高考一轮复习:离散型随机变量的均值与方差

高考一轮复习:离散型随机变量的均值与方差
高考一轮复习:离散型随机变量的均值与方差

第6讲 离散型随机变量的均值与方差

【2015年高考会这样考】

1.考查有限个值的离散型随机变量均值、方差的概念. 2.利用离散型随机变量的均值、方差解决一些实际问题. 【复习指导】

均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题.

基础梳理

离散型随机变量的均值与方差 若离散型随机变量X 的分布列为

X x 1 x 2 … x i

… x n P

p 1

p 2

p i

p n

两个防范

在记忆D (aX +b )=a 2D (X )时要注意:D (aX +b )≠aD (X )+b ,D (aX +b )≠aD (X ). 三种分布

(1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ); (2)X ~B (n ,p ),则

E (X )=np ,D (X )=np (1-p );

(1)均值

称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值

或 ,它反映了离散型随机变量取值的 .

(2)方差

称D (X )=∑i =1

n

[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变

量X 与其均值E (X )的平均

,其算术平方根D (X )为随机变量X 的标准差.

数学期望 平均水平 偏离程度

(3)若X 服从超几何分布, 则E (X )=n M

N . 六条性质

(1)E (C )=C (C 为常数)

(2)E (aX +b )=aE (X )+b (a 、b 为常数) (3)E (X 1+X 2)=EX 1+EX 2

(4)如果X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)E (X 2) (5)D (X )=E (X 2)-(E (X ))2 (6)D (aX +b )=a 2·D (X )

双基自测

1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.

65 B.6

5 C. 2 D .2

解析 由题意知a +0+1+2+3=5×1,解得,a =-1. s 2

=(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2

5

=2. 答案 D

2.已知X 的分布列为

X -1 0 1 P

12

13

16

设Y =2X +3,则E (Y )的值为( ).

A.7

3 B .

4 C .-1 D .1 解析 E (X )=-12+16=-1

3,

E (Y )=E (2X +3)=2E (X )+3=-23+3=7

3. 答案 A

3.(2010·湖北)某射手射击所得环数ξ的分布列如下:

ξ 7 8 9 10 P

x

0.1

0.3

y

已知ξ的期望E (ξ)=8.9,则y 的值为________. A .0.4 B .0.6 C .0.7 D .0.9 解析 x +0.1+0.3+y =1,即x +y =0.6.①

又7x +0.8+2.7+10y =8.9,化简得7x +10y =5.4.② 由①②联立解得x =0.2,y =0.4. 答案 A

4.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ). A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32 D .n =7,p =0.45 解析 ∵X ~B (n ,p ),∴E (X )=np =1.6, D (X )=np (1-p )=1.28,∴???

n =8,p =0.2.

答案 A

5.(2010·上海)随机变量ξ的概率分布列由下表给出:

ξ 7 8 9 10 P

0.3

0.35

0.2

0.15

该随机变量ξ的均值是________.

解析 由分布列可知E (ξ)=7×0.3+8×0.35+9×0.2+10×0.15=8.2. 答案 8.2

考向一 离散型随机变量的均值和方差

【例1】?A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是A 1、A 2、A 3,B 队队员是B 1、B 2、B 3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:

对阵队员

A 队队员胜的概

A 队队员负的概

率率

A1和B12

3

1

3

A2和B22

5

3

5

A3和B32

5

3

5

现按表中对阵方式出场胜队得1分,负队得0分,设A队,B队最后所得总分分别为X,Y

(1)求X,Y的分布列;(2)求E(X),E(Y).

[审题视点] 首先理解X,Y的取值对应的事件的意义,再求X,Y取每个值的概率,列成分布列的形式,最后根据期望的定义求期望.

解(1)X,Y的可能取值分别为3,2,1,0.

P(X=3)=2

2

2

5=

8

75,

P(X=2)=2

2

3

5+

1

2

2

5+

2

3

2

5=

28

75,

P(X=1)=2

3

3

5+

1

2

3

5+

1

3

2

5=

2

5,

P(X=0)=1

3

3

5=

3

25;

根据题意X+Y=3,所以

P(Y=0)=P(X=3)=8

75,P(Y=1)=P(X=2)=

28

75,

P(Y=2)=P(X=1)=2

5,P(Y=3)=P(X=0)=

3

25.

X的分布列为

X 012 3

P 3

25

2

5

28

75

8

75

Y的分布列为

Y 3210

P

325 25 2878 875

(2)E (X )=3×875+2×2875+1×25+0×325=22

15; 因为X +Y =3,所以E (Y )=3-E (X )=23

15.

(1)求离散型随机变量的期望关键是写出离散型随机变量的分布列,然

后利用公式计算.

(2)由X 的期望、方差求aX +b 的期望、方差是常考题之一,常根据期望和方差的性质求解.

