基于无线数据传输的便携式生理信号检测仪

基于无线数据传输的便携式生理信号检测仪
基于无线数据传输的便携式生理信号检测仪

收稿日期:2006-06

作者简介:张士华(1967 ),男,硕士,主要从事信号处理与计算机应用方面的研究。

基于无线数据传输的便携式生理信号检测仪

张士华

(中山大学,广东广州510080)

摘要:设计一种基于无线数据传输的生理信号检测仪,可对信号进行实时采集、实时处理、动态显示和无线传输。该系统具有通用性和实时性的特点,满足了小型医学仪器的实际需要。

关键词:数据采集;信号动态显示;无线数据传输

中图分类号:TM 930 文献标识码:B 文章编号:

1006-2394(2006)05-0010-02

Physi ologi cal Si gnal D etector Based on W ireless Data T rans m issi on

Z HANG Shi hua

(Sun Y at Sen U niversity ,G uangzhou 510080,Chi na)

Abstrac t :A new detector based on w ireless data trans m ission i s desi gned ,wh i ch prov i des real-ti m e si gna l acquisiti on ,rea l ti m e ope r a ti on ,dyna m i c d i sp l ay i ng on LCD and data trans m i ssi on w ith PC .T his syste m is fit for practi ca l require m en t of s m allm edical apparatuses w it h h i gh uni v ersality .

K ey word s :data acqu i sition ;dynam ic sisnal diap lay i ng on LCD;w i re l ess data trans m ission

1 系统概述

如图1,选用高性能微处理器A t m ega163作为核心器件,心电、心音、颈动脉波、体温等各路生理信号经过放大、滤波等处理,调理到0~2.5V 后送到处理器端口,单片机对数据实行压缩和优化处理,一方面生理参数送到LCD 上显示,另一方面,通过无线数据传输模块PTR2000将已初步处理的各路数据传送到上位PC 机作进一步的处理和分析。

图1 系统总体框图

2 芯片简介

2.1 无线数据传输模块PTR2000

PTR2000无线数据传输模块是一种超小型、低功耗、高速率的无线收发数传模块。其通讯速率最高为20kb it/s ,也可工作在4800b it/s 、9600bit/s 。

PTR2000的引脚说明如下:VCC :正电源,接2.7~5.25V;CS :频道选择,CS =0选择工作频道1,即433.92MH z ;CS =1选择工作频道2,即434.33MH z ;DO:数据输出;DI :数据输入;GND:电源地;P WR:节能

控制,P WR =1为正常工作状态,P WR =0为待机微功耗状态;TXEN:发射接收控制,TXE N =1为发射状态,TXEN =0为接收状态。2.2 液晶显示模块OC M 4X8C

显示器件采用中文图形点阵液晶显示模块OC M 4X8C ,显示屏为128 64点阵,可显示4行,每行8个汉字。该模块具有2M b 的中文字型CGROM,字型ROM 中含有8192个16 16点阵中文字库,显示汉字十分方便;为便于英文和其他字符的显示,含有16Kb 的16 8ASC !字符库;为方便制造用户图形,提供一个64 256点阵的GDRAM 绘图区域,为方便构造用户所需字型,提供了四组16 16点阵的造字空间。利用上述功能,OC M 4X8C 可实现汉字、ASC !、点阵图形、自造字体的同屏显示。

OC M 4X8C 具有2.7~5.5V 的宽工作电压范围,具

有睡眠、正常及低功耗工作模式,可满足系统各种工作电压及便携式仪器低功耗的要求。液晶模块显示负电压,也由模块提供,从而简化系统电源设计。3 电路构成及工作原理

3.1 多路信号的采集和预处理

微处理器选用AT M EL 公司的高档系列产品A t m ega163,是基于AVR RISC 的低功耗C MOS 8位单片机。A t m ega163提供了一个性能良好的10位模数转换器。A 口为8路模拟信号输入端,如果AD 功能禁止,则A 口是一个8位双向I/O 口。8路人体生理信号如心电、心音、颈动脉、脉搏、体温等,经过前置放大、滤

10 仪表技术2006年第5期

波、去噪处理后,分别与A 口的8个引脚相连。微处理器采集数据时,通过控制AD MUX 寄存器进行通道号选择,读取的数据放入数据存储器作进一步处理。3.2 LCD 控制和显示

