2016年高考文科圆锥曲线大题

2016年高考文科圆锥曲线大题
2016年高考文科圆锥曲线大题

在直角坐标系xOy 中,直线():0l y t t =≠交y 轴于点M ,交抛物线

C :()220y px p =>于点P M ,关于点P 的对称点为N ,连结ON 并延长交C 于点H .

(I )求

OH ON

(II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.

2. (新课标Ⅱ文数)

已知A 是椭圆E :22

143

x y +

=的左顶点,斜率为()0k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.

(I )当AM AN =时,求AMN ?的面积

(II)当2AM AN =2k <<.

已知抛物线22C y x =:的焦点为F ,平行于x 轴的两条直线12l l ,分别交C 于A B ,两点,交C 的准线于P Q ,两点.

(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;

(Ⅱ)若PQF ?的面积是ABF ?的面积的两倍,求AB 中点的轨迹方程.

4. (2016年北京文数)

已知椭圆C :22

221x y a b

+=过点2,00,1A B (),()两点.

(I )求椭圆C 的方程及离心率;

(II )设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.

已知椭圆:C ()22

2210x y a b a b

+=>>的长轴长为4,焦距为(I )求椭圆C 的方程;

(Ⅱ)过动点()(0)0M m m >,的直线交x 轴与点N ,交C 于点A P , (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .

(i)设直线PM QM 、的斜率分别为'k k 、,证明'

k k

为定值. (ii)求直线AB 的斜率的最小值.

双曲线2

2

21(0)y x b b

-=>的左、右焦点分别为F 1、F 2,直线l 过F 2且与双曲线交于A 、B

两点.

(1)若l 的倾斜角为

2

π

,1F AB △是等边三角形,求双曲线的渐近线方程;

(2)设b = 若l 的斜率存在,且|AB |=4,求l 的斜率.

7. (2016年四川文数)

已知椭圆E : ()22

2210x y a b a b

+=>>的一个焦点与短轴的两个端点是正三角形的三个

顶点,点1)2

P ,在椭圆E 上。 (Ⅰ)求椭圆E 的方程; (Ⅱ)设不过原点O 且斜率为

1

2

的直线l 与椭圆E 交于不同的两点A B ,,线段AB 的中点为M ,直线OM 与椭圆E 交于C D ,,证明: MA MB MC MD =

设椭圆13

222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA e

OA OF =+,

其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;学.科.网

(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.

9. (2016年浙江文数)

如图,设抛物线2

2(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于1.AF - (I )求p 的值;

(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N AN ,与x 轴交于点.M 求M 的横坐标的取值范围.

答案

1. (Ⅰ)由已知得),0(t M ,),2(2

t p

t P .

又N 为M 关于点P 的对称点,故),(2

t p

t N ,ON 的方程为x t p y =,代入px

y 22=整理得022

2

=-x t px ,解得01=x ,p t x 222=,因此)2,2(2

t p

t H .

所以N 为OH 的中点,即

2|

||

|=ON OH . (Ⅱ)直线MH 与C 除H 以外没有其它公共点.理由如下: 直线MH 的方程为x t p t y 2=

-,即)(2t y p

t

x -=.代入px y 22=得04422=+-t ty y ,

解得t y y 221==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.

2. 【答案】(Ⅰ)144

49

;(Ⅱ)证明见解析.

【解析】

试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ?的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k . 试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为4

π

, 又(2,0)A -,因此直线AM 的方程为2y x =+.

将2x y =-代入22

143x y +

=得27120y y -=, 解得0y =或127y =

,所以1127

y =. 因此AMN ?的面积11212144

227749

AMN S ?=???=.

(2)将直线AM 的方程(2)(0)y k x k =+>代入22

143

x y +

=得 2222(34)1616120k x k x k +++-=.