【训练1】 (2011·四川)本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,1

4;两人租车时间都不会超过四小时.

(1)求甲、乙两人所付的租车费用相同的概率;

(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望E (ξ).

解 (1)由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为14,1

4. 记甲、乙两人所付的租车费用相同为事件A ,则 P (A )=14×12+12×14+14×14=516.

所以甲、乙两人所付的租车费用相同的概率为5

16. (2)ξ可能取的值有0,2,4,6,8. P (ξ=0)=14×12=1

8; P (ξ=2)=14×14+12×12=5

16; P (ξ=4)=12×14+14×12+14×14=5

16;

P(ξ=6)=1

1

4+

1

1

4=

3

16;

P(ξ=8)=1

1

4=

1

16.

甲、乙两人所付的租车费用之和ξ的分布列为

ξ02468

P 1

8

5

16

5

16

3

16

1

16

所以E(ξ)=0×1

8+2×

5

16+4×

5

16+6×

3

16+8×

1

16=

7

2.

考向二均值与方差性质的应用

【例2】?设随机变量X具有分布P(X=k)=1

5,k=1,2,3,4,5,求E(X+2)

2,D(2X

-1),D(X-1).

[审题视点] 利用期望与方差的性质求解.

解∵E(X)=1×1

5+2×

1

5+3×

1

5+4×

1

5+5×

1

5=

15

5=3.

E(X2)=1×1

5+2

1

5+3

1

5+4

1

5+5

1

5=11.

D(X)=(1-3)2×1

5+(2-3)

1

5+(3-3)

1

5+(4-3)

1

5+(5-3)

1

5=

1

5(4+1+

0+1+4)=2.

∴E(X+2)2=E(X2+4X+4)

=E(X2)+4E(X)+4=11+12+4=27.

D(2X-1)=4D(X)=8,D(X-1)=D(X)= 2.

若X是随机变量,则η=f(X)一般仍是随机变量,在求η的期望和方差时,熟练应用期望和方差的性质,可以避免再求η的分布列带来的繁琐运算.【训练2】袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,X表示所取球的标号.

(1)求X的分布列、期望和方差;

(2)若η=aX+b,E(η)=1,D(η)=11,试求a,b的值.

解(1)X的分布列为

X 0123 4

P

12 120 110 320 15

∴E (X )=0×12+1×120+2×110+3×320+4×1

5=1.5.

D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×3

20+(4-1.5)2

×1

5=2.75.

(2)由D (η)=a 2D (X ),得a 2×2.75=11,即a =±2. 又E (η)=aE (X )+b ,

所以当a =2时,由1=2×1.5+b ,得b =-2. 当a =-2时,由1=-2×1.5+b ,得b =4. ∴??? a =2,b =-2,或???

a =-2,

b =4,

即为所求. 考向三 均值与方差的实际应用

【例3】?(2011·福建)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准. (1)已知甲厂产品的等级系数X 1的概率分布列如下所示:

X 1 5 6 7 8 P

0.4

a

b

0.1

且X 1的数学期望E (X 1)=6,求a ,b 的值;

(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:

3 5 3 3 8 5 5 6 3

4 6 3 4 7

5 3 4 8 5 3 8 3 4 3 4 4 7 5

6 7

用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望.

(3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.

注:(1)产品的“性价比”=

产品的等级系数的数学期望

产品的零售价

(2)“性价比”大的产品更具可购买性.

[审题视点] (1)利用分布列的性质P 1+P 2+P 3+P 4=1及E (X 1)=6求a ,b 值. (2)先求X 2的分布列,再求E (X 2),(3)利用提示信息判断.

解 (1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6,即6a +7b =3.2. 又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5. 由??? 6a +7b =3.2,a +b =0.5,解得???

a =0.3,

b =0.2. (2)由已知得,样本的频率分布表如下:

X 2 3 4 5 6 7 8 f

0.3

0.2

0.2

0.1

0.1

0.1

用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:

X 2 3 4 5 6 7 8 P

0.3

0.2

0.2

0.1

0.1

0.1

所以

E (X 2)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8. 即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.理由如下:

因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.

因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.8

4=1.2.

据此,乙厂的产品更具可购买性.

解决此类题目的关键是将实际问题转化为数学问题,正确理解随机变

量取每一个值所表示的具体事件,求得该事件发生的概率,本题第(1)问中充分利用了分布列的性质p 1+p 2+...+p n + (1)

【训练3】 某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知

道:一年后可能获利10%,可能损失10%,可能

不赔不赚,这三种情况发生的概率分别为1

2,

1

4,

1

4;如果投资乙项目,一年后可

能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用X表示投资收益(收益=回收资金-投资资金),求X的概率分布及E(X);

(2)若把10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.

解(1)依题意,X的可能取值为1,0,-1,

X的分布列为

X 10-1

P 1

2

1

4

1

4

E(X)=1

2-

1

4=

1

4.

