单调性与最值的练习题

单调性与最值的练习题
单调性与最值的练习题

第1页 共4页 ◎ 第2页 共4页

…订…………○………______考号:___________

线…………○…………………单调性与最值检测题

一、选择题 1.设函数()()32f x a x b =++是R 上的减函数,则有( )

A.32a <

B.32a >

C.32a <-

D.3

2

a >- 2.函数f (x )在[-4,4]上的图象如图所示,则此函数的最小值,最大值分别是( )

A .f (-4),0

B .0,4

C .f (-4),4

D .f (4),4

3.函数y =-3x 2

+6x -2的单调递减区间是( ) A .(-∞,1] B .[1,+∞)C .(-∞,2] D .[2,+∞) 4.下列函数

()x f 中,满足“对任意()+∞∈,0,21x x ,当21x x <时,都有

()()12f x f x <”的是 ( )

A.()()2

1-=x x f B.()x

x f 1

=

C.()1+=x x f

D.()1-=x x f 5.函数y =f (x )在R 上为减函数,且f (3a )<f (-2a +10),则实数a 的取值范围是( ) A .(-∞,-2)B .(0,+∞)C .(2,+∞)D .(-∞,-2)∪(2,+∞)

6.已知函数y =x 2

-4x +7在闭区间[0,m]上有最大值7,最小值3,则m 的取值范围是( )

A .[2,+∞)

B .[0,4]

C .(-∞,4]

D .[2,4] 7.已知函数y =?mx 和y =

n

x

在(0,+∞)上都是增函数,则函数f (x )=mx +n 在R 上是( )

A .减函数且f (0)<0

B .增函数且f (0)<0

C .减函数且f (0)>0

D .增函数且f (0)>0

8.若函数f (x )=23,1,

21,

1x ax a x ax x ?-+-≥?+

A .(12-

,0) B .[1

2

-,0)C .(-∞,2] D .(-∞,0) 9.已知()5(7),

(3)(7)

x x f f x x x ?

????

-≥+<=

(x ∈N ),那么f (3)等于( )

A .2

B .3

C .4

D .5

10.设f (x )=2x ?3,g (x )=f (x+2),则g (x )等于( ) A .2x +1 B .2x -1C .2x -3 D .2x +7

11.若f (1+2x )=2

2

1x x +(x≠0),那么()2f 等于( )

A .3

B .4

C .5

D .6

12.等腰三角形的周长是18,底边长y 是一腰长x 的函数,则( ) A .y =9-x (0<x≤9) B .y =9-x (0<x <9)

C .y =18-2x (4.5≤x≤9)

D .y =18-2x (4.5<x <9)

则f[g (3)-f (-1)]=( ) A .3 B .4C .-3 D .5

二、填空题

14.已知f (x )是定义在R 上的增函数,且f (x+5)<f (3-x ),则x 的取值范围为__________.

15.对于函数f (x )=ax 2

+bx +c (a∈R,且a≠0),在使f (x )≥M 成立的所有实

数M 中,我们把M 的最大值M ,叫做函数f (x )=ax 2+bx +c 的下确界,则f (x )=x 2

-4x +6的下确界为________.

16.某超市将进货单价为10元的商品按12元一件的价格出售时,每天可销售80件,现在准备采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,当该商品利润最大时,售价应定为________元.

17.已知f (x )=0,0,

1,0,1,0,x x x x

=??+>?

则f (f (f (-1)))的值是__________.

18.已知函数f (x ),g (x )分别由下表给出.

第3页 共4页 ◎ 第4页 共4页

则f[g (1)]的值为____________;当g[f (x )]=2时,x =__________. 19.已知函数y =f (x )满足f (x )=12f x ??

???

+3x ,

则f (x )的解析式为____________. 三、解答题

20.已知二次函数f (x )=ax 2

+4ax +1在区间[-4,3]上的最大值为5,求a 的值. 21.已知f (x )=

2x

x a

-(x≠a). (1)若a =2,试证f (x )在(-∞,2)上单调递减;

(2)若0a >且f (x )在(1,+∞)上单调递减,求a 的取值范围.

23.要建造一个容积为1 600立方米,深为4米的长方体无盖蓄水池,池壁的造价为每平方米200元,池底的造价为每平方米100元. (1)把总造价y 元表示为池底的一边长x 米的函数;

(2)由于场地原因,蓄水池的一边长不能超过20米,问蓄水池的这个底边长为多少时总造价最低?总造价最低是多少?