为便于和多种微处理器接口,OC M 4X8C 提供了8位并行、4位并行、2线串行、3线串行等多种灵活的接口方式。常用的是单片机和LCD 芯片的8位并行设计,如图2

示。

图2 硬件接口电路图

当模块的PSB 脚接高电平时,模块即为并行接口模式。在并行模式下可由功能设定指令的?DL #这一位来选择8位或4位接口方式。主控系统将配合?RS #、?R W #、?E #、DB0~DB7来完成指令/数据的传送。LCD 模块在接收指令前,微处理器必须先确认模块内部处于非忙状态,即读取BF 标志时BF 应为零,才可接收新的指令。如果在送出一条指令前不检查BF 标志,则在前一条指令和这条指令中间延迟一段时间,即等待前一条指令确实执行完成。3.3 数据的无线传输

与此同时,单片机经由串行接口,通过PTR2000模块和上位PC 机通讯,进行无线数据传输。基于PTR2000模块的单片机无线收发系统具有三种工作模式:发送:在发送数据前,应将模块置于发射模式,即TXEN=1。等待5m s 后(接收到发射的转换时间)才可以发送任意长度的数据。发送结束,将模块置于接收状态,TXEN=0;接收:接收时,将PTR2000置于接收状态TXEN=0。然后将接收到的数据直接送到单片机串口或经电平转换后送入计算机;待机:当P WR =0时,PTR2000进入节电待机模式,此时的功耗约为8 A,在待机模式下不能接收和发送数据。其接口电路如图2,PTR2000模块的DO 和DI 分别与单片机的RXD 和TXD 连接,利用单片机的I/O 口控制模块的发送和接收、频道转换和低功耗模式。如,单片机将PD7脚置高电平或低电平而将无线收发模块置为发送或接收状态。4 软件设计

为使系统稳定、可靠地通讯,在编程时应设计通讯

协议,考虑数据的检错和纠错,即通讯时,采用数据校验的方法。这里采用循环冗余码校验法,方法是,生成0~255个字节组成的CRC 校验表,放在一个数组中,在CRC 校验表生成后,对通讯数据的有效数据只需进行查表工作,即可生成通讯数据中的CRC 校验码。

无线数据传输的程序包括单片机的发送端程序和上位PC 机的接收端程序。其流程图见图3和图4。

图3 单片机发送端程序流程图

图4 上位机接收端程序流程图5 结语

本检测仪采用高性能微处理器,能实时、准确地采集和处理多路生理信号,通过曲线、文字进行动态显

示。病人携带方便、操作简便,可对病情的监测和诊断提供依据。参考文献:

[1]林凌,等.新型单片机接口器件和技术[M ].西安电子科技

大学出版社,2005.

(许雪军编发)

11 2006年第5期仪表技术

人体生理参数监测仪设计

人体生理参数监测仪设计 1 引言 随着人们健康意识的逐渐增强,户外运动越来越受到重视。然而运动量过强或不足都不能达到锻炼的目的,甚至会危害身体。这里介绍一种多功能实时生理参数监测仪的设计方法,该监测仪具有廉价、实用、便携,并有语音播报测量值及越限报警等多种功能。 2 总体结构与工作原理 该监测仪以凌阳16位单片机SPCE061A为控制核心,通过温度传感器、水银开关、压电陶瓷片获得人体温度、跑步者的步数及脉搏跳动情况,再由CPU实时计算测量值并将结果送至液晶显示器显示,同时进行语音播报。系统设有键盘、人工复位和自动上电复位及硬件看门狗电路。SPCE061A内部带有硬件乘法器功能,可方便地实现测量数据的记录、计算和语音播报功能。系统总体结构框图。 3 硬件电路设计 3.1 体温测量模块 温度传感器采用DALLAS的DS18B20,该器件无需外部元件,通过数据线供电即可提供最高12位的温度读数,器件的温度信息经单线接口送入DS18B20或从DS18B20送出,从CPU 到DS18B20仅需连接1条线。读、写和完成温度变换所需的电源由数据线本身提供,测量范围为-55℃~+125℃,增量值为0. 0625(以12位数值方式读出温度),在1s(典型值)内把温度变换为数字,具有用户可定义的非易失性温度告警设置。输出的温度数值由单片机的IOA15口读入,。 经单线接口访问DS18B20的协议如下: (1)初始化单线总线上的所有处理均从初始化序列开始。初始化序列包括:总线主机发出一个复位脉冲,接着从属器件送出存在脉冲,程序清单见初始化DS18B20子程序intInit_1820(void)。 (2)ROM操作命令一旦总线主机检测到从属器件便可发出,ROM操作命令,ROM操作命令均为8位长,程序见读DS18B20子程序unsignedintRead_1820_Byte(void)和写DS18B20子程序voidWrite_1820_Byte(unsignedintData)。 (3)存储器操作命令程序清单见读DS18B20子程序unsignedintRead_1820_Byte(void)和写DS18B20子程序voidWrite_1820_Byte(unsignedintData)。 (4)处理数据程序清单见温度转换子程序voidRead_Temp(unsignedint*Data)。温度测量程序如下: 1 引言