(2)设Y表示10万元投资乙项目的收益,则Y的分布列为:

Y 2-2

P αβ

E(Y)=2α-2β=4α-2,依题意要求4α-2≥1 4,

∴9

16≤α≤1.

规范解答23——离散型随机变量的均值与方差的计算

【问题研究】期望和方差是离散型随机变量的两个重要数学特征,是高考概率考查的重要知识点,常与排列组合、导数等知识相结合,对考查生的数学应用能力、数学表达能力、创新能力都进行了考查.

【解决方案】(1)掌握好期望与方差的性质.(2)记住或理解一些特殊分布的均值与方差,如两点分布、二项分布等.(3)注意运算技巧,随机变量的均值与方差计算比较复杂,在运算时要注意一些运算技巧,如把问题归结为二项分布的期望与方差,运用期望与方差的性质简化运算,运算时注意一些项的合并.

【示例】?(本小题满分12分)甲、乙两架轰炸机对同一地面目标进行轰炸,甲机投弹一次命中目标的概率为23,乙机投弹一次命中目标的概率为1

2,两机投弹互不影响,每机各投弹两次,两次投弹之间互不影响.

(1)若至少两次投弹命中才能摧毁这个地面目标,求目标被摧毁的概率; (2)记目标被命中的次数为随机变量ξ,求ξ的分布列和数学期望.

对于第(1)问,甲、乙两机的投弹都是独立重复试验概型,根据至少两

次命中分类求解,或使用间接法求解,注意运用相互独立事件同时发生的概率乘法公式;对于第(2)问,根据题意,随机变量ξ=0,1,2,3,4,根据独立重复试验概型及事件之间的相互关系,计算其概率即可求出分布列,根据数学期望的计算公式求解数学期望.

[解答示范] 设A k 表示甲机命中目标k 次,k =0,1,2,B l 表示乙机命中目标l 次,l =0,1,2,则A k ,B l 独立.由独立重复试验中事件发生的概率公式有

P (A k )=C k 2? ????23k ? ????132-k ,P (B l )=C l 2? ????12l ? ??

??122-l .

据此算得P (A 0)=19,P (A 1)=49,P (A 2)=4

9. P (B 0)=14,P (B 1)=12,P (B 2)=1

4.(2分) (1)所求概率为

1-P (A 0B 0+A 0B 1+A 1B 0)=

1-? ????

19×14+19×12+49×14=1-736=2936.(4分) (2)ξ的所有可能值为0,1,2,3,4,且

P (ξ=0)=P (A 0B 0)=P (A 0)·P (B 0)=19×14=136, P (ξ=1)=P (A 0B 1)+P (A 1B 0)=19×12+49×14=16,

P (ξ=2)=P (A 0B 2)+P (A 1B 1)+P (A 2B 0)=19×14+49×12+49×14=13

36,(8分) P (ξ=3)=P (A 1B 2)+P (A 2B 1)=49×14+49×12=1

3, P (ξ=4)=P (A 2B 2)=49×14=1

9.(10分)

综上知,ξ的分布列如下:

ξ 0 1 2 3 4 P

136

16

1336

13

19

从而ξ的期望为E (ξ)=0×136+1×16+2×1336+3×13+4×19=7

3.(12分)

概率问题的核心就是互斥事件、相互独立事件的概率计算、随机变量

的分布以及均值等问题,并且都是以概率计算为前提的,在复习时要切实把握好概率计算方法.若本题第(2)问是单纯求随机变量ξ的数学期望,则可以直接根据二项分布的数学期望公式和数学期望的性质解答:令ξ1,ξ2分别表示甲、乙两机命中的次数,则ξ1~B ? ????2,23,ξ2~B ? ?

???2,12,故有E (ξ1)=2×23=43,E (ξ2)=2×12=

1,而知E (ξ)=E (ξ1)+E (ξ2)=7

3.

【试一试】 (2011·北京)(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.

(1)如果X =8,求乙组同学植树棵数的平均数和方差;

(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.

(注:方差s 2=1

n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)

解 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为:x =

8+8+9+104

=35

4; 方差为:s 2

=14×[(8-354)2+(8-354)2+(9-354)2+(10-354)2]=11

16.

(2)当X =9时,由茎叶图可知,甲组同学的植树棵数是:9,9,11,11;乙组同学的植树棵数是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21.事件“Y =

17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P (Y =17)=216=18.同理可得P (Y =18)=1

4;P (Y =19)=14;P (Y =20)=14;P (Y =21)=1

8.所以随机变量Y 的分布列为:

Y 17 18 19 20 21 P

18

14

14

14

18

EY =17×P (Y =17)+18×P (Y =18)+19×P (Y =19)+20×P (Y =20)+21×P (Y =21)=17×18+18×14+19×14+20×14+21×1

8=19.