由2121612(2)34k x k -?-=+得2122(34)34k x k -=+,故1||2|AM x =+=

由题设,直线AN 的方程为1

(2)y x k =-+,故同理可得2

12||43AN k =+. 由2||||AM AN =得

22

23443k k k

=++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,

所以()f t 在(0,)+∞单调递增,又260,(2)60f f =<=>,

因此()f t 在(0,)+∞有唯一的零点,且零点k 在2k <. 考点:椭圆的性质,直线与椭圆的位置关系.

3. 解:(Ⅰ)由题设)

0,21(F .设b y l a y l ==:,:21,则0≠ab ,且

22111(,),(,),(,),(,),(,)222222

a b a b

A a

B b P a Q b R +---. 记过B A ,学科&网两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分

(Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则

222111k b a

ab

a a

b a b a a b a k =-=-==--=+-=

. 所以FQ AR ∥. ......5分 (Ⅱ)设l 与x 轴的交点为)0,(1x D , 则2,21

21211b a S x a b FD a b S PQF ABF

-=

--=-=??. 由题设可得

2

21211b

a x a

b -=

--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(1

2≠-=+x x y

b a . 而

y b

a =+2

,学科&网所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y . ....12分

4. 解:(I )由题意得,2a =,1b =.

所以椭圆C 的方程为2

214

x y +=.

又c

所以离心率c e a =

=

. (II )设()00,x y P (00x <,00y <),则22

0044x y +=.

又()2,0A ,()0,1B ,所以, 直线PA 的方程为()0

022

y y x x =

--. 令0x =,得0022

y y x M =-

-,从而0

02112y y x M BM =-=+-.

直线PB 的方程为00

1

1y y x x -=

+. 令0y =,得001

x x y N =-

-,从而0

0221x x y N AN =-=+-.

所以四边形ABNM 的面积

1

2

S =

AN ?BM 00002121212x y y x ?

???=++ ???--????

()

22000000000044484

222x y x y x y x y x y ++--+=

--+ 000000002244

22

x y x y x y x y --+=

--+

2=.

从而四边形ABNM 的面积为定值.

5. 【答案】(Ⅰ) 22142x y +=.(Ⅱ)(i)见解析;(ii)直线AB

的斜率的最小值为 .

【解析】

试题分析:(Ⅰ)分别计算a,b 即得. (Ⅱ)(i)设

()()

0000,0,0P x y x y >>,

由M(0,m),可得

()()00,2,,2.

P x m Q x m -

得到直线PM 的斜率002m m m k x x -=

= ,直线QM 的斜率0023'm m m

k x x --==-.证得.

(ii)设

()()

1122,,,A x y B x y ,

直线PA 的方程为y=kx+m , 直线QB 的方程为y=-3kx+m.

联立 22

142y kx m

x y =+???+

=?? ,

整理得

()2

22214240

k x mkx m +++-=.

应用一元二次方程根与系数的关系得到

()

()()

()()

()()2222212

2

2

2

22223221812118121m m k m x x k

x k x k k x -----=

-

=

++++,

()()()()()()()()2

2

2

2

21

2

2

2

2

622286121812118121k m m k k m y y m m k x k x k k x ----+--=+--=++++ ,

得到

2212161116.44AB

y y k k k x x k k -+??===+ ?-??

应用基本不等式即得.

试题解析:(Ⅰ)设椭圆的半焦距为c ,

由题意知24,2a c ==

所以

2,a b === 所以椭圆C 的方程为22

142x y +=.

(Ⅱ)(i)设

()()

0000,0,0P x y x y >>,

由M(0,m),可得

()()00,2,,2.

P x m Q x m -

所以 直线PM 的斜率

002m m m

k x x -=

= ,

直线QM 的斜率

0023'm m m k x x --=

=-.

此时'

3k k =-,

所以'

k k 为定值-3.

(ii)设

()()

1122,,,A x y B x y ,

直线PA 的方程为y=kx+m , 直线QB 的方程为y=-3kx+m.

联立 22

142y kx m x y =+???+

=?? ,

整理得

()2

22214240

k x mkx m +++-=.