光谱仪的性能指标

光谱学测量的基础是测量光辐射与波长的对应关系。一般来说,光谱学测量的直接结果是由很多个离散的点构成曲线,每个点的横坐标(X轴)是波长,纵坐标(Y轴)是在这个波长处的强度。因此,一个光谱仪的性能,可以粗略地分为下面几个大类: 1. 波长范围(在X轴上的可以测量的范围); 2. 波长分辨率(在X轴上可以分辨到什么程度的信号变化); 3. 噪声等效功率和动态范围(在Y轴上可以测量的范围); 4. 灵敏度与信噪比(在Y轴上可以分辨到什么程度的信号变化); 5. 杂散光与稳定性(信号的测量是否可靠?是否可重现); 6. 采样速度和时序精度(一秒钟可以采集多少个完整的光谱?采集光谱的时刻是否精确?)1. 波长范围 波长范围是光谱仪所能测量的波长区间。最常见的光纤光谱仪的波长范围是400nm-1100nm,也就是可以探测可见光和一部分近红外的光。使用新型探测器可以使这个范围拓展至 200nm-2500nm,即覆盖紫外、可见和近红外波段。光栅的类型以及探测器的类型会影响波长范围。一般来说,宽的波长范围意味着低的波长分辨率,所以用户需要在波长范围和波长分辨率两个参数间做权衡。如果同时需要宽的波长范围和高的波长分辨率,则需要组合使用多个光谱仪通道(多通道光谱仪)。 2. 波长分辨率 顾名思义,波长分辨率描述了光谱仪能够分辨波长的能力,最常用的光谱仪的波长分辨率大约为1nm,即可以区分间隔1nm的两条谱线。Avantes公司可以提供的最高的波长分辨率为 0.025nm。波长分辨率与波长的取样间隔(数据的x坐标的间隔)是两个不同概念。一般来说,高的波长分辨率意味着窄额度波长范围,所以用户需要在波长范围和波长分辨率两个参数间做权衡。如果同时需要宽的波长范围和高的波长分辨率,则需要组合使用多个光谱仪通道(多通道光谱仪)。 3. 噪声等效功率和动态范围 当信号的值与噪声的值相当时,从噪声中分辨信号就会非常困难。一般用与噪声相当的信号的值(光谱辐照度或光谱辐亮度)来表征能一个光谱仪所能够测量的最弱的光强(Y轴的最小值)。噪声等效功率越小,光谱仪就可以测量更弱的信号。狭缝的宽度、光栅的类型、探测器的类型等等参数都会影响噪声等效功率。因为这些参数也会影响波长范围和波长分辨率,用户需要在这些指标间做出取舍。对探测器制冷(Avantes公司的制冷型光谱仪)有助于减小探测器的热噪音,优化探测器检测弱光的能力。 动态范围描述一个光谱仪所能够测量到的最强的信号与最弱的信号的比值。最强的信号为光谱仪在信号不饱和情况下,所能测量的最大信号值,最弱的信号用上述的噪声等效功率衡量。动态范围主要受制于探测器的类型。传统上,动态范围是影响测量方便性的一个很关键的指标,但目前大部分光纤光谱仪都可以通过调整积分时间的方式等效地扩大动态范围,因此,动态范围一般不会对用户的测量带来困扰。 4. 灵敏度与信噪比 灵敏度描述了光谱仪把光信号变成电子学信号的能力,高的灵敏度有助于减小电路本身的噪声对结果影响。狭缝的宽度、光栅的类型、探测器的类型以及电路的参数都会影响灵敏度。衍射效率高的光栅和量子效率高的探测器都有利于提高光谱仪的灵敏度。人为地调高前置放大电路的放大倍数也会提高名义上的灵敏度,但并不一定有助于实际的测量。宽的狭缝会改善灵敏度,但也会降低分辨率,因此,需要用户综合考虑和权衡。