[尝试解答] 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )?f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).故选D. 答案 D

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

知识讲解离散型随机变量的均值与方差

知识讲解离散型随机变量的均值与方差(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有 =1p =2p …n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有 b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为

于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系:

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

选修2-3教案2.3.1离散型随机变量的均值

§2.3.1 离散型随机变量的均值 教学目标 (1)通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; (2)能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点,难点:取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学过程 一.问题情境 1.情景: 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.这样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不 合格品数分别用12,X X 表示,12,X X 的概率分布如下. 2.问题: 如何比较甲、乙两个工人的技术? 二.学生活动 1. 直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率 比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2. 学生联想到“平均数”,,如何计算甲和乙出的废品的“平均数”? 3. 引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三.建构数学 1.定义 在《数学3(必修)》“统计”一章中,我们曾用公式1122...n n x p x p x p +++计算样本的平均值,其中i p 为取值为i x 的频率值.

其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称1122...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ. 2.性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数) 四.数学运用 1.例题: 例1.高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为X ,求X 的数学期望. 分析:从口袋中摸出5个球相当于抽取5n =个产品,随机变量X 为5个球中的红球的 个数,则X 服从超几何分布(5,10,30)H . 从而 2584807585503800700425 ()012345 1.66672375123751237512375123751237513 E X =? +?+?+?+?+?=≈ 答:X 的数学期望约为1.6667. 说明:一般地,根据超几何分布的定义,可以得到0 ()r n r n M N M n r N r C C M E X n C N --===∑ . 例2.从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品 率为0.05,随机变量X 表示这10件产品中不合格品数,求随机变量X 的数学期望 ()E X . 解:由于批量较大,可以认为随机变量~(10,0.05)X B , 1010()(1),0,1,2, (10) k k k P X k p C p p k -===-=

2.5 随机变量的均值和方差

2.5随机变量的均值和方差 扬州市新华中学查宝才 教学目标: 1.通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; 2.能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点: 取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学方法: 问题链导学. 教学过程: 一、问题情境 1.情景. 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.怎样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用X1,X2表示,X1,X2的概率分布如下. 2.问题. 如何比较甲、乙两个工人的技术? 二、学生活动 1.直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,

似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2.学生联想到“平均数”,如何计算甲和乙出的废品的“平均数”? 3.引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三、建构数学 1.定义. 在《数学3(必修)》“统计”一章中,我们曾用公式x1p1+x2p2+…+x n p n 计算样本的平均值,其中p i为取值为x i的频率值. 类似地,若离散型随机变量X的分布列或概率分布如下: X x1x2…x n P p1p2…p n 其中,p i≥0,i=1,2,…,n,p1+p2+…+p n=1,则称x1p1+x2p2+…+x n p n为随机变量X的均值或X的数学期望,记为E(X)或μ. 2.性质. (1)E(c)=c;(2)E(aX+b)=aE(X)+b.(a,b,c为常数) 四、数学应用 1.例题. 例1高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色之外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望. 分析从口袋中摸出5个球相当于抽取n=5个产品,随机变量X为5个球中的红球的个数,则X服从超几何分布H(5,10,30). 例2从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X表示这10件产品中的不合格品数,求随机变量X的数学期望E(X). 说明例2中随机变量X服从二项分布,根据二项分布的定义,可以得到:当X~B(n,p) 时,E(X)=np. 例3设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场, 那么比赛宣告结束,假定A,B在每场比赛中获胜的概率都是1 2 ,试求需要比赛 场数的期望.

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案) 一、选择题 1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =, 0.1p = 【答案】B 【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得 6n =,0.4p =. 考点:二项分布的数学期望与方差. 【难度】较易 2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13 B .23 C .15 D .25 【答案】A 考点:二项分布的数字特征. 【题型】选择题 【难度】较易 3.若随机变量),(~p n B ξ,9 10 3 5==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52 D. 5 3 【答案】A 【解析】由题意可知,()5,3 101,9E np D np p ξξ? ==????=-=?? 解得5,1,3n p =???=??故选A. 考点:n 次独立重复试验.

【题型】选择题 【难度】较易 4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( ) ξ 0 1 P m n A .()()3 ,E m D n ξξ== B .()()2 ,E m D n ξξ== C .()()2 1,E m D m m ξξ=-=- D .()()2 1,E m D m ξξ=-= 【答案】C 考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易 5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( ) A. 7 1 B. 6 1 C. 5 1 D. 4 1 【答案】A 【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴1 49,7 n p ==,故选A. 考点:二项分布的期望与方差. 【题型】选择题 【难度】较易 6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )

离散型随机变量的方差教案教学内容

精品文档 精品文档 离散型随机变量的方差 一、三维目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 期望的一个性质: b aE b a E +=+ξξ)( 5、如果随机变量X 服从二项分布,即X ~ B (n,p ),则EX=np (二)、讲解新课: 1、(探究1) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少? (探究2) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少? 2、离散型随机变量取值的方差的定义: 设离散型随机变量X 的分布为: 则(x i -EX)2描述了x i (i=1,2,…n)相对于均值EX 的偏离程度,而 DX 为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度。我们称DX 为随机变量X 的方差,其算术平方根DX 叫做随机变量X 的标准差. 随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度的平均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。 (三)、基础训练 求DX 和 解:00.110.220.430.240.12EX =?+?+?+?+?= 104332221111+++++++++=X 2101 4102310321041=?+?+?+?=] )()()[(122212x x x x x x n s n i -++-++-=ΛΛ1 ])24()23()23()22()22()22()21()21()21()21[(10 1 22222222222=-+-+-+-+-+-+-+-+-+-=s 2 2222)24(101)23(102)22(103)21(104-?+-?+-?+-?=s ∑=-=n i i i p EX x 1 2)(DX

离散型随机变量的均值

2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值 1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点) 2.掌握两点分布、二项分布的均值.(重点) 3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点) [基础·初探] 教材整理1离散型随机变量的均值 阅读教材P60~P61例1,完成下列问题. 1.定义:若离散型随机变量X的分布列为: 则称E(=x1p1+x2p2+…+x i p i+…+x n p n为随机变量 2.意义:它反映了离散型随机变量取值的平均水平. 3.性质:如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b. 1.下列说法正确的有________.(填序号) ①随机变量X的数学期望E(X)是个变量,其随X的变化而变化; ②随机变量的均值反映样本的平均水平;

③若随机变量X 的数学期望E (X )=2,则E (2X )=4; ④随机变量X 的均值E (X )= x 1+x 2+…+x n n . 【解析】 ①错误,随机变量的数学期望E (X )是个常量,是随机变量X 本身固有的一个数字特征.②错误,随机变量的均值反映随机变量取值的平均水平.③正确,由均值的性质可知.④错误,因为E (X )=x 1p 1+x 2p 2+…+x n p n . 【答案】 ③ 2.已知离散型随机变量X 的分布列为: 则X 的数学期望E (【解析】 E (X )=1×35+2×310+3×110=3 2. 【答案】 3 2 3.设E (X )=10,则E (3X +5)=________. 【解析】 E (3X +5)=3E (X )+5=3×10+5=35. 【答案】 35 教材整理2 两点分布与二项分布的均值 阅读教材P 62~P 63,完成下列问题. 1.两点分布和二项分布的均值 (1)若X 服从两点分布,则E (X )=p ; (2)若X ~B (n ,p ),则E (X )=np . 2.随机变量的均值与样本平均值的关系 随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值. 1.若随机变量X 服从二项分布B ? ? ???4,13,则E (X )的值为________. 【导学号:29472067】

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

离散型随机变量的方差()

离散型随机变量的方差(一) 白河一中 邓启超 教学目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:会利用离散型随机变量的均值(期望)和方差对所给信息进行整合和分析,得出相应结论。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,也称为随机变量的均值。 3. 期望的一个性质: b aE b a E +=+ξξ)( 4、常见特殊分布的变量的均值(期望) (1)如果随机变量X 服从二项分布(包括两点分布),即X ~ B (n,p ),则 E ξ=np (2)如果随机变量X 服从超几何分布,即X ~H (N ,M ,n ),则 E ξ= N M n (二)、讲解新课: 1、(探究1):A ,B 两种不同品牌的手表,它们的“日走时误差”分别为X ,Y (单位: S ),X A 型手表 B 型手表 np EX =

问题:(1)分别计算X,Y 的均值,并进行比较; (2)这两个随机变量的分布有什么不同,如何刻画这种不同 分析:EX=EY,也就是说这两种表的平均日走时误差都是0. 因此,仅仅根据平均误差,不能判断出哪一种品牌的表更好。 进一步观察,发现A品牌表的误差只有01.0±而B品牌的误差为±0.05 结论:A品牌的表要好一些。 探究(2):甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列 2 8 9 10 0.4 0.2 0.4 分析: 甲和乙射击环数均值相等,甲的极差为2,乙的极差也为2,该如何比较? 思考:怎样定量刻画随机变量的取值与其均值的偏离程度呢? 样本方差: 类似的,随机变量X 的方差: 222221)(......)......()()(EX X EX X EX X EX X DX n i -+-+-+-= =2)(EX X E i - 思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什 9 ,921==EX EX ? ? ????-++-+-=---2 n 22212)x (x )x (x )x (x n 1s ...n 1)x (x n 1)x (x n 1)x (x s 2n 22212? -++?-+?-=---...