24.已知函数f (x )=2+

3

x x

-(-3

25.里约热内卢奥运会正在如火如荼的进行,奥运会纪念品销售火爆,已知某种纪念品的单价是5元,买x (x∈{1,2,3,4,5})件该纪念品需要y 元.试用函数的三种表示法表示函数y =f (x ).

26.已知函数f (x )=

x

mx n

+(m ,n 为常数,且m ≠0)满足f (2)=1,且f (x )

=x 有唯一解,求f (x )的解析式.

参考答案

1.C

【解析】函数要为减函数需满足320a +<,即32

a <-

. 考点:判断或证明函数的单调性. 2.C

【解析】由函数最值的几何意义知,当x =-4时,有最小值f (-4);当x =2时,有最大4.

考点:利用图象求最值. 3.B

【解析】∵y=-3x 2+6x -2=-3(x -1)2

+1, ∴函数的单调递减区间是[1,+∞). 考点:函数的单调区间. 4.C

【解析】因为对任意()+∞∈,0,21x x ,当21

x x <时,都有()()12f x f x <,所以()x f 在

()+∞,0上为增函数,只有C 选项符合题意.

考点:函数单调性的定义. 5.C

【解析】因为函数y =f (x )在R 上为减函数,且f (3a )<f (-2a +10),所以3a >-2a +10, 即a >2.

考点:利用单调性求参数范围. 6.D

【解析】f (x )=(x -2)2

+3,∵f(x )min =3,f (x )max =7,且f (2)=3,f (0)=f (4)=3,∴2≤m≤4,故选D. 考点:利用最值求参数范围. 7.A

【解析】∵y=?mx 和y =

n

x

在(0,+∞)都是增函数,∴m <0,n <0,f (x )=mx +n 为减函数且f (0)=n <0,故选A. 考点:判断或证明函数单调性. 8.B

【解析】由x≥1时,f (x )=-x 2

+ax -3a 是减函数,得a≤2, 由x <1时,函数f (x )=2ax +1是减函数,得a <0,

分段点1处的值应满足-12

+a×1-3a≤1×2a +1, 解得a≥12-

,∴1

2

-≤a<0. 考点:判断或证明函数的单调性.

10.C

【解析】由题意知f (3)=f (3+3)=f (6)=f (6+3)=f (9)=9-5=4.

考点:分段函数求值. 11.A

【解析】∵f (x )=2x ?3,∴f(x+2)=2(x+2) ?3=2x+1, 即g (x )=2x+1,故选A . 考点:求函数解析式. 12.C

【解析】解法一:令1+2x =t ,则x =

1

2

t -(t≠1), ∴f (t )=

()

2

4

11t +-,∴()2f =4+1=5.

解法二: 令1+2x =2,得x =

1

2

,∴()2f =4+1=5. 考点:解析法函数求值. 13.D

【解析】根据等腰三角形的周长公式列出函数解析式.

∵2x+y =18,∴y=18-2x ,则18-2x >0,∴x<9.由构成三角形的条件(两边之和大于第三边)可知2x >18-2x ,得x >4.5,

∴函数的定义域为{x|4.5<x <9}.∴y=18-2x (4.5<x <9). 考点:解析法表示函数. 14.D

【解析】由题表可知f (-1)=-1,g (3)=-4,所以g (3)-f (-1)=-4-(-1)=-3.所以f[g (3)-f (-1)]=f (-3)=5. 考点:列表法求值. 15.(),1-∞-

【解析】∵f (x )是定义在R 上的增函数,且f (x+5)<f (3-x ),∴x+5<3-x ,∴x<1-,即x 的取值范围是(),1-∞-.

考点:函数单调性的定义. 16.2

【解析】f (x )=x 2-4x +6=(x -2)2+2≥2,则f (x )=x 2

-4x +6的下确界为2. 考点:二次函数求最值. 17.15

【解析】设商品售价定为x 元时,利润为y 元,则y =(x -10)[80-(x -12)·10]

=-10[(x -15)2-25]=-10(x -15)2

+250(10<x <20), 当且仅当x =15时,y 有最大值250,

即售价定为15元时可获取最大利润250元. 考点:二次函数求最值. 18.2

【解析】f (-1)=0,f (0)=1,f (1)=1+1=2, ∴f (f (f (-1)))=f (f (0))=f (1)=2.

