运动控制系统课程设计

运动控制系统课程设计
运动控制系统课程设计

课程设计报告书

题目直流无环流可逆调速系统

院系信息工程系

专业自动化

班级

姓名

学号

指导教师

2011 年 6 月24 日

武汉理工大学华夏学院《运动控制系统》课程设计

课程设计任务书

学生姓名: 747 专业班级: 747

指导教师:李向明工作单位:信息工程系

题目: 直流无环流可逆调速系统设计

初始条件:

1.直流电机参数:P N=10KW,U N=220V,I N=55A,n N=1000 r/min ,Ra=0.5Ω

2.测速发电机参数:23W,110V,0.21A,1900 r/min,永磁式

3.主电路采用两组三相全控桥反并联连接,进线交流电源:三相380V

要求完成的主要任务:

1.ASR及其反馈电路设计

2.ACR及其反馈电路设计

3.无环流逻辑控制器DLC设计

4.主电路及保护电路设计

5.集成触发电路设计

课程设计说明书应严格按统一格式打印,资料齐全,坚决杜绝抄袭,雷同现象。满足如下要求:1.稳态无静差,转速超调量不超过10%,电流超调量不超过5%。

2. 对系统设计方案的先进性、实用性和可行性进行论证,说明系统工作原理。

3. 画出单元电路图,说明工作原理,给出系统参数计算过程。

4. 画出整体电路原理图,图纸、元器件符号及文字符号符合国家标准。

时间安排:

2011.6.13-2011.6.15 收集课程设计相关资料

2011.6.16-2011.6.23 系统设计

2011.6.24-2011.6.26 撰写课程设计及答辩

指导教师签名:

年月日

系主任(或责任教师)签名:

年月日

武汉理工大学华夏学院《运动控制系统》课程设计

摘要

直流电动机具有良好的起动、制动性能,宜于在宽范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。因此研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要的意义。电机调速问题一直是自动化领域比较重要的问题之一。不同领域对于电机的调速性能有着不同的要求,困此,不同的调速方法有着不同的应用场合。转速、电流反馈控制的直流调速系统是静、动态性能优良、应用最广的直流调速系统。其良好的动态性能主要体现在其抗负载扰动以及抗电网电压扰动之上。

两组晶闸管装置反并联的电枢可逆线路是可逆调速系统的典型线路之一,这种线路有能实现可逆运行、回馈制动等优点,但也会产生环流。为保证系统安全,必须消除其中的环流。所谓逻辑无环流系统就是在一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使该组晶闸管完全处于阻断状态,从根本上切断环流通路。这种系统不仅能实现逻辑无环流可逆调速,还能实现回馈制动。本文对逻辑无环流直流可逆调速系统进行了设计,并且计算了电流和转速调节器的参数。

关键词:直流双闭环调速系统电流调节器转速调节器直流电动机

武汉理工大学华夏学院《运动控制系统》课程设计

目录

1设计任务与分析 (1)

1.1设计题目 (1)

1.2设计内容 (1)

1.3设计要求 (1)

1.4设计分析 (1)

2直流无环流可逆调速系统总体设计 (3)

2.1直流无环流可逆调速系统总体框图 (3)

2.2直流无环流可逆调速系统控制工作原理 (3)

3直流无环流可逆调速系统主电路设计 (5)

3.1主电路原理及说明 (5)

3.2主电路参数设计 (5)

3.3保护电路设计 (6)

4直流无环流可逆调速系统调节器设计

4.1电流调节器设计 (7)

4.1.1电流调节器结构 (7)

4.2.2电流调节器结构及参数选择 (8)

4.2转速调节器设计 (9)

4.2.1转速调节器结构 (9)

4.2.2转速调节器结构及参数选择 (9)

5控制及驱动电路设计 (11)

5.1逻辑控制器及触发电路设计 (11)

4总结与体会 (15)

参考文献 (16)

附录 (17)