随机变量的均值与方差

随机变量的均值与方差 一、填空题 1.已知离散型随机变量X 的概率分布为 则其方差V (X )=解析 由0.5+m +0.2=1得m =0.3,∴E (X )=1×0.5+3×0.3+5×0.2=2.4,∴V (X )=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44. 答案 2.44 2.(优质试题·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 设没有发芽的种子有ξ粒,则ξ~B (1 000,0.1),且X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=2×1 000×0.1=200. 答案 200 3.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________. 解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6,0.4 4.随机变量ξ的取值为0,1,2.若P (ξ=0)=1 5,E (ξ)=1,则V (ξ)=________. 解析 设P (ξ=1)=a ,P (ξ=2)=b , 则????? 15+a +b =1,a +2b =1, 解得????? a =3 5,b =1 5,

所以V(ξ)=(0-1)2×1 5+(1-1) 2× 3 5+(2-1) 2× 1 5= 2 5. 答案2 5 5.已知随机变量X+η=8,若X~B(10,0.6),则E(η),V(η)分别是________.解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,V(η)=(-1)2V(X)=10×0.6×0.4=2.4. 答案 2.4 6.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是________. 解析由题意知,X可以取3,4,5,P(X=3)=1 C35= 1 10, P(X=4)=C23 C35= 3 10,P(X=5)= C24 C35= 6 10= 3 5, 所以E(X)=3×1 10+4× 3 10+5× 3 5=4.5. 答案 4.5 7.(优质试题·扬州期末)已知X的概率分布为 设Y=2X+1,则 解析由概率分布的性质,a=1-1 2- 1 6= 1 3, ∴E(X)=-1×1 2+0× 1 6+1× 1 3=- 1 6, 因此E(Y)=E(2X+1)=2E(X)+1=2 3. 答案2 3 8.(优质试题·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分

离散型随机变量的均值教案

关于《离散型随机变量的均值》的说课稿 银川二中(西校区)黄海霞 说课内容:普通高中人教A版(数学选修2-3)第二章第3节第一课时─《离散型随机变量的均值》. 下面,我将分别从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计等六个方面对本节课的设计进行说明. 一、背景分析: 1、学习任务分析 《离散型随机变量的均值》是《随机变量及其分布》第三节第一小节的内容,本节课是第一课时. 本节课主要的学习任务是从平均的角度引入离散型随机变量均值的概念,引导学生通过实际问题建立取有限值的离散型随机变量均值的概念,然后推导出离散型随机变量均值的线性性质()()b E+ aX +. = X aE b 取有限值的离散型随机变量的均值是在学生学习完离散型随机变量及其分布列的概念基础上,进一步研究离散型随机变量取值特征的一个方面.学习本节课的内容既是随机变量分布的内容的深化,又是后续内容离散型随机变量方差的基础,所以学好本节课是进一步学习离散型随机变量取值特征的其它方面的基础.离散型随机变量的均值是刻画离散型随机变量取值的平均水平的一个数字特征,是从一个侧面刻画随机变量取值的特点. 在实际问题中,离散型随机变量的均值具有广泛的应用性.因此我以为本节课的重点是:取有限值的离散型随机变量均值的概念. 2、学生情况分析 本节课之前,学生已有平均值、概率、离散型随机变量及其分布列,二项分布及其应用等基础知识,具备了学习本节知识的知识储备.本节课是一节概念新授课,教材从学生熟悉的平均值出发,从身边的实际问题中抽象出了取有限值的离散型随机变量均值的概念,这需要一定的概括和抽象能力.鉴于学生的概括、抽象能力不是太强,因此学生对概念的形成和理解会有一定的困难. 基于以上认识,我以为本节课的教学难点是:离散型随机变量均值概念的形成和理解。

随机变量的均值与方差的计算公式的证明

随机变量的均值与方差的计算公式的证明 姜堰市励才实验学校 姜近芳 组合数有很多奇妙的性质,笔者试用这些性质证明了随机变量的均值与方差的两组计算公式。 预备知识: 1. ()()()()11!!1!1! !!--=-?--?=-??=k n k n nC k n k n n k n k n k kC 2. k k n C 2=()1111111-------+=k n k n k n C k n nC nkC =()22111-----+k n k n C n n nC 3.N 个球中有M 个红色的,其余均为白色的,从中取出n 个球,不同的取法有: n N l n M N l M n M N M n M N M n M N M C C C C C C C C C =++++------- 22110 ()()M n l ,m i n =. 公式证明: 1.X ~()p n B , ()()X E 1.np =()()X V 2().1p np -= 证明:()n n p x p x p x p x X E ++++= 332211 ()()()n n n n n n n n n p nC p p C p p C p p C ++-+-+-?=-- 222110012110 ()()[] n n n n n n n p C p p C p p C n 11221110111------++-+-= ()[] 11-+-=n p p np .np = ()()()()n n p x p x p x X V 2 222121μμμ-++-+-= n n p x p x p x p x 2323222121++++= ()n n p x p x p x p x ++++- 3322112μ ()n p p p p +++++ 3212μ ()() 2222222112121μμ+-++-+-=--n n n n n n n p C n p p C p p C ()()[]11121110111-------++-+-=n n n n n n n p C p p C p C np ()()()[] 22223122022111μ-++-+--+-------n n n n n n n p C p p C p C p n n