考点:分段函数求值. 19.1;1

【解析】f[g (1)]=f (3)=1;g[f (x )]=2,∴f(x )=2,∴x=1. 考点:表法求函数值. 20.()()2

0f x x x x

=--

≠ 【解析】∵f (x )=12f x ??

???

+3x ,① ∴将x 换成

1x ,得()132f f x x x ??

=+ ???

.② 由①②消去1f x ??

???

,得f (x )=2x x --,即()()20f x x x x =--≠. 考点:消元法求函数解析式.

【解析】f (x )=a (x 2

+4x )+1=a (x +2)2

-4a +1.

①若a <0,则当x =-2时,f (x )max =f (-2)=-4a +1=5,∴a =-1.

考点:二次函数求最值. 22.(1)见解析;(2)(]0,1

【解析】(1)证明:当a =2时,f (x )=22

x

x - (x≠2). 设x 1<x 2<2, 则f (x 1)-f (x 2)=

1122x x --2

222

x x - =()()()

2112422x x x x ---. ∵(x 1-2)(x 2-2)>0,x 2-x 1>0, ∴f(x 1)>f (x 2).

∴f(x )在(-∞,2)内单调递减.

(2)设1<x 1<x 2,则 f (x 1)-f (x 2)=

12

1222x x x a x a

-

-- =()()()

21122a x x x a x a ---.

∵x 2-x 1>0,0,a >

∴要使f (x 1)-f (x 2)>0,只需()()120x a x a -->恒成立, ∴a ≤1.

即a 的取值范围为(]0,1. 考点:函数单调性的定义. 23.(1)y =1 600(x +

400

x

)+40 000,x∈(0,+∞);(2)20,104 000 【解析】(1)由已知得池底的面积为

1600

4=400(平方米),底面的另一边长为400x

米,则池壁的面积为2×4×(x +

400

x

)平方米. 所以y =1 600(x +

400

x

)+40 000,x∈(0,+∞). (2)由(1)知y =1 600(x +400

x

)+40 000(0<x≤20), 设0<x 1<x 2≤20,则 y 1-y 2=1 600(x 1+

1400x )-1 600(x 2+2

400

x ) =1 600[(x 1-x 2)+

()

2112

400x x x x -]

=1 600(x 1-x 2)(1-

12

400

x x ). ∵0<x 1<x 2≤20,∴x 1-x 2<0,1-

12

400

x x <0,得y 1-y 2>0,即y 1>y 2. 从而这个函数在(0,20]上是减函数,故当x =20时,y min =10 4000.

所以当池底是边长为20米的正方形时,总造价最低,为104 000元. 考点:函数单调性求最值. 24.见解析

【解析】(1)当0≤x≤3时,f (x )=2+

3

x x

-=2, 当-3

3x x --=2

23

x -. ∴f (x )=2,

03,2

2,30.3

x x x ≤≤??

?--<

(3)由(2)知,f (x )在(-3,3]上的值域为[2,4).

考点:图象法表示函数、函数的值域. 25.见解析

【解析】这个函数的定义域是数集{1,2,3,4,5},

用解析法可将函数y =f (x )表示为y =5x ,x∈{1,2,3,4,5}.

用图象法可将函数y =f (x )表示如图.

考点:函数的三种表示方法.

26.f(x)=

2

2 x x+

【解析】由题意知

2

2m n

+

=1,(*)

由f(x)=x得mx2+(n-1)x=0.

方程mx2+(n-1)x=0有唯一解,则n-1=0,所以n=1,

将n=1代入(*)得m=1

2

,所以f(x)=

2

2

x

x+

考点:函数的解析式.