武汉理工大学华夏学院《运动控制系统》课程设计

直流无环流可逆调速系统设计

1设计任务与分析

1.1设计题目

直流无环流可逆调速系统

1.2 设计内容

1.ASR及其反馈电路设计

2.ACR及其反馈电路设计

3.无环流逻辑控制器DLC设计

4.主电路及保护电路设计

5.集成触发电路设计

1.3 设计要求

1.稳态无静差,转速超调量不超过10%,电流超调量不超过5%。

2. 对系统设计方案的先进性、实用性和可行性进行论证,说明系统工作原理。

3. 画出单元电路图,说明工作原理,给出系统参数计算过程。

4. 画出整体电路原理图,图纸、元器件符号及文字符号符合国家标准。

1.4 设计分析

直流电动机电力拖动在19世纪中叶诞生,由于直流电动机诞生早且具有良好的起动、制动性能;调速好;调速技术成熟,因此直流电动机调速系统曾经一统高性能调速天下的格局。虽然随着电力电子技术、控制技术和计算机技术的发展,交流调速已逐步普及,交流调速系统已逐步取代直流调速系统,

1

武汉理工大学华夏学院《运动控制系统》课程设计

2

但是直流拖动系统不仅在理论上和实践上都比较成熟,目前还在广泛应用;而且从控制规律的角度来看,直流拖动系统又是交流拖动系统的基础。可见掌握直流调速系统的必要性。

根据自动控制原理,将系统的被调节量作为反馈引入系统,与给定量进行比较,用比较后的偏差对系统进行控制,可以有效地抑制甚至消除扰动的影响,而维持被调量很少的变化或不变,这就是反馈控制的基本作用。因此,在直流调速系统中把转速反馈给系统,便形成转速反馈控制直流调速系统,其有一定的抗扰动性能,如采用转速PI 调节器,还可以实现转速稳态无静差系统。但是,如果对系统的动态性能要求比较高,例如:要求快速起动、制动;突加负载动态速降小等等,转速单闭环系统就难以满足需要。原因是因为转速单闭环系统并不能充分按照理想要求控制电流的动态过程。为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值dm I 的恒流过程。

在可逆调速系统中,电动机最基本的要素就是能改变旋转方向。而要改变电动机的旋转方向有两种办法:一种是改变电动机电枢电压的极性,第二种是改变励磁磁通的方向。对于大容量的系统,从生产角度出发,往往采用既没有直流平均环流,又没有瞬时脉动环流的无环流可逆系统,无环流可逆系统省去了环流电抗器,没有了附加的环流损耗,和有环流系统相比,因换流失败造成的事故率大为降低。因此,逻辑无环流可逆调速系统在生产中被广泛运用。

本课程设计就要求结合给定的初始条件来完成直流无环流可逆调速系统的设计,其中包括绘制该调速系统的原理图,对调节器进行工程设计,选择调节器的参数等。要实现直流无环流可逆调速系统的设计需先对控制系统的组成及工作原理有一定深入的理解,弄清楚调速系统每个组成部分的作用,弄清楚转速环和电流环的工作原理,合理选择调节器的参数以便进行合理的工程设计。

武汉理工大学华夏学院《运动控制系统》课程设计

3

2直流无环流可逆调速系统总体设计

2.1直流无环流可逆调速系统总体框图

逻辑无环流可逆直流调速系统的原理框图如下图所示。

图2-1环流可逆直流调速系统原理框图

2.2直流无环流可逆调速系统控制工作原理

主电路采用两组晶闸管装置反并联线路,由于没有环流,不用再设置环流电抗器,但是为了保证运行时电流波形的连续性,应保留平波电抗器。控制线路采用典型的转速、电流双闭环控制系统,电流环分设两个电流调节器ACR1和ACR2,ACR1用来控制正组触发装置,ACR2 控制反组触发装置,ACR1的给定信号Ui*经反向器AR 同时作为ACR2的给定信号Ui*,这样就可以使电流反馈信号Ui*的极性在正转和反转时都不用改变,从而可采用不反应电流极性的电流检测器,即交流互感器和整流器。由于在主电路中不设均衡电抗器,一旦出现环流将造成严重的短路事故,所以对工作时的可靠性要求特别高,为此在系统中加入了无环流控制器DLC ,以保证系统的可靠运行,所以DLC 是系统中的关键部件。