离散型随机变量的方差

2.3.2离散型随机变量的方差 整体设计 教材分析 本课仍是一节概念新授课,方差与均值都是概率论和数理统计的重要概念,是反映随机变量取值分布的特征数.离散型随机变量的均值与方差涉及的试题背景有:产品检验问题、射击、投篮问题、选题、选课、做题、考试问题、试验、游戏、竞赛、研究性问题、旅游、交通问题、摸球问题、取卡片、数字和入座问题、信息、投资、路线等问题.从近几年高考试题看,离散型随机变量的均值与方差问题还综合函数、方程、数列、不等式、导数、线性规划等知识,主要考查能力. 课时分配 1课时 教学目标 知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差. 过程与方法 了解方差公式“D(aX+b)=a2D(X)”,以及“若X~B(n,p),则D(X)=np(1-p)”,并会应用上述公式计算有关随机变量的方差. 情感、态度与价值观 承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值. 重点难点 教学重点:离散型随机变量的方差、标准差. 教学难点:比较两个随机变量的均值与方差的大小,从而解决实际问题. 教学过程 复习旧知 1 则称Eξ=x1p1+x2p2+…+x i p i+…+x n p n为ξ的数学期望. 2.数学期望的一个性质:E(aξ+b)=aEξ+b. 3.若ξ~B(n,p),则Eξ=np. 教师指出:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示随机变量在随机试验中取值的平均值.但有时两个随机变量只用这一个特征量是无法区别它们的,还需要对随机变量取值的稳定与波动、集中与离散的程度进行刻画.探究新知 已知甲、乙两名射手在同一条件下射击,所得环数ξ1、ξ2的分布列如下:

2.3.1离散型随机变量的均值教案

2.3.1离散型随机变量的均值 教学目标: 知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值 或期望. 过程与方法:理解公式“E (aX+b )=a E(X)+b ”,以及“若X ~B (n,p ),则E(X)=np ”.能熟练地应用它们求相应的离散型随机变量的均值或期望。 教学重点:离散型随机变量的均值或期望的概念 教学难点:根据离散型随机变量的分布列求出均值或期望 授课类型:新授课 教 具:小黑板 教学过程: 一、复习引入: 离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是P ,则在这n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 此时称随机变量X 服从二项分布,记作X ~B (n ,p ),其中n ,p 为参数 二、讲解新课: 1.问题情境 前面我们学习了离散型 根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数X 的分布列如下 X 4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22 在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望 根据射手射击所得环数X 的分布列, 我们可以估计,在n 次射击中,预计大约有 n n P 02.0)4(=?=ξ 次得4环; n n P 04.0)5(=?=ξ 次得5环; ………… n n P 22.0)10(=?=ξ 次得10环. 故在n 次射击的总环数大约为 +??n 02.04++?? n 04.05n ??22.010 +?=02.04(++? 04.05n ??)22.010, 从而,预计n 次射击的平均环数约为 +?02.04++? 04.0532.822.010=?. 这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.

离散型随机变量的方差

2.3.2 离散型随机变量的方差 1.理解取有限个值的离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题.(重点) 3.掌握方差的性质以及两点分布、二项分布的方差的求法,会利用公式求它们的方差.(难点 ) [基础·初探] 教材整理1 离散型随机变量的方差的概念 阅读教材P 64~P 66上面第四自然段,完成下列问题. 1.离散型随机变量的方差、标准差 (1)定义:设离散型随机变量X 的分布列为 则(x i -E (X ))描述了i D (X )=∑i =1n (x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X ) 的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差. (2)意义:随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.方差或标准差越小,则随机变量偏离于均值的平均程度越小. 2.随机变量的方差与样本方差的关系 随机变量的方差是总体的方差,它是一个常数,样本的方差则是随机变量,是随样本的变化而变化的.对于简单随机样本,随着样本容量的增加,样本的方