函数的基本性质——单调性与最大(小)值

函数的基本性质——单调性与最大(小)值 【教学目标】 1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思 2.过程与方法:理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间 3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性 【教学重难点】 教学重点:函数的单调性的概念。 教学难点:利用函数单调的定义证明具体函数的单调性 【教学过程】 一、复习引入。 1 分别画函数2x y =和3x y =的图象。2 x y =的图象如图1,3x y =的图象如图2. 2.引入:从函数2x y = 的图象(图1)看到: 图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当 1x <2x 时,有1y <2y 。 这时我们就说函数y =)(x f =2x 在[0,+∞)上是增函数。图象在y 侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得到1y =)(1x f , 2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数。函数的这两个性质,就是今天我们要学习讨论的。 二、讲解新课。 1.增函数与减函数。 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值 21,x x ,(1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是 增函数(如图3);(2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4)。 说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数2 x y =(图1),当x ∈[0,+∞)时是增 函数,当x ∈(-∞,0)时是减函数。 2.单调性与单调区间。 若函数y=f (x )在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 说明:(1)函数的单调区间是其定义域的子集; (2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f , (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f ,”改为“)(1x f )(2x f 或) (1x f ≥ )(2x f ,”即可; (4)定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况; 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减。 ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数。 三、讲解例题。

第九节:压轴题分类之单调性及分段数列

宝山区:23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 已知定义域为R 的二次函数f x ()的最小值为0,且有f x f x ()() 11+=-,直线g x x ()()=-41被f x ()的图像截得的弦长为417,数列{}a n 满足a 12=, ()()()()aa g af a n N n n n n +-+=∈10* (1)求函数f x ()的解析式; (2)求数列{}a n 的通项公式; (3)设()()b f a g a n n n =-+31 ,求数列{}b n 的最值及相应的n 解:(1)()∴==-a fx x 112,() (2)∴-=?? ???=?? ???+--a a n n n n 13434 111 ,

虹口区:22、(本题满分16分)数列{}n a 的前n 项和记为n S ,且满足12-=n n a S . (1)求数列{}n a 的通项公式; (2)求和n n n n n n C S C S C S C S ?++?+?+?+1231201 ; (3)设有m 项的数列{}n b 是连续的正整数数列,并且满足: )lg(log )11lg()11lg()11lg(2lg 221m m a b b b =+++++++ . 问数列{}n b 最多有几项?并求这些项的和. 解:(1)12 -=n n a (2)n n 232-?

普陀区:22. (本题满分16分) 本大题共有3小题,第1小题满分5分,第2小题满分5 分 ,第3小题满分6分. 【理科】在平面直角坐标系xOy 中,点n A 满足)1,0(1=OA ,且)1,1(1=+n n A A ;点n B 满足 )0,3(1=OB ,且)0,)32(3(1n n n B B ?=+,其中*n N ∈. (1)求2OA 的坐标,并证明.. 点n A 在直线1y x =+上; (2)记四边形11n n n n A B B A ++的面积为n a ,求n a 的表达式; (3)对于(2)中的n a ,是否存在最小的正整数P ,使得对任意*n N ∈都有P a n <成立? 若存在,求P 的值;若不存在,请说明理由. 【解】(1)略 (2)n a 1) 32)(2(5--+=n n ,* N n ∈

高中数学:单调性 函数的最大值、最小值 (5)

第2课时 函数的最大值、最小值 知识点 函数的最大值与最小值 最大(小)值必须是一个函数值,是值域中的一个元素,如函数y =x 2(x ∈R )的最大值是0,有f(0)=0. [小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)任何函数都有最大值或最小值.( ) (2)函数的最小值一定比最大值小.( ) 答案:(1)× (2)× 2.函数f (x )=1 x 在[1,+∞)上( ) A .有最大值无最小值 B .有最小值无最大值 C .有最大值也有最小值 D .无最大值也无最小值 解析:函数f (x )=1 x 是反比例函数,当x ∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f (x )为减函数,f (1)为f (x )在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.故选A. 答案:A 3.函数f (x )=-2x +1(x ∈[-2,2])的最小、最大值分别为( ) A .3,5 B .-3,5 C .1,5 D .-5,3 解析:因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.

答案:B 4.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是() A.f(-2),0 B.0,2 C.f(-2),2 D.f(2),2 解析:由图象知点(1,2)是最高点,故y max=2.点(-2,f(-2))是最低点,故y min=f(-2). 答案:C 类型一图象法求函数的最值 例1如图所示为函数y=f(x),x∈[-4,7]的图象,指出它的最大值、最小值及单调区间. 【解析】观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是(-1.5,-2), 所以函数y=f(x)当x=3时取得最大值,最大值是3. 当x=-1.5时取得最小值,最小值是-2. 函数的单调递增区间为[-1.5,3),[5,6), 单调递减区间为[-4,-1.5),[3,5),[6,7]. 观察函数图象,最高点坐标(3,3),最低点(-1.5,-2). 方法归纳 图象法求最值的一般步骤