武汉理工大学华夏学院《运动控制系统》课程设计

4

3直流无环流可逆调速系统主电路设计

3.1主电路原理及说明

直流无环流可逆直流调速系统的主电路如下图所示

:

图3-1主电路原理图

两组桥在任何时刻只有一组投入工作(另一组关断),所以在两组桥之间就不会存在环流。但当两组桥之间需要切换时,不能简单的把原来工作着的一组桥的触发脉冲立即封锁,而同时把原来封锁着的一组桥立即开通,因为已经导通的晶闸管并不能在触发脉冲取消的一瞬间立即被关断,必须待晶闸管承受反压时才能关断。如果对两组桥的触发脉冲的封锁和开放同时进行,原先导通的那组桥不能立即关断,而原先封锁着的那组桥已经开通,出现两组桥同时导通的情况,因没有环流电抗器,将会产生很大的短路电流,把晶闸管烧毁。为此首先应是已导通的的晶闸管断流,要妥当处理主回路中的电感储存的一部分能量回馈给电网,其余部分消耗在电机上,直到储存的能量释放完,主回路电流变为零,使原晶闸管恢复阻断能力,随后再开通原来封锁着的那组桥的晶闸管,使其触发导通。

武汉理工大学华夏学院《运动控制系统》课程设计

5

3.2主电路参数设计

U d =2.34U 2cos α

U d =U N =220V, 取α=0° U 2=

V U d 0171.9434.22200cos 34.2== I dmin =(5%-10%)I N ,这里取10% 则 L=0.693mH I U d 8461.1155

1.00171.94693.0min 2=??=? 01.0100010*===N nm n U α A V I U dbl im 121

2.055

5.110=?==*β 晶闸管参数计算:

对于三相桥式整流电路,晶闸管电流的有效值为:

d d VT I I I I 577.03

12==

= 则晶闸管的额定电流为: A A I I I d VT AV VT 24.2055368.0368.057

.1)(=?=== 取1.5~2倍的安全裕量,A I AV VT 110)(=

由于电流连续,因此晶闸管最大正反向峰值电压均为变压器二次线电压峰值,即:

V U U U RM FM 2300171.9445.245.22=?===

取2~3倍的安全裕量,V U VT 500=

武汉理工大学华夏学院《运动控制系统》课程设计

6 3.3保护电路设计

在主电路变压器二次侧并联电阻和电容构成交流侧瞬态过电压保护及滤波,晶闸管并联电阻和电容构成关断缓冲。

过电流保护可以通过电流互感器检测输入电流的变化,与给定值进行比较,当达到设定值时发出过流信号到逻辑控制器,再由逻辑控制器来封锁触发脉冲,实现过流保护。过流保护电路如下图3-2所示。

图3-2保护电路

过压保护是在直流电动机的电枢两端并上电压取样电阻,当电压值超过设定值时,发出过电压信号,经过电平转换后送到逻辑控制器,由逻辑控制器封锁触发脉冲。

自动控制系统课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:自动控制理论课程设计 设计题目:直线一级倒立摆控制器设计 院系:电气学院电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.6.6-2016.6.19 手机: 工业大学教务处