2

0122421m x x k -=

+可得()

()212

02221m x k x -=+ ,

所以

()

()2112

2221k m y kx m m

k x -=+=

++, 同理

()()()()2

2

2

2

2

2

00

2262,181181m k m x y m

k x k x ---==+++.

所以

()()()()()()()2222

21

2222

000

22223221812118121m m k m x x k x k x k k x -----=-=

++++,

()()()()()()()()2222

21

2222

000

622286121812118121k m m k k m y y m m k x k x k k x ----+--=+--=

++++ ,

所以2212161116.44AB

y y k k k x x k k -+??===+ ?-??

00,0m x >>,可知k>0,

所以

16k k +

,等号当且仅当

k =时取得.

=

,即m =,符号题意.

所以直线AB

的斜率的最小值为 .

6. 解:(1)设(),x y A A A .

由题意,()2F ,0c

,c ,()

22241y b c b A =-=,

因为1F ?AB

是等边三角形,所以2c A =,

即()

24413b b +=,解得2

2b =.

故双曲线的渐近线方程为y =. (2)由已知,()2F 2,0.

设()11,x y A ,()22,x y B ,直线:l ()2y k x =-.

由()2

213

2y x y k x ?-=???=-?

,得()2222

34430k x k x k --++=. 因为l 与双曲线交于两点,所以230k -≠,且()

2

3610k ?=+>.

由212243k x x k +=-,2122433k x x k +=-,得()()()

22

12223613k x x k +-=-, 故

()2122

6143

k x k +AB =

-=

=-,

解得235k =

,故l 的斜率为.

7. (I )由已知,a =2b .

又椭圆2

2

221(0)x y a b a b

+=>>过点1)2P ,故22

1

3

414b b

+=,解得21b =. 所以椭圆E 的方程是2

214

x y +=. (II )设直线l 的方程为1

(0)2

y x m m =

+≠,1122(,),(,)A x y B x y , 由方程组2

21,41,2

x y y x m ?+=????=+?? 得22

2220x mx m ++-=,①

方程①的判别式为2

4(2)m ?=-,由?>0,即2

20

m ->

,解得m <<由①得212122,22x x m x x m +=-=-. 所以M 点坐标为(,

)2m m -,直线OM 方程为12

y x =-,

由方程组2

21,4

1,

2

x y y x ?+=????=-??

得(C D .

所以25

()(2)224

MC MD m m m ?=-?=-. 又2

22212121212115[()()][()4]4416

MA MB AB x x y y x x x x ?=

=-+-=+- 22255

[44(22)](2)164

m m m =--=-. 所以=MA MB MC MD ??.

8. 【答案】(Ⅰ)22143x y +=

(Ⅱ)4

± 【解析】

试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由

113||||||

c

OF OA FA +=,得113()c c a a a c +=-,

再利用2223a c b -==,可解得21c =,24a =(Ⅱ)先化简条件:MOA MAO ∠=∠?||||MA MO =,即M 再OA 中垂线上,1M x =,

再利用直线与椭圆

位置关系,联立方程组求B ;利用两直线方程组求H ,最后根据HF BF ⊥,列等量关系解出直线斜率.

试题解析:(1)解:设(,0)F c ,由

113||||||c OF OA FA +=,即113()

c

c a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,学.科网所以椭圆的方程为

22

143

x y +=. (2)设直线的斜率为(0)k k ≠,则直线l 的方程为(2)y k x =-,

设(,)B B B x y ,由方程组22

1,43

(2),x y y k x ?+

=???=-?

消去y ,

整理得2

2

2

2

(43)1616120k x k x k +-+-=,解得2x =或2286

43

k x k -=+,

由题意得22

8643

B k x k -=+,从而21243B k

y k -=+, 由(1)知(1,0)F ,设(0,)H H y ,有(1,)H FH y =- ,22

29412(,)4343k k

BF k k -=++ , 由BF HF ⊥,得0BF HF ?= ,所以22

2124904343

H

ky k k k -+=++, 解得29412H k y k -=,因此直线MH 的方程为2

19412k y x k k

-=-+,

设(,)M M M x y ,由方程组2

194,12(2),

k y x k k y k x ?-=-+

???=-?