函数的单调性与最值练习题(适合高三)

函数的单调性与最值练习题 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分) 1.函数2()log f x x =在区间[1,2]上的最小值是( ) A.1- B.0 C.1 D.2 2.已知212()log (2)f x x x =-的单调递增区间是( ) A.(1,)+∞ B.(2,)+∞ C.(,0)-∞ D .(,1)-∞ 3.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有 ()()0f a f b a b ->-成立, 则必有( ) A.()f x 在R 上是增函数 B.()f x 在R 上是减函数 C.函数()f x 是先增加后减少 D.函数()f x 是先减少后增加 4.若在区间(-∞,1]上递减,则a 的取值范围为( ) A. [1,2) ? B. [1,2] ? C. [1,+∞)???D. [2,+∞) 5.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A.﹣1 B.0 C.1 D.2 6.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈,有 2121()(()())0x x f x f x -->.则满足(21)f x -<1()3 f 的x 取值范围是( ) A.(12,23) B.[13,23) C. (13,23) D.[12,23 ) 7.已知(x)=???≥<+-)1(log )1(4)13(x x x a x a a 是(-∞,+∞)上的减函数,那么a的取值范围是( ) A.(0,1) B .(0,31 ) C.[71,31) D.[71,1) 8.函数22log (23)y x x =+-的单调递减区间为( ) A.(-∞,-3) B .(-∞,-1) C.(1,+∞) D .(-3,-1) 9.已知函数()f x 是定义在[0,) +∞的增函数,则满足(21)f x -<1()3f 的x 取值范围是( ) (A )(∞-,23) (B )[13,23) (C)(12,∞+) (D)[12,23 ) 10.下列函数中,在定义域内是单调递增函数的是( ) A .2x y = B.1y x = C.2y x = D .tan y x =

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

高中一年级函数单调性完整版

函数的单调性 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和 单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 【学习导航】 知识网络 学习要求 1. 从特殊到一般,掌握增函数、减函数、单调区间的概念; 2. 会根据图像说出函数的单调区间,并能指出其增减性; 3. 会用定义证明一些简单函数的单调性. 自学评价 观察函数x x f =)(,2 )(x x f =的图象 从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的, 2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的. (2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2 )(x x f =在]0,(-∞ 上,f (x )随着x 的增大而_______;2 )(x x f =在),0(+∞上,f (x )随着x 的增大而________. 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时 函数的单调性 单调性的定义 定义法证明函数的单调性 增函数 减函数 单调区间 x y 0 x y 0 x x f =)( 2)(x x f =

函数的单调性与最值(含解析

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1, x 2 当x 1f (x 2) ,那么就说 函数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >1 2 B .k <12 C .k >-12 D .k <- 1 2

函数的单调性·典型例题精析

2.3.1 函数的单调性·例题解析【例1】求下列函数的增区间与减区间 (1)y=|x2+2x-3| (2)y (3)y = = x x x x x 2 2 2 11 23 - -- --+ || 解(1)令f(x)=x2+2x-3=(x+1)2-4. 先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示. 由图像易得: 递增区间是[-3,-1],[1,+∞) 递减区间是(-∞,-3],[-1,1] (2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解当x-1≥0且x-1≠1时,得x≥1且x≠2,则函数y=-x. 当x-1<0且x-1≠-1时,得x<1且x≠0时,则函数y=x-2. ∴增区间是(-∞,0)和(0,1) 减区间是[1,2)和(2,+∞) (3)解:由-x2-2x+3≥0,得-3≤x≤1. 令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1] 上是在x∈[-1,1] 上是. 而=在≥上是增函数. y u0 u ∴函数y的增区间是[-3,-1],减区间是[-1,1]. 【例2】函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范

围. 解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数. 当≠时,对称轴= , 若>时,由>≤,得<≤. a 0x a 0a 0 3a 10a 131212a a a --??? ?? 若a <0时,无解. ∴a 的取值范围是0≤a ≤1. 【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小: (1)f(6)与f(4) (2)f(2)f(15)与 解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4) (2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而< <,函数在≥15 时为减函数. ∴>,即>.f(15)f(4)f(15)f(2) 【例4】判断函数= ≠在区间-,上的单调性.f(x)(a 0)(11)ax x 2 1 - 解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2. ∵-= ∵-<<<,+>,->,-<,-<.∴ >f(x )f(x )1x x 1x x 10x x 0x 10x 100 12121221a x x x x x x x x x x x x ()()()() ()()()() 122112 22 12 12 122112 22 111111+---+--- 当a >0时,f(x)在(-1,1)上是减函数. 当a <0时,f(x)在(-1,1)上是增函数. 【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数. 证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2. ∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 0 2112221212 1212 1222 122 121212 1222证法一