*注:此任务书由课程设计指导教师填写。

直线一级倒立摆控制器设计 摘要:采用牛顿—欧拉方法建立了直线一级倒立摆系统的数学模型。采用MATLAB 分析了系统开环时倒立摆的不稳定性,运用根轨迹法设计了控制器,增加了系统的零极点以保证系统稳定。采用固高科技所提供的控制器程序在MATLAB中进行仿真分析,将电脑与倒立摆连接进行实时控制。在MATLAB中分析了系统的动态响应与稳态指标,检验了自动控制理论的正确性和实用性。 0.引言 摆是进行控制理论研究的典型实验平台,可以分为倒立摆和顺摆。许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统实验直观的表现出来,通过倒立摆系统实验来验证我们所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。 本次课程设计中以一阶倒立摆为被控对象,了解了用古典控制理论设计控制器(如PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,掌握MATLAB仿真软件的使用方法及控制系统的调试方法。 1.系统建模 一级倒立摆系统结构示意图和系统框图如下。其基本的工作过程是光电码盘1采集伺服小车的速度、位移信号并反馈给伺服和运动控制卡,光电码盘2采集摆杆的角度、角速度信号并反馈给运动控制卡,计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动从而保持摆杆平衡。

【VIP专享】运动控制系统课程设计报告

《运动控制系统》课程设计报告 时间 2014.10 _ 学院自动化 _ 专业班级自1103 _ 姓名曹俊博 __ 学号 41151093 指导教师潘月斗 ___ 成绩 _______

摘 要 本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。 关键词:双闭环;直流调速;无静差;仿真 Abstract This course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation. Key Words:double closed loop;DC speed control system;without the static poor;simulation

机电控制系统课程设计

JIANG SU UNIVERSITY 机电系统综合课程设计 ——模块化生产教学系统的PLC控制系统设计 学院:机械学院 班级:机械 (卓越14002) 姓名:张文飞 学号: 3140301171 指导教师:毛卫平 2017年 6月

目录 一: MPS系统的第4站PLC控制设计 (3) 1.1第四站组成及结构 (3) 1.2 气动回路图 (3) 1.3 PLC的I/O分配表,I/O接线图(1、3、6站电气线路图) (4) 1.4 顺序流程图&梯形图 (5) 1.5 触摸屏控制画面及说明,控制、信息软元件地址表 (10) 1.6 组态王控制画面及说明 (13) 二: MPS系统的两站联网PLC控制设计 (14) 2.1 PLC和PLC之间联网通信的顺序流程图(两站)&从站梯形图 (14) 2.2 通讯软元件地址表 (14) 三:调试过程中遇到的问题及解决方法 (18) 四:设计的收获和体会 (19) 五:参考文献 (20)

一:MPS系统的第4站PLC控制设计 1.1第四站组成及结构: 由吸盘机械手、上下摆臂部件、料仓换位部件、工件推出部件、真空发生器、开关电源、可编程序控制器、按钮、I/O接口板、通讯接口板、多种类型电磁阀及气缸组成,主要完成选择要安装工件的料仓,将工件从料仓中推出,将工件安装到位。 1.吸盘机械手臂机构:机械手臂、皮带传动结构真空吸嘴组成。由上下摆臂装置带动其旋转完成吸取小工件到放小工件完成组装流程的过程。 2.上下摆臂结构:由摆臂缸(直线缸)摆臂机械装置组成。将气缸直线运动转化为手臂旋转运动。带动手臂完成组装流程。 3.仓料换位机构:由机构端头换仓缸带动仓位装置实现换位(蓝、黑工件切换)。 4.推料机构:由推料缸与机械部件载料平台组成。在手臂离开时将工件推出完成上料。 5.真空发生器:当手臂在工件上方时,真空发生器通气吸盘吸气。 5.I/O接口板:将桌面上的输入与输出信号通过电缆C1与PLC的I/O相连。 6.控制面板:完成设备启动上电等操作。(具体在按钮上有标签说明)。

控制系统仿真课程设计报告.