消去y ,得22

20912(1)M k x k +=+, 在MAO ?中,MOA MAO ∠=∠?||||MA MO =,

即2

222(2)M M

M

M

x y x y -+=+,化简得1M x =,即22

209

112(1)

k k +=+,

解得k =

或k =, 所以直线l

的斜率为k =

或k =. 考点:椭圆的标准方程和几何性质,学.科网直线方程

9. 【答案】(1)p=2;(2)()(),02,-∞+∞ . 【解析】

试题分析:本题主要考查抛物线的几何性质、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题方法.

试题解析:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线x=-1的距离. 由抛物线的第一得

12

p

=,即p=2.

(Ⅱ)由(Ⅰ)得抛物线的方程为()2

4,F 1,0y x =,可设()

2

,2,0,1A t t t t ≠≠±.

因为AF 不垂直于y 轴,可设直线AF:x=sy+1,()0s ≠,由241

y x

x sy ?=?=+?消去x 得

2440y sy --=,故124y y =-,所以212,B t

t ??

- ???.

又直线AB 的斜率为221t

t -,故直线FN 的斜率为212t t --,

从而的直线FN:()

2112t y x t

-=--,直线BN:2

y t =-, 所以2232,1t N t t ??

+- ?-??

设M(m,0),由A,M,N 三点共线得:2

222

2

223

1

t t t t t m t t +

=+---, 于是2

221

t m t =-,经检验,m<0或m>2满足题意.

综上,点M 的横坐标的取值范围是()(),02,-∞+∞ . 考点:抛物线的几何性质、直线与抛物线的位置关系.

高考文科数学真题大全圆锥曲线老师版

试题解析:(Ⅰ)椭圆C 的标准方程为2 213x y +=.所以3a =,1b =,2c =.所以椭圆C 的 离心率6 3 c e a = = . (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -. 直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 所以直线BM 的斜率11 2131 BM y y k -+= =-. 17.(2015年安徽文)设椭圆E 的方程为22 221(0),x y a b a b +=>>点O 为坐标原点,点A 的坐标 为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510 。 (1)求E 的离心率e; (2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB 。 ∴a b 3 231=5525451511052 222222=?=?=-?=?e a c a c a a b (Ⅱ)由题意可知N 点的坐标为(2,2b a -)∴a b a b a a b b K MN 56 65232213 1==-+=

a b K AB -= ∴1522-=-=?a b K K AB MN ∴MN ⊥AB 18.(2015年福建文)已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线 :340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于 4 5 ,则椭圆E 的离心率的取值范围是( A ) A . 3(0, ]2 B .3(0,]4 C .3[,1)2 D .3[,1)4 1 19.(2015年新课标2文)已知双曲线过点() 4,3,且渐近线方程为1 2 y x =±,则该双曲线的标 准方程为 .2 214 x y -= 20.(2015年陕西文)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2 p x =- ,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程. 21.(2015年陕西文科)如图,椭圆22 22:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为22. (I)求椭圆E 的方程;2 212 x y +=

文科圆锥曲线测试题

圆锥曲线单元复习题 一、选择题:在每小题的4个选项中,只有一项是符合题目要求的. 1、F1、F1是定点,1F26,动点M满足126,则点M的轨迹是() A 椭圆 B 直线 C 线段 D 圆 2、已知M(-2,0),N(2,0),-4,则动点P的轨迹是:() A、双曲线 B、双曲线左支 C、一条射线 D、双曲线右支 3、已知抛物线C:y2=4x的焦点F,1与x轴的交点K,点A在C 上且,则△的面积为() A 8 B 4 C 2 D 1 4、抛物线2上到直线2x—4距离最近的点的坐标是() A B (1,1) C D (2, 4) 5、设分别是双曲线的左、右焦点.若点在双曲线上,且,则( A.B.C.D. 6.已知椭圆的焦点,为椭圆上一点,且 ,则椭圆的方程为()

