路旁重金属浓度比沉降粒子中高7~26倍。在斯洛文尼 亚[9]从居波加到扎各瑞波公路两侧,铅除了分布在公路两侧以外,还受阶地地貌和盛行风的影响,高铅出现在低地,公路顺风一侧铅含量较高。 经过自然沉降和雨淋沉降进入土壤的重金属污染,主要以工矿烟囱、废物堆和公路为中心,向四周及两侧扩散;由城市—郊区—农区,随距城市的距离加大而降低,特别是城市的郊区污染较为严重。此外,还与城市的人口密度、城市土地利用率、机动车密度成正相关;重工业越发达,污染相对就越严重。 此外,大气汞的干湿沉降[10~12]也可以引起土壤中汞的含量增高。大气汞通过干湿沉降进入土壤后,被土壤中的粘土矿物和有机物的吸附或固定,富集于土壤表层,或为植物吸收而转入土壤,造成土壤汞的浓度的升高。 1.2 农药、化肥和塑料薄膜使用 施用含有铅、汞、镉、砷等的农药和不合理地施用化肥,都可以导致土壤中重金属的污染。一般过磷酸盐中含有较多的重金属Hg、Cd、As、Zn、Pb,磷肥次之,,氮肥和钾肥含量较低,但氮肥中铅含量较高,其中As和Cd污染严重[13]。经过对上海地区菜园土地、粮棉地的研究[14],施肥后,Cd的含量从 0.134 mg/kg升到0.316 mg/kg,Hg的含量从0.22 mg/kg升到0.39 mg/kg,Cu、Zn 增长2/3。通过新西兰[15]50 a前和现今同一地点58个土样 分析,自施用磷肥后,镉从0.39 mg/kg升至0.85 mg/kg。在阿根廷[16]由于传统无机磷肥的施入,进而导致土壤重金属Cd、Cr、Cu、Zn、Ni、Pb的污染。

土壤中重金属全量测定方法

土壤中重金属全量测定 方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解.用氢氟酸-高氯酸-硝酸消解法,物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取克土壤样品(过筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1)盐酸溶解残渣,完全转移到25毫升容量瓶中,加毫升的100g/L的氯化铵溶液,定容,然后检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1)称量样品放入PTFE(聚四氟乙烯)烧杯中(先称量样品,后称量标样), 用少量去离子水润湿; 2)缓缓加入和(如果在开始加热蒸发前先把样品在混合酸中静置几个小时, 酸溶效果会更好一些),加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖)至形成粘稠状结晶为止(2~3小时); 3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入 都需要蒸发至尽干;若消化完全则直接进行下一步; 4)加入,蒸发至近干,以除尽残留的HF; 5)加入的5mol/L HNO3,微热至溶液清亮为止。检查溶液中有无被分解的物 料。如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸);

相关文档
最新文档