控制系统仿真课程设计 (2011级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2014年6月

控制系统仿真课程设计一 ———交流异步电机动态仿真 一 设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二 设计及Matlab 仿真过程 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 20.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下: 21m s r L L L σ=-,r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=()p m e s s s s r n L T i i L βααβ ψψ=-

运动控制-M法T法测速单片机程序设计

M法、T法测速单片机程序设计 摘要 本设计为M法、T法测速的单片机程序设计。使用STC89C52单片机作为控制器,使用该单片机的外部中断和定时器对编码器的输出的脉冲进行采样来计算出电机的转速。可以使用按键输入来调整M法、T法测速法中Z、Tc和Tt等参数以及测速方法的选择,以此来增强本设计的适应性。参数选择结果和电机转速计算结果均显示在LCD1602上。 关键字:STC89C52,M法、T法测速,LCD1602,电机转速 Ⅰ

Abstract This design as m, t-law velocity measurement of single-chip computer programming. Using STC89C52 single-chip computer as the controller, using the microcontroller's external interrupts and timers for encoder output pulse is sampled to calculate the speed of the motor. Can be adjusted using touchtone m, t law Velocimetry parameters such as z, Tt and Tc, as well as in speed measurement method of choice, as a way to enhance the adaptability of this design. Parameter selection and calculation of motor speed results are available on LCD1602. Keywords:STC89C52,M、T method, the LCD1602, Motor speed Ⅱ

电气综合控制系统课程设计

成都理工大学工程技术学院电气综合控制系统课程设计 院系:自动化工程系 专业:建筑电气与智能化 班级:2013建电1班 学号: 姓名: 同组成员: 指导老师:

完成时间:2015年12月25日

目录 概述 (1) 一、PLC的分类及特点 (1) 二、PLC的结构与工作原理 (1) 三、S7-200 PLC的硬件组成及指令系统 (2) 四、常用低压电器介绍 (3) 第一部分 (6) 课题一电动机带延时正反转控制实操模拟 (6) 课题二天塔之光控制模拟 (10) 课题三机械手控制模拟 (15) 第二部分 (20) 课题一电动机点动控制 (20) 课题二电动机自锁控制 (22) 课题三两台电动机顺序起、停控制 (24) 课题四三台电动机顺序起动控制 (26) 总结 (28)

概 述 一、PLC 的分类及特点 可编程控制器简称PLC (Programmable Logic Controller ),在1987年国际电工委员会(International Electrical Committee )颁布的PLC 标准草案中对PLC 做了如下定义:PLC 是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC 及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。 PLC 的分类:按产地分,可分为日系、欧美、韩台、大陆等;按点数分,可分为大型机、中型机及小型机等;按结构分,可分为整体式和模块式;按功能分,可分为低档、中档、高档三类。 PLC 的特点:1.可靠性高,抗干扰能力强2.配套齐全,功能完善,适用性强3.易学易用,深受工程技术人员欢迎3.系统的设计、建造工作量小,维护方便,容易改造4.体积小,重量轻,能耗低 二、PLC 的结构与工作原理 PLC 的结构:PLC 的类型繁多,功能和指令系统也不尽相同,但结构与工作原理则大同小异,通常由主机、输入/输出接口、电源、编程器扩展器接口和外部设备接口等几个主要部分组成。其组成框图如图1所示。 图1 整体式PLC 的组成框图 PLC 的工作原理:PLC 是采用“顺序扫描,不断循环”的方式进行工作的。即在PLC 运行时,CPU 根据用户按控制要求编制好并存于用户存储器中的程序,按指令步序号(或地址号)作周期性循环扫描,如无跳转指令,则从第一条指令开始逐条顺序执行用户程序,直至程序结束。然后重新返回第一条指令,开始下一轮新的扫描。在每次扫描过程中,还要完成对输入信号的采样和对输出状态的刷新等工作。 接触器电磁阀指示灯电源 电源 限位开关选择开关按钮

matlab控制系统仿真课程设计

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称机电工程学院专业 班级 学生姓名 学号 课程设计地点 课程设计学时 指导教师 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。