A. B. C. D. 7.过椭圆1(0

是2m2与c2的等差中项,则椭圆的离心率是() A. B. C. D. 12.θ是任意实数,则方程x22=4的曲线不可能是() A.椭圆B.双曲线C.抛物线 D.圆 13、() 15、某圆锥曲线C是椭圆或双曲线,若其中心为坐标原点,对称轴为坐标轴,且过点,则() A.曲线C可为椭圆也可为双曲线 B.曲线C一定是双曲线有 C.曲线C一定是椭圆 D.这样的曲线C不存在 16、设椭圆和双曲线的公共焦点为,是两曲线的一个公共点,则的值等于() A. B. C. D. 17、表示 的曲线方程是() A.焦点在x轴上的双曲线 B.焦点在x轴上的椭圆 C.焦点在y轴上的双曲线 D.焦点在y轴上的椭圆. 18、. 12的 值() A.一定是正数 B.一定是零 C.一定是负数 D.以上答案均不对 19、设动点P在直线1上,O为坐标原点,以为直角边、点O

高考圆锥曲线典型例题(必考)

椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3 和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212+y 2 6 =1.

题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2 ,|PF 1|≥a -c . 【变式训练2】 已知P 是椭圆x 225+y 2 9=1上的一点,Q ,R 分别是圆(x +4)2 +y 2 =1 4 和圆 (x -4)2+y 2=1 4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值 为9. 题型三 有关椭圆的综合问题 【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的 左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;

文科圆锥曲线专题练习及问题详解

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,12PF F ?是底角为30的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思 想,是简单题. 【解析】∵△21F PF 是底角为0 30的等腰三角形, ∴322c a = ,∴e =3 4 , ∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解 得y =||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以2 2 2 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点 P 在C 上,12||2||PF PF =,则12cos F PF ∠=

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

2016年高考文科圆锥曲线大题

1. (新课标I 文数) 在直角坐标系xOy 中,直线l:y t t 0 交y 轴于点M ,交抛物线 (II )除H 以外,直线 MH 与C 是否有其它公共点说明理由 2. (新课标n 文数) 2 2 已知A 是椭圆E — 1的左顶点,斜率为k k >0的直线交E 于A , M 两点, 4 3 点 N 在 E 上, MA NA. (I) 当AM AN 时,求 AMN 的面积 (II) 当 2 AM AN 时,证明:V3 k 2. c :y 2 2px p 0 于点 P , H . OH (I )求- ■; ONI M 关于点P 的对称点为N 连结ON 并延长交C 于点

3.(新课标川文数) 已知抛物线C:y2 2x的焦点为F,平行于x轴的两条直线h, *分别交C于B 两点,交C的准线于P,Q两点? (I)若F在线段AB上, R是PQ的中点,证明ARPFQ ; (n)若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程? 4. (2016年北京文数) 2 2 已知椭圆C:笃与1过点A(2,0) , B 0,1)两点? a b (I)求椭圆C的方程及离心率; (II)设P为第三象限内一点且在椭圆C 上,直线PA与y轴交于点M ,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值

2 2 已知椭圆C:笃爲 1 a b 0的长轴长为4,焦距为2三. a b (n )过动点M(0, m) m 0的直线交x 轴与点N ,交C 于点A, P (P 在第一象限), 且M 是线段PN 的中点?过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点 B . k' (i)设直线PM 、QM 的斜率分别为k 、k',证明 为定值. k (ii)求直线AB 的斜率的最小值

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

(完整word版)2018年高考圆锥曲线大题

2018年高考圆锥曲线大题 一.解答题(共13小题) 1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.

3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆. (1)求C的轨迹方程; (2)动点P在C上运动,M满足=2,求M的轨迹方程. 4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB.