示范教案(单调性与最大(小)值第课时)

示范教案(1.3.1 单调性与最大(小)值 第2课时) 导入新课 思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m 2的矩形新厂址,新厂址的长为x m ,则宽为x 10000m ,所建围墙ym ,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y 最短? 学生先思考或讨论,教师指出此题意在求函数y=2(x+ x 10000),x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题. 思路 2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①f(x)=-x+3;②f(x)=-x+3,x ∈[-1,2]; ③f(x)=x 2+2x+1;④f(x)=x 2+2x+1,x ∈[-2,2]. 学生回答后,教师引出课题:函数的最值. 推进新课 新知探究 提出问题 ①如图1-3-1-11所示,是函数y=-x 2-2x 、y=-2x+1,x ∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征. 图1-3-1-11 ②函数图象上任意点P(x,y)的坐标与函数有什么关系? ③你是怎样理解函数图象最高点的? ④问题1中,在函数y=f(x)的图象上任取一点A(x,y),如图1-3-1-12所示,设点C 的坐标为(x 0,y 0),谁能用数学符号解释:函数y=f(x)的图象有最高点C ? 图1-3-1-12 ⑤在数学中,形如问题1中函数y=f(x)的图象上最高点C 的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义? ⑥函数最大值的定义中f(x)≤M 即f(x)≤f(x 0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征? ⑦函数最大值的几何意义是什么?

数列最值问题及单调性 副本

数列的最值问题及单调数列问题 求等差数列前n 项和n S 最值的两种方法 (1)函数法:利用等差数列前n 项和的函数表达式bn an S n +=2 ,通过配方或借助图象求二 次函数最值的方法求解. (2)邻项变号法①0,01<>d a 时,满足?? ?≤≥+0 1n n a a 的项数m 使得n S 取得最大值为m S ; ②当0,01>0,S 13<0. (1)求公差d 的取值范围.(2)求{a n }前n 项和S n 最大时n 的值. 3. 【2016届云南师范大学附属中学高三月考四】数列{}n a 是等差数列,若9 8 1a a <-,且它的前n 项和n S 有最大值,那么当n S 取得最小正值时,n 等于 . 4.(2009安徽卷理)已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 表示{} n a 的前n 项和,则使得n S 达到最大值的n 是: (A )21 (B )20 (C )19 (D ) 1806、(2010福建理数3)设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于 A .6 B .7 C .8 D .9 5.【2016届重庆一中高三上期半期考试数学试题卷(理科)】已知等差数列{}n a 的公差0,d <若462824,10,a a a a ?=+=则该数列的前n 项和n S 的最大值为 . 6.【2014高考北京版理第12题】若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n = 时,{}n a 的前n 项和最大. 7.在等差数列{}n a 中,71=a ,公差为d ,前n 项和为n S ,当且仅当8=n 时n S 取得最大

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

运用数列的单调性求最大(小)项

运用数列的单调性求最大(小)项 高飞 数列是一种特殊的函数,一种定义在正整数集(或其子集)上的函数,因此也具有单调性,可用函数的思想和方法去研究。对于数列{}n a 而言,若1n n a a +<,则此数列为递增数列,若1n n a a +>,则其为递减数列,若1n n a a +=,则其为常数列,运用其单调性可求出一些常见数列的最值,下面举例说明。 一. 整式(一次,二次)函数为背景的数列 例1. 已知等差数列{}n a (d<0)其前n 项和为n S ,若179S S =,问{}n S 中哪一项最大? 解:因为179S S = 0a a a 171110=+++∴ 又因为1413151216111710a a a a a a a a +=+=+=+ 0a a 1413=+∴,因为d<0 所以数列{}n a 单调递减,于是0a ,0a 1413<> 14S ∴最大 点评:等差数列中,当d<0时,???≤≥+0a 0 a 1k k 时,k S 最大。 公差???≥≤>+0a 0 a 0d 1 k k 时时,k S 最小。 二. 无理根式函数为背景的数列 例2. 设函数)1x 0(log log )x (f 2 x x 2<<-=数列{}n a 满足),2,1n (,n 2)2(f n a == (1)求n a 。 (2)求{}n a 的最小项 解:(1)由已知n 2log 1log n a n a 22 22 =- 01na 2a ,n 2a 1a n 2 n n n =--=- ∴ 解得1n n a 2n +±= 1x 0<< ,即12n a < 可知0a n <

高考总复习:函数的单调性与最值

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义

图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1 x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2 解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-1 2 .