无线电通信

无线电通信 1.电磁波 电磁波是同相且互相垂直的电场与磁场在空间中衍生发射的震荡粒子波,是以波动的形式传播的电磁场,具有波粒二象性,如图4-1所示。电磁波在空间中以波的形式移动,其传播方向垂直于电场和磁场。电磁波在真空中速率固定,速度为光速,即3×108 m/s。 电磁波频率低时,磁电之间的相互变化比较缓慢,其能量几乎全部返回原电路而没有被辐射出去,只能借助有形的导电体才能传递;电磁波频率高时,可以在自由空间中传递,也可以被束缚在有形的导电体内传递。在自由空间中传递的原因是在高频率的电振荡中,磁电互变非常快,能量不可能全部返回原电路,于是,电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去,不需要介质也能向外传递能量,成为一种辐射。 2.无线电通信 利用电磁波的辐射和传播,经过自由空间传送信息的通信方式统称无线电通信,也称无线通信。利用无线电通信可以传送电话、电报、数据、图像及广播、电视节目等通信业务。自1895年意大利的G.马可尼(Guglielmo Marconi)开创无线电通信的先河以来,该技术在短波/超短波通信、微波通信、卫星通信和移动通信等各种业务领域中得到广泛应用。 3. 无线电波的传播方式及频率波段的应用 无线通信是一种利用无线电波在空中传播信息的通信方式。无线电波通过发射天线向外辐射出去,天线就是波源。无线电波中的电磁场随着时间的变化而变化,从而把辐射的能量传播至远方。 (1)传播方式。无线电波常见的传播方式有以下几种: ①波导方式。当电磁波的频率在30 kHz以下(波长在10 km以上)时,大地犹如一个导体,电磁波不能进入电离层,因此,电磁波被限制在电离层的下层与地球表面之间的空间内传输,称为波导方式。 ②地波方式。沿地球表面传播的无线电波称为地波(或地表波)。这种传播方式比较稳定,受天气影响小。

常见视频信号传输特性(精)

常见视频信号传输特性 1. 分量视频(Component Signal) 摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。感光器材再把三种单色图像转换成分离的电信号。为了识别图像的左边沿和顶部,电信号中附加有同步信息。显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法: - RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。 - RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。 - RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。 - RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。 RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下: - 传输介质:3-5根带屏蔽的同轴电缆 - 传输阻抗:75Ω- 常用接头:3-5×BNC接头 - 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场同步(V)信号线,公共地=屏蔽网线(见附图VP-03) 2. 复合视频(Composite-Video)

由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。 插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。复合视频格式是折中解决长距离传输的方式,色度和亮度共享 4.2MHz(NTSC)或 5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下: - 传输介质:单根带屏蔽的同轴电缆 - 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头 - 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01) 3. 色差信号(Y,R-Y,B-Y) 对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的带宽。 人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。 将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。采用这种方法,可以通过简单的线性矩阵实现RGB与Y,R-Y,B-Y的转换。色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。 色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM和NTSC制式中,编码系数是各不相同的,见下表:

直读光谱仪检测结果影响因素的分析

直读光谱仪检测结果影响因素的分析不同元素的原子被电极激发后,发出不同的特征光谱,该元素发射的谱线强度和它的含量成正比。直读光谱仪正是利用这一原理来测定被测样品的组成和含量的分析仪器。直读光谱仪主要包括:光源、样品激发系统、采光系统、分光系统、检测系统、数据处理系统等。 分析光谱仪检测结果的影响因素,对提高冶金产品检测结果的准确性和可靠性有着重要的意义。 一.标准样品的选用。应尽可能选择与被测样品组成相接近的基体标准样品,当选择不到类似样品基体的冶金标准样品时,可选择与被测元素含量相当的其它基体的冶金标准样品;另外用于光谱分析的标准样品应考虑其物理形状,选择足够尺寸的块状或棒状冶金标准样品,这样能有效减少误差,提高分析准确度。 二.冶金标准样品主要用于校准仪器和建立分析工作曲线,应正确使用和存放标准样品,防止其标准值发生变化。 三.光谱仪在使用过程中的注意要点。①检查氩气流量是否充足。防止因氩气不足导致电极在高温状态下被氧化,造成电极过度损耗使激发数据发生漂移,影响分析结果的可靠性。②检查电极位置。电极间距过大,会导致能量不足,数据偏低,间距过小,会导致能量过大,数据偏高并加剧电极损耗。③检查真空度。光谱仪在真空环境中才能准确感应、接收样品中碳、硫、硅、锰等元素发出的光强值,OBLF 直读光谱仪光学系统中的真空值应大于0.8,否则光的散射会导致数据板接收错误信号,严重时会损坏数据处理系统。④定期做好火花台、透镜、过滤网、过滤筒等部件的清洁与更换工作。 总之,采用直读光谱仪检测冶金产品化学成分,应正确选择标准样品,定期对仪器进行校准、维护,规范人员操作,确保检测数据的准确、可靠,为生产一线提供优质服务。

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

1011序列检测器

综合设计性实验报告 题目: 学生姓名: 学号: 班级: 指导教师: 学期:2010——2011第2学期

目录 一基本知识点 (1) 二实验器件 (1) 三设计思路 (1) 四设计过程 (2) (一)三位二进制减法计数器(无效状态000,001) (二)5 五引脚功能 (9) 六逻辑电路图: (11) 七实验结果波形图 (12) 八设计心得体会 (12)

一基本知识点 1、掌握时序电路的设计方法和步骤 2、掌握触发器的设计与应用 3、掌握移位寄存器的原理与应用 4 熟悉集成电路的引脚排列; 5 掌握芯片的逻辑功能及使用方法; 6 了解序列产生及检测器的组成及工作原理 7 会在EWB软件上进行仿真; 二实验器件 1、移位寄存器74LS194 1片 2、负边沿JK触发器74LS112 1片 3四输入与非门74LS20 1片 4、六输入非门74LS05 1片 5 电源一个 6 地线一个 7 与门,或门,非门若干个 8 时钟脉冲一个 三设计思路 1作原始状态表。根据给定的电路设计条件构成原始状态表和状

态转化图 2状态表的简化。原始状态表通常不是最小化状态表,它往往包括多余的状态,因此必须首先对它进行简化。 3状态分配。即对简化后的状态给以编码。这就要根据状态数确定触发器的数量并对每个状态指定一个二进制数构成的编码。 4根据给定的电路设计条件选择触发器根据 5 作激励函数和输出函数。根据选用的触发器激励表和电路的状态表,综合出电路中各触发器的激励函数和电路的输出函数。 ⑸6画逻辑图,并检查自启动功能 四设计过程 (一)101101001信号发生器的设计 设计一个信号序列发生器,在产生的信号序列中,含有“1011”信号码,要求用一片移位寄存器,生成信号序列“10110100”,其中含有1011码,其设计按以下步骤进行:、、 1本实验所用仪器为移位寄存器74LS194,确定移存器的位数n。因M=9,故n≥4,用74LS194 的四位。 2确定移存器的九个独立状态。将序列码101101001按照每四位一组,划分为九个状态,其迁移关系如下所示: 3作出状态转换表及状态转换图如下:

实验一_信号及其传输特性分析

实验一 练习一信号的特性及其频谱分分析 实验原理 一. 信号的概念和分类 1. 信号 在通信与信息系统中,传输的主体是信号,系统所包含的各种电路、设备都是为了实施这种传输。因此,电路系统设计和制造的要求,必然要取决于信号的特性。随着待传输信号的日益复杂,相应地,信号传输系统中的元器件、电路的结构等也日益复杂。因此,对信号进行分析变得越来越重要。 2. 信号的分类 下面从不同角度对信号进行分类。 确定信号和随机信号:若其在任何时间的值都是确定已知的,那么是确定信号;若信号在实际发生之前具有一定的不确定性,则表明信号是随机信号。 连续信号和离散信号:将一个信号表示成为时间t的函数,如果其时间变量t的取值是连续的,那么这个信号就称为连续信号。若信号只在某些不连续的时间点上有确定的取值,则称信号是离散信号。 模拟信号和数字信号:时间或幅度连续的信号称为模拟信号,时间和幅度都离散的信号称为数字信号。 周期信号和非周期信号:在一个可以测量的时间范围内完成一种模式,并且在后续的相同时间范围内重复这一模式,这种信号是周期信号;不随时间变化出现重复的模式或循环,则是非周期信号。 二. 周期模拟信号 周期模拟信号可以分为简单类型或复合类型两种。简单类型模拟信号,即正弦波,不能再分解为更简单的信号。而复合型模拟信号则是由多个正弦波信号组成的。 正弦波是周期模拟信号的最基本形式。可以看做一条简单的震荡曲线,在一个周期内的变化是平滑、一直的、连续的、起伏的曲线。下图就是一个正弦波,每个循环由时间轴上方的单弧和后跟着的时间轴下方的单弧构成。 图1-1-1 正弦波