(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统

无积分作用单回路控制系统 大比例作用单回路控制系统 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响

运动控制系统课程设计报告

《运动控制系统》课程设计报告 时间2014.10 _ 学院自动化 _ 专业班级自1103 _ 姓名曹俊博__ 学号 指导教师潘月斗 ___ 成绩 _______

摘要 本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。 关键词:双闭环;直流调速;无静差;仿真 Abstract This course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation. Key Words:double closed loop;DC speed control system;without the static poor;simulation

自动控制课程设计~~~

指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2013年12 月 重庆邮电大学移通学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献

一、设计题目 《自动控制原理》课程设计(简明)任务书——供2011级机械设计制造及其自动化专业(4-6班)本科学生用 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一设计题目:I型二阶系统的典型分析与综合设计 二系统说明: 该I型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:R=1MΩ;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t);

四设计指标: 设定:输入为x(t)=a×1(t)(其中:a=5) 要求动态期望指标:M p﹪≤20﹪;t s≤4sec; 五基本要求: a)建立系统数学模型——传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。

南理工控制系统综合课程设计-随机切换系统

随机切换系统的仿真

目录 摘要 (3) 1 引言 (4) 1.1 切换系统概述 (4) 1.1.1 切换系统工程背景 (4) 1.1.2 切换系统研究现状 (4) 1.1.3 切换系统的特点 (4) 1.2 问题描述与准备 (5) 2 一般随机线性切换系统 (5) 2.1 切换系统模型 (5) 2.1.1 模型形式 (5) 2.1.2 反馈控制律 (6) 2.2 仿真实例 (7) 3 对随机切换系统性能的研究 (8) 3.1 线性切换系统的能控性和能观性 (8) 3.2 线性切换系统的稳定性 (9) 4 随机切换系统的有趣现象探索 (10) 4.1 切换函数的选取 (10) 4.1.1 切换函数依赖状态变量 (10) 4.1.2 切换函数为随机数 (11) 4.2 系统结构的选取 (12) 4.3 时延函数的选取 (12) 4.4 多个子系统切换探究 (13) 4.2.1 改变初值 (14) 4.2.2 改变切换函数 (15) 5 总结和展望 (16) 参考文献 (17)

摘要 本文研究了随机切换控制系统的分析和仿真问题。首先介绍切换系统的发展背景、特点、研究内容、研究现状以及本文要讨论的问题;第二部分介绍随机切换系统的一般模型,用实例分析了切换系统的运动特性;第三部分简析了切换系统性能,并结合实例说明切换函数的存在对于稳定性的影响;第四部分通过改变系统参数、不同切换函数等情况,利用MATLAB/Simulink软件对系统进行仿真,给出了仿真程序、系统状态曲线,试图从各个系统状态曲线的不同现象的特点和系统性能中发现一些有趣的现象并进行分析;第五部分对全文作了总结并对随机切换系统进行展望。 关键词:随机切换系统simulink仿真状态响应曲线分析有趣现象探索

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

基于STM32的机械臂运动控制分析设计说明书

机器人测控技术 大作业课程设计 课程设计名称:基于STM32的机械臂运动控制分析设计专业班级:自动1302 学生姓名:张鹏涛 学号:201323020219 指导教师:曹毅 课程设计时间:2016-4-28~2016-5-16 指导教师意见: 成绩: 签名:年月日 目录