5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有 两个不同的交点A,B. (Ⅰ)求椭圆M的方程; (Ⅱ)若k=1,求|AB|的最大值; (Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k. 6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点. (1)用t表示点B到点F的距离; (2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积; (3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

[高中数学]圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式. 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用解 析法解决相应的几何问题. 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD 与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 , F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例 5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆心 的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

圆锥曲线文科高考习题含答案

已知椭圆=1(a>b>0),点P ( a 5 5 ,)在椭圆上。 (I )求椭圆的离心率。 (II )设A 为椭圆的右顶点,O 为坐标原点,若Q 在椭圆上且满足|AQ|=|AO|求直线OQ 的斜率的值。 22.【2012高考安徽文20】(本小题满分13分) 如图,21,F F 分别是椭圆C :22a x +22 b y =1(0>>b a )的左、右 焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点, 1F ∠A 2F =60°. (Ⅰ)求椭圆C 的离心率; (Ⅱ)已知△A B F 1的面积为403,求a, b 的值.

在平面直角坐标系xOy 中,已知椭圆1C :22 221x y a b +=(0a b >>)的左焦点为1(1,0)F -,且点(0,1) P 在1C 上. (1)求椭圆1C 的方程; (2)设直线l 同时与椭圆1C 和抛物线2C :2 4y x =相切,求直线l 的方程. 24.【2102高考北京文19】(本小题共14分) 已知椭圆C :22x a +2 2y b =1(a >b >0)的一个顶点为A (2,0),离心率为2, 直线y=k(x-1)与椭圆C 交与 不同的两点M,N (Ⅰ)求椭圆C 的方程 (Ⅱ)当△AMN 的面积为3 时,求k 的值

如图,椭圆 22 22 :1(0) x y M a b a b +=>>的离心率为 3 ,直线x a =±和y b =±所围成的矩形ABCD的面积 为8. (Ⅰ)求椭圆M的标准方程; (Ⅱ) 设直线:() l y x m m =+∈R与椭圆M有两个不同的交点,, P Q l与矩形ABCD有两个不同的交点,S T. 求|| || PQ ST 的最大值及取得最大值时m的值. 26.【2102高考福建文21】(本小题满分12分) 如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上。(1)求抛物线E的方程; (2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明 以PQ为直径的圆恒过y轴上某定点。

高考文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 抛物线:

图形 x y O F l x y O F l 方 程 )0(22>=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦 点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准 线 2 p x -= 2p x = 2p y -= 2 p y = (一)椭圆 1. 椭圆的性质:由椭圆方程)0(122 22>>=+b a b y a x (1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。 (2)对称性:图象关于y 轴对称。图象关于x 轴对称。图象关于原点对称。原点叫椭圆的对称中心, 简称中心。x 轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c e = ?2)(1a b e -=。10<

高考文科试题分类圆锥曲线

07 圆锥曲线 一、选择题 1.(北京3)“双曲线的方程为22 1916 x y -=”是“双曲线的准线方程为95x =±”的( A ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 2.(福建12)双曲线22 221x y a b -=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为( B ) A.(1,3) B.(1,3) C.(3,+∞) D. [3,+∞] 3.(宁夏2)双曲线22 1102 x y -=的焦距为( D ) A .32 B .42 C .33 D .43 4.(湖南10).双曲线)0,0(12222 >>=-b a b y a x 的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( C ) A .(1,2] B .[2,)+∞ C .(1,21]+ D .[21,)++∞ 5.(江西7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点 M 总在椭圆内部,则椭圆离心率的取值范围是( C ) A .(0,1) B .1(0,]2 C .2(0, )2 D .2[,1)2 6.(辽宁11)已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为 15,则m =( D ) A .1 B .2 C .3 D .4 7.(全国Ⅱ11)设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( B ) A .221+ B . 231+ C . 21+ D .31+ 8.(上海12)设p 是椭圆22 12516 x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( D )

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上 (B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23 = e ,已知点)3,0(P 到这个椭圆 上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若MP AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

高考文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 抛物线:

图形 x y O F l x y O F l 方 程 )0(22>=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦 点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准 线 2 p x -= 2p x = 2p y -= 2 p y = (一)椭圆 1. 椭圆的性质:由椭圆方程)0(122 22>>=+b a b y a x (1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。 (2)对称性:图象关于y 轴对称。图象关于x轴对称。图象关于原点对称。原点叫椭圆的对称中心,简 称中心。x轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c e = ?2)(1a b e -=。10<

文科高考圆锥曲线和真题

圆锥曲线方程 一、椭圆方程. 1. 椭圆方程的第一定义: ⑴①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: . ii. ii. 中心在原点,焦点在轴上: . ②一般方程:.⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长.③焦点:或 .④焦距:.⑤准线:或.⑥离心 率:. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:和 二、双曲线方程. 1. 双曲线的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ)0(12 22 2φφb a b y a x =+ y ) 0(12 22 2φφb a b x a y =+ )0,0(122φφB A By Ax =+),0)(0,(b a ±±)0,)(,0(b a ±±y a 2b 2)0,)(0,(c c -),0)(,0(c c -2 2 2 1,2b a c c F F -==c a x 2 ± =c a y 2 ± =)10(ππe a c e =),(22 2 2a b c a b d -= ),(2a b c

⑴①双曲线标准方程: . 一般方程: . ⑵①i. 焦点在x 轴上: 顶点: 焦点: 准线方程 渐近线方程: 或 ②轴为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率. ④通径 . ⑤参数关系. ⑥焦点半径公式:对于双曲线 方程 (分别为双曲线的左、右焦点或分别为双曲线的上下 焦点) ⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为, 离心率. 三、抛物线方程. 3. 设,抛物线的标准方程、类型及其几何性质: 的一个端点的一条射线 以无轨迹 方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-φπ)0,(1), 0,(12 22 22 22 2φφb a b x a y b a b y a x =- =- )0(122πAC Cy Ax =+)0,(),0,(a a -)0,(),0,(c c -c a x 2 ± =0=±b y a x 02222=-b y a x y x ,a c e =a b 2 2a c e b a c =+=,22212 22 2=- b y a x 21,F F 222a y x ±=-x y ±=2= e 0φp

高三数学文科圆锥曲线大题训练(含答案)

高三数学文科圆锥曲线大题训练(含详细解答) 1.已知椭圆2 2 :416C x y +=. (1)求椭圆C 的离心率; (2)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆 221 2 x y += 的位置关系. 1.解:(I)由题意,椭圆C 的标准方程为 22 1164 x y +=, 所以2 2 2 2 2 16,4,12从而a b c a b ===-=, 因此4,a c ==故椭圆C 的离心率2 c e a = =............4分 (II)由22 1, 416 y kx x y =+??+=?得()22148120k x kx ++-=, 由题意可知0?>. ..............5分 设点,E F 的坐标分别为()()1122,,,x y x y ,EF 的中点M 的坐标为(),M M x y , 则1224214M x x k x k +==-+,122 1 214M y y y k +==+......................7分 因为BEF ?是以EF 为底边,B 为顶点的等腰三角形, 所以BM EF ⊥, 因此BM 的斜率1 BM k k =-. ............... ...........................................8分 又点B 的坐标为()0,2-,所以2 221 2 2381440414M BM M y k k k k x k k ++++===- --+,..........10分 即()238104k k k k +-=-≠,亦即21 8 k =, 所以4k =±,....................12分 故EF 的方程为440y -+=. ............... ...........................................13分 又圆221 2x y += 的圆心()0,0O 到直线EF 的距离为32d ==>, 所以直线EF 与圆相离.....................14分 2.已知椭圆的中心在坐标原点O ,长轴长为 离心率e = F 的直线l 交

圆锥曲线基础练习题(文科)