单个正弦波可以用三个参数表示:峰值振幅、频率和相位。这三个参数完全决定正弦波。 1. 峰值振幅 信号的峰值振幅是其最高强度的绝对值,与其携带的能量成正比。图1-1-2表示了两个信号和它们的峰值振幅。 图1-1-2 相位和频率相同但振幅不同的两个信号 2. 周期和频率 周期是信号完成一个循环所需要的时间,以秒为单位。频率是指1秒内的周期数。周期是频率的倒数,频率是周期的倒数,如下列公式所示。 图1-1-3显示了两个信号和它们的频率。

便携式多功能实时生理参数监测仪的设计(精)

便携式多功能实时生理参数监测仪的设计 前言 本文利用凌阳单片机设计了便携式多功能实时生理参数监测仪,具有播放MP3的功能,可达到提高身体锻炼质量的效果。 系统硬件设计 系统以单片机为核心,配置了各种集成传感器,体积小巧。由于采用了微型封装的芯片及元器件,使连线变短,减少了通信接口,从而提高了整机工作的可靠性。系统硬件结构如图1所示。 SPCE061A单片机 SPCE061A单片机内部集成了ADC、 DAC、32KB的Flash和2KB的SRAM,以及液晶驱动模快。利用该单片机作为处理芯片,使得模、数信号之间的转换以及液晶驱动可以通过软件来实现,避免了外界信号的干扰,提高了系统的稳定性及抗干扰能力。 740)this.width=740" border=undefined> 图1 系统硬件结构框图 DS18B20温度传感器 DS18B20温度传感器采用12位存储温度值对应的数字表示形式,理论精度可达到0.05℃ ,能实时、精确地检测到人体温度的变化,可通过单片机在液晶显示器上显示温度。 DS18B20与单片机的典型接口设计 可以采用外接电源与寄生电源(即从数据线上得到供电电源)两种方式供电,如图2所示。 使用DS18B20的注意事项 (1)DS18B20从测温结束到将温度值转换成数字量需要一定的转换时间,这是必须保证的,不然会导致转换错误,使温度输出总是显示85℃。 (2)在实际使用中发现,应使电源电压保持在5V左右,若电源电压过低,会使所测得的温度与实际温度出现偏高现象,经过试验发现,一般在5V左右。(3)较小的硬件开销需要相对复杂的软件进行补偿,由于DS18B20与单片机间采用串行方式传送数据,因此,在对DS18B20进行读写编程时,必须严格保证读写时序,否则将无法读取测温结果。 (4)在DS18B20测温程序设计中,向DS18B20发出温度转换命令后,程序总要等待DS18B20的返回信号,一旦DS18B20接触不好或断线,当程序读该DS18B20时,将没有返回信号,程序进入死循环,这一点在进行DS18B20硬件连接和软件设计时也要给予一定的重视。