摘要................................................................................................................. V 第一章运动模型建立...................................................................................... V I 1.1引言 ................................................................................................ V I 1.2机器人运动学模型的建立.................................................................. V I 1.2.1运动学正解 ......................................................................... VIII 第二章机械臂控制系统的总体方案设计 .......................................................... X 2.1机械臂的机械结构设计 ...................................................................... X 2.1.1臂部结构设计原则 ................................................................. X 2.1.2机械臂自由度的确定............................................................. XI 2.2机械臂关节控制的总体方案 .............................................................. XI 2.2.1机械臂控制器类型的确定...................................................... XI 2.2.2机械臂控制系统结构............................................................ XII 2.2.3关节控制系统的控制策略.................................................... XIII 第三章机械臂控制系统硬件设计.................................................................. XIII 3.1机械臂控制系统概述....................................................................... XIII 3.2微处理器选型................................................................................. XIV 3.3主控制模块设计.............................................................................. XV 3.3.1电源电路............................................................................. XV 3.3.2复位电路............................................................................ XVI 3.3.3时钟电路............................................................................ XVI 3.3.4 JTAG调试电路.................................................................. X VII 3.4驱动模块设计................................................................................. X VII

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

自动控制综合课程设计报告

题目:根据线性系统的频域分析法和串联校正方法的原理,编写MATLAB程序,要求针对被校正系统的特点以及校正目 标,实现串联校正装置结构的选择以及相应参数的计 算 1)在频域内进行系统设计,是一种间接设计方法,因为设计结果满足的是一些频域指标,而不是时域指标。然而,在频域内进行设计是一种简便的方法,在伯德图上虽不能严格地定量给出系统的动态性能。但却能方便地根据频域指标校正装置的参数。 2)频域设计的这种简便性,是由于开环系统的频率特性与闭环系统的时间响应有关。开环频域特性的低频段表征了闭环系统的稳态性能;中频段表征了闭环系统的动态性能;高频段表征了闭环系统的复杂性和噪声抑制性能。 3)因此,用频域法设计控制系统的实质,就是在系统中加入频率特性形状合适的校正装置,使开环系统频率特性形状变为所期望的形状:低频段增益充分大,以保证稳态误差要求;中频段对数幅频特性斜率一般为-20db/dec,并占据充分的频带,以保证具备适当的相角裕度;高频段增益尽快减小,以消弱噪声影响。 4)串联校正就是将校正装置G(s)与待校正系统在主调节回路里串联连接。控制环节的设计的实质就是,当系统的静态、动态性能指标偏离要求时,在系统的适当位置加入适宜的特殊机构,通过调节它们的参数,从而使系统的整体特性发生改变,最终达到符合要求的性能指标。

1 算法实现流程图

2 伯德图超前校正的设计 2.1 伯德图超前校正设计的方法 1)超前校正环节的两个转折频率应分别设在系统截止频率的两侧。因为超 前校正环节相频特性曲线具有正相移,幅频特性曲线具有正斜率,所以校正后系统伯德图的低频段不变,而其截止频率和相角裕度比原系统的大,这说明校正后系统的快速性和稳定性得到提高。 2)然而,这两者是一对矛盾,不可能同时达到最大,总是顾此失彼。一般, 我们在选用超前校正时,以提高截止频率为主要目的。 3)利用系统频率响应性能可以试凑地解决超前滞后类校正器的设计问题, 但这样很耗时,有时还不能得出期望的结果。本次本人用基于校正后系统剪切频率和相位裕度设定的算法来设计超前校正。 2.2 超前校正设计的步骤 1)根据稳态误差要求,确定开环增益k 。 2)利用已确定的开环增益,计算待校正系统的相角裕度。 调用伯德函数可以轻松求出。 3) 根据幅值关系计算出α。 由超前校正系统的伯德图可知,在最大相角处,幅值增益为10lg α由此 可算出α。 4)计算零、极点z 、p 的值 由 c m ωω=== 得p ω=、/z p α= 5)得出校正网络传递函数、并作校正后系统的伯德图,得相角裕度。 2.3 超前校正设计的程序 [mag,phase,w]=bode(sys0); m1=spline(w,mag,wc);