1.椭圆)0(,112:222 >=+m m y x C 的离心率21=e ,则m 的值为: 2.若双曲线C 的实轴长,虚轴长,焦距成等差数列,则双曲线C 的离心率=e 3.P 是抛物线:C x y 42=上的一动点,则P 到抛物线C 的准线距离与到点)2,0(A 距离之和的最小值为: 4.过点)1,1(P 作直线l 交抛物线:C x y 42=于B A ,两点,若P 恰是B A ,的中点, 则直线l 的方程为: 5.双曲线C 的中心在坐标原点,焦点21,F F 在x 轴上,过右焦点2F 作x 轴的垂线, 交双曲线C 的渐近线于B A ,两点,若 1201=∠B AF ,则双曲线C 的离心率=e 6.P 是椭圆142 2=+y x 上的动点,给定点)0,1(A ,则||PA 的最小值为 7.已知双曲线1C 与椭圆11216:2 22=+y x C 有共同的焦点,且在一象限的公共点的横 坐标为2 (1)试求:双曲线1C 的标准方程及离心率 (2)P 是双曲线1C 上的动点,试证明:P 到双曲线1C 的两渐近线距离之积是一 个定值.

8.如图动圆圆P 与圆9)4(:22=+-y x F 相外切,且圆P 与直线:l 1-=x 相切,动 圆P 的圆心P 的轨迹为C (1)试求:轨迹C 的标准方程 (2)过圆F 的圆心F 作直线1l 与轨迹C 相交于B A ,两点,若B A ,的中点Q 在圆F 外,试求直线1l 斜率的取值范围。 9.中心在坐标原点的椭圆C 过两定点)3,32(),3,2(B A -,21,F F 是椭圆的两焦点 (1)试求:椭圆C 的标准方程和离心率 (2)过点2F 作直线l 交椭圆C 于N M ,两点,若N MF 1∠为锐角,试求l 斜率的取 值范围.

高考圆锥曲线大题

圆锥曲线经典大题 1.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当 直线l 的斜率是12 时,AC →=4AB →. (1)求抛物线G 的方程; (2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围. 2.如图,已知(10)F ,,直线:1l x =-,点P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ ?=?. (Ⅰ)求动点P 的轨迹C 的方程。 (Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . (1)已知1MA AF λ=,2MB BF λ=,求12λλ+的值; (2)求MA MB ?的最小值. 3.设点F 是抛物线G :x 2=4y 的焦点. (1)过点P (0,-4)作抛物线G 的切线,求切线的方程; (2)设A ,B 为抛物线G 上异于原点的两点,且满足 0·=FB FA ,分别延长 AF ,BF 交抛物线G 于C ,D 两点,求四边 形ABCD 面积的最小值. 4.设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,. (Ⅰ)求证:A M B ,,三点的横坐标成等差数列; (Ⅱ)已知当M 点的坐标为(22)p -, 时,AB =

5.设椭圆22 2:12 x y M a +=(a >的右焦点为1F ,直线2 :2 2-= a a x l 与x 轴交于点 A ,若112OF AF +=0(其中O 为坐标原点) . (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆 ()12:2 2=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求?的 最大值. 6.已知双曲线C 的方程为22221(0,0)y x a b a b -=>>,离心率e =顶点到渐近线 (I ) (II ) 求双曲线C 的方程; (II)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分 别位于第一、二象限,若1 ,[,2]3 AP PB λλ=∈,求AOB ?面积的取值范围。 7.一条双曲线2 212 x y -=的左、右顶点分别为A 1,A 2,点11(,)P x y ,11(,)Q x y -是双 曲线上不同的两个动点。(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程式;(2)若过点H(0, h)(h>1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且12l l ⊥ ,求h 的值。 8.已知:椭圆122 22=+b y a x (0>>b a ),过点)0,(a A -,),0(b B 的直线倾斜角 为 6 π ,原点到该直线的距离为23.(1)求椭圆的方程;(2)斜率大于零的直线 过)0,1(-D 与椭圆交于E ,F 两点,若2=,求直线EF 的方程;(3)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点 )0,1(-D ?若存在,求出k 的值;若不存在,请说明理由.

相关文档
最新文档