3.(教材习题改编)函数f (x )=1 1-x 1-x 的最大值是( ) A.4 5 B.54 C.3 4 D.43 解析:选D ∵1-x (1-x )=x 2 -x +1=? ????x -122+34≥34 ,∴0<11-x 1-x ≤43. 4.(教材习题改编)f (x )=x 2 -2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8 5.已知函数f (x )为R 上的减函数,若m f (n ); ???? ??1x >1,即|x |<1,且x ≠0. 故-1 (-1,0)∪(0,1) 1.函数的单调性是局部性质 从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. [注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

高一数学函数的单调性与最值教案

高一数学函数的单调性 与最值教案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

高一数学——函 数 第三讲 函数的单调性与最大(小)值 【教学目标】: (1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性; (4)理解函数的最大(小)值及其几何意义。 【重点难点】: 1.重点:函数的单调性、最大(小)值及其几何意义, 2.难点: 利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值。 【教学过程】:用具: 一、知识导向或者情景引入 1、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: (3)函数图象是否具有某种对称性 2、画出下列函数的图象,观察其变化规律: (1)f(x) = x ○ 1 从左至右图象上升还是下降 ______ ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .

(2)f(x) = -2x+1 ○1从左至右图象上升还是下降 ______ ○2在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ . (3)f(x) = x2 ○1在区间 ____________ 上,f(x)的值随着x的增大而 ________ . ○2在区间 ____________ 上,f(x)的值随着x的增大而 ________ . 二、新课教学 (一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x 1,x 2 ,当x 1

函数的单调性知识点总结与经典题型归纳

函数的单调性 知识梳理 1. 单调性概念 一般地,设函数()f x 的定义域为I : (1)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; (2)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 2. 单调性的判定方法 (1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (2)定义法步骤; ①取值:设12,x x 是给定区间内的两个任意值,且12x x < (或12x x >); ②作差:作差12()()f x f x -,并将此差式变形(注意变形到能判断整个差式符号为止); ③定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论; ④下结论:根据定义得出其单调性. (3)复合函数的单调性: 当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为减函数。也就是说:同增异减(类似于“负负得正”) 3. 单调区间的定义 如果函数()y f x =,在区间D 上是增函数或减函数,那么就说函数在这个区间上具有单调性,区间D 叫做()y f x =的单调区间. 例题精讲 【例1】下图为某地区24小时内的气温变化图. (1)从左向右看,图形是如何变化的 (2)在哪些区间上升哪些区间下降 解:(1)从左向右看,图形先下降,后上升,再下降;

(2)在区间[0,4]和[14,24]下降,在区间[4,14]下降。 【例2】画出下列函数的图象,观察其变化规律: (1)f (x )=x ; ①从左至右图象上升还是下降 ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么变化 (2)f (x )=x 2. ①在区间(-∞,0)上,随着x 的增大,f (x )的值随着怎么变化 ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着怎么变化 解:(1)①从左至右图象是上升的; ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着增大. (2)①在区间(-∞,0)上,随着x 的增大,f (x )的值随着减小; ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着增大. 【例3】函数()y f x =在定义域的某区间D 上存在12,x x ,满足12x x <且12()()f x f x <,那么函 数()y f x =在该区间上一定是增函数吗 解:不一定,例如下图: 【例4】下图是定义在闭区间[5,5]-上的函数()y f x =的图象,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数. 解:函数()y f x =的单调区间有[5,2),[2,1),[1,3),[3,5)---; 其中在区间[5,2),[1,3)--上是减函数,在区间[2,1),[3,5)-上是增函数. 【例5】证明函数()32f x x =+在R 上是增函数. 证明:设12,x x 是R 上的任意两个实数,且12x x < (取值) 则1212()()(32)(32)f x f x x x -=+-+ (作差)

相关文档
最新文档