控制系统仿真课程设计

控制系统数字仿真课程设计 1.课程设计应达到的目的 1、通过Matlab仿真熟悉课程设计的基本流程; 2、掌握控制系统的数学建模及传递函数的构造; 3、掌握控制系统性能的根轨迹分析; 4、学会分析系统的性能指标; 2.课程设计题目及要求 设计要求 1、进行系统总体设计,画出原理框图。(按给出的形式,自行构造数学模型,构造成1 个零点,三个极点的三阶系统,主导极点是一对共轭复根) G(s)=10(s+2)/(s+1)(s2+2s+6) 2、构造系统传递函数,利用MATLAB绘画系统的开环和闭环零极点图;(分别得 到闭环和开环的零极点图)参考课本P149页例题4-30 clear; num = [10,20]; den =[1 3 8 6]; pzmap(num,den) 3、利用MATLAB绘画根轨迹图,分析系统随着根轨迹增益变化的性能。并估算超 调量=16.3%时的K值(计算得到)。参考课本P149页例题4-31 clear num=[10,20]; den=[1 3 8 6]; sys=tf(num,den); rlocus(sys) hold on jjx(sys); s=jjx(sys); [k,Wcg]=imwk(sys)

set(findobj('marker','x'),'markersize',8,'linewidth',1.5,'Color','k'); set(findobj('marker','o'),'markersize',8,'linewidth',1.5,'Color','k'); function s=jjx(sys) sys=tf(sys); num=sys.num{1}; den=sys.den{1}; p=roots(den); z=roots(num); n=length(p); m=length(z); if n>m s=(sum(p)-sum(z))/(n-m) sd=[]; if nargout<1 for i=1:n-m sd=[sd,s] end sysa=zpk([],sd,1); hold on; [r,k]=rlocus(sysa); for i=1:n-m plot(real(r(i,:)),imag(r(i,:)),'k:'); end end else disp; s=[]; end function [k,wcg]=imwk(sys) sys=tf(sys) num=sys.num{1} den=sys.den{1}; asys=allmargin(sys); wcg=asys.GMFrequency; k=asys. GainMargin;

PWM运动控制课程设计报告

摘要 速度对任何一个运动体来说都是一个至关重要的物理量,如何快速方便地进行速度调节是我们一直需要探索的问题。这份课程设计采用的是直流PWM调速双闭环控制系统,该调速系统是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技成为PWM控制技术发展的主要方向之一。这份课程设计对于PWM设计的各个方面进行了简要阐述,并进行了Proteus仿真以及Matlab中的Simulink仿真,去的了较好的结果。 关键词:PWM调速;Proteus仿真;Matlab ;双闭环 1

目录 1 绪论 (3) 2 设计总要求 (4) 2.1设计已知参数 (4) 2.2设计具体要求 (4) 3 控制电路设计 (4) 3.1直流调速系统控制方案的选择 (4) 3.2 电流环设计 (5) 3.2.1 电流调节器的设计 (6) 3.3 转速调节器 (7) 4 主电路设计 (8) 4.1 PWM调速系统主电路形式选择 (8) 4.1.1 T型PWM变换器电路 (8) 4.1.2 H型PWM变换器电路 (9) 4.2 PWM调速系统开关电路形式选择 (13) 4.3 H型双极性逆变器的驱动分析 (14) 5 频率电压转换设计 (17) 6 脉冲分配及功率放大电路设计 (17) 7 PI调节器设计 (18) 8 三角波发生器设计 (19) 9 Matlab仿真结果 (20) 10 设计总结 (21) 参考文献 (23)

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

运动控制系统实验指导书分解

运动控制系统 实验指导书 赵黎明、王雁编 广东海洋大学信息学院自动化系

直流调速 实验一不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图6-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件或MCL—53组件。 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1

即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的调试(主电路未通电) (a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。 (b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。 2.求取调速系统在无转速负反馈时的开环工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且Ug调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d 3.带转速负反馈有静差工作的系统静特性 a.断开G(给定)和U ct的连接线,ASR的输出接至U ct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节U uv,U vw,U wu为200伏。 c.调节给定电压U g至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。 调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8

相关文档
最新文档