差越来越接近于总体的方差. 1.下列说法正确的有________(填序号). ①离散型随机变量ξ的期望E (ξ)反映了ξ取值的概率的平均值; ②离散型随机变量ξ的方差D (ξ)反映了ξ取值的平均水平; ③离散型随机变量ξ的期望E (ξ)反映了ξ取值的波动水平; ④离散型随机变量ξ的方差D (ξ)反映了ξ取值的波动水平. 【解析】 ①错误.因为离散型随机变量ξ的期望E (ξ)反映了ξ取值的平均水平. ②错误.因为离散型随机变量ξ的方差D (ξ)反映了随机变量偏离于期望的平均程度. ③错误.因为离散型随机变量的方差D (ξ)反映了ξ取值的波动水平,而随机变量的期望E (ξ)反映了ξ取值的平均水平. ④正确.由方差的意义可知. 【答案】 ④ 2.已知随机变量ξ,D (ξ)=1 9,则ξ的标准差为________. 【解析】 ξ的标准差D (ξ)=19=13. 【答案】 1 3 3.已知随机变量ξ的分布列如下表: 则ξ的均值为【解析】 均值E (ξ)=x 1p 1+x 2p 2+x 3p 3=(-1)×12+0×13+1×16=-1 3; 方差D (ξ)=(x 1-E (ξ))2 ·p 1+(x 2-E (ξ))2 ·p 2+(x 3-E (ξ))2 ·p 3=5 9. 【答案】 -13 59 教材整理2 离散型随机变量的方差的性质

随机变量的均值和方差学习资料

随机变量的均值和方 差

随机变量的均值和方差 自主梳理 1.离散型随机变量的均值与方差 若离散型随机变量 (1)均值 μ=E (X )=________________________________为随机变量X 的均值或______________,它反映了离散型随机变量取值的____________. (2)方差 σ2=V (X )=_________________________________=∑n i =1 x 2i p i -μ2为随机变量X 的方差, 它刻画了随机变量X 与其均值E (X )的______________,其________________________为随机变量X 的标准差,即σ=V (x ). 2.均值与方差的性质 (1)E (aX +b )=________. (2)V (aX +b )=________(a ,b 为实数). 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=____,V (X )=

____________________________________. (2)若X ~B (n ,p ),则E (X )=____,V (X )=________. 1.若η=aξ+b ,则E (η)=aE (ξ)+b ,V (η)=a 2V (ξ). 2.若ξ~B (n ,p ),则E (ξ)=np ,V (ξ)=np (1-p ). 自我检测 1.若随机变量X 2.已知随机变量X n ,p 的值分别为________和________. 3.(2010·课标全国改编)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 4.(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简 历.假定该毕业生得到甲公司面试的概率为2 3 ,得到乙、丙两公司面试的概率均为p ,且三 个公司是否让其面试是相互独立的,记X 为该毕业生得到面试的公司个数.若P (X =0)=1 12 ,则随机变量X 的数学期望E (X )=________.

常见离散型随机变量的分布列

4.常见离散型随机变量的分布列 (1>两点分布像 这样的分布列叫做两点分布列. 如果随机变量X的分布列为两点分布列,就称X服从分布,而称p=P(X=1> 为成功概率. (2>超几何分布列 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为 P(X=k>=错误!,k=0,1,2,…,m, 其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布. 1设离散型随机变量X 求:(1>2X+1的分布列; (2>|X-1|的分布列. 【思路启迪】利用p i≥0,且所有概率之和为1,求m;求2X+1的值及其分布列;求|X-1|的值及其分布列. 【解】由分布列的性质知: 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 首先列表为: 4 9 3 则常数c=________,P(X=1>=________.X的所有可能取值x i(i=1,2,…,>; (2>求出取各值x i的概率P(X=x i>;(3>列表,求出分布列后要注意应用性质检验所求的结果是否准确.常用类型有:(1>由统计数据求离散型随机变量的分布列,关键是由统计数据利用事件发生的频率近似表示该事件的概率,由统计数据得到的分布列可以帮助我们更好地理解分布列的作用和意义.(2>由古典概型来求随机变量的分布列,这时需利用排列、组合求概率.(3>由相互独立事件同时发生的概率求分布列无

论是何种类型,都需要深刻理解随机变量的含义及概率分布.3.(2018年福建>受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下: (1>从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; (2>若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3>该厂预计今后这两种品牌轿车销量相当,因为资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.【解】(1>设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P (A >=错误!=错误!.(2>依题意得,X 1的分布列为 X 2的分布列为 (3>由(2>得,E (X 1>=1×错误!+2× 错误!+3×错误!=2.86(万元>, E (X 2>=1.8×错误!+2.9×错误!=2.79(万元>.因为E (X 1>>E (X 2>,所以应生产甲品牌轿车. 4.(2018年湖南>某商店试销某种商品20天,获得如下数据: 试销结束后(2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1>求当天商店不进货的概率; (2>记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望. 解:(1>P (“当天商店不进货”>=P (“当天商品销售量为0件”>+P (“当天商品销售量为1件”> =错误!+错误!=错误!. (2>由题意知,X 的可能取值为2,3. P (X =2>=P (“当天商品销售量为1件”>=错误!=错误!;P (X =3>=P (“当天商品销售量为0件”>+P (“当天商品销售量为2件”>+P (“当天商品销售量为3件”>=错误!+错误!+错误!=错误!.故X 的分布列为

相关文档
最新文档