序列检测器的设计实验报告

班级:生物医学工程141班姓名:刘玉奔学号:6103413018 设计性实验项目名称序列信号发生和检测器设计 (一)实验目的 1、进一步熟悉EDA实验装置和QuartusⅡ软件的使用方法; 2、学习有限状态机法进行数字系统设计; 3、学习使用原理图输入法进行设计。 (二)设计要求 完成设计、仿真、调试、下载、硬件测试等环节,在EDA实验装置上实现一个串行序列信号发生器和一个序列信号检测器的功能,具体要求如下: 1、先用设计0111010011011010序列信号发生器,其最后6BIT数据用LED显示出来; 2、再设计一个序列信号检测器,检测上述序列信号,若检测到串行序列“11010”则 输出为“1”,否则输出为“0”; 3、检查检测01011,即将发生的序列最后五位改为01011,为0111010011001011 (三)主要仪器设备 1、微机1台 2、QuartusII集成开发软件1套 3、EDA实验装置1套 (四)实验步骤 主要有三个模块 1:一个设计序列信号发生器 2:一个设计序列信号检测器 3:综合两个设计,通过对模块的调用达到最终效果 (五)实验数据 --设计时间:2016.10.29 --设计者:刘玉奔 --设计内容:1、先用设计0111010011001011序列信号发生器,其最后6BIT数据用LED 显示出来; --2、再设计一个序列信号检测器,检测上述序列信号,若检测到串行序列“01011”则输出

为“1”,否则输出为“0”; --序列信号发生器部分 LIBRARY IEEE;--声明IEEE库 USE IEEE.STD_LOGIC_1164.ALL;--允许使用IEEE中程序包STD_LOGIC_1164 ENTITY serialsignalgenerator IS PORT(CLK,RST:IN STD_LOGIC; CO:OUT STD_LOGIC; LED0,LED1,LED2,LED3,LED4,LED5:OUT STD_LOGIC); END behav; 得到symbol file: 序列信号检测器: LIBRARY IEEE;--声明IEEE库 USE IEEE.STD_LOGIC_1164.ALL;--允许使用IEEE中程序包STD_LOGIC_1164 ENTITY serialsignaltest IS PORT(CLK,DIN,CLR:IN STD_LOGIC; SS:OUT STD_LOGIC; LED0,LED1,LED2,LED3,LED4:OUT STD_LOGIC);

光谱仪的工作原理

光谱仪的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

光谱仪的工作原理元素的原子在激发光源的作用下发射谱线,谱线经光栅分光后形成光谱,每种元素都有自己的特征谱线,谱线的强度可以代表试样中元素的含量,用光电检测器将谱线的辐射能转换成电能。检测输出的信号,经加工处理,在读出装置上显示出来。然后根据相应的标准物质制作的分析曲线,得出分析试样中待测元素的含量。 表面轮廓仪介绍 表面轮廓仪 - 简介 表面轮廓仪LK-200M型表面轮廓仪采用广精精密最新的基于windows版本的测量软件,具有强大卓越的数据处理分析功能。测量时,零件装夹位置即使任意放置,也能得到满意的测量结果;即使需要测量长度为220mm的工件,测量软件也能保证其1μm的采样步长。 LK-200H型表面轮廓仪采用耐用可靠的16位A/D功能板,其极高的分辨率量程比(1/65536),用户即使需要大量程测量,仍能保持极高的测量精度。 LK-200M型表面轮廓仪采用工控计算机处理测量数据及仪器控制操作。其高质量、高可靠性及突出的防尘、防振、防油、防静电能力使广精精密用户将使用维护成本降至最低。 表面轮廓仪 - 原理 表面轮廓仪LK-200M型表面轮廓仪采用直角坐标法,传感器移动式。直线运动导轨采用高精度气浮导轨,作为测量基准; 电器部分由高级计算机组成;测量软件采用基于中文版Windows操作系统平台的系统测量软件,完成数据采集、处理及测量数据管理等工作。 表面轮廓仪 - 功能 角度处理:两直线夹角、直线与Y轴夹角、直线与X轴夹角 点线处理:两直线交点、交点到直线距离、交点到交点距离、交点到圆心距离、交点到点距离 圆处理:圆心距离、圆心到直线的距离、交点到圆心的距离、直线到切点的距离线处理:直线度、凸度、LG凸度、对数曲线 表面轮廓仪 - 技术规格 表面轮廓仪测量长度:≤200mm

蓝牙、红外和一般的无线通信技术各自的特点和相互比较

目前使用较广泛的近距无线通信技术是蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外数据传输(IrD A)。同时还有一些具有发展潜力的近距无线技术标准,它们分别是:Zigbee、超宽频(Ultra WideBand)、短距通信(NFC)、WiMedia、GPS、DECT、无线1394和专用无线系统等。它们都有其立足的特点,或基于传输速度、距离、耗电量的特殊要求;或着眼于功能的扩充性;或符合某些单一应用的特别要求;或建立竞争技术的差异化等。但是没有一种技术可以完美到足以满足所有的需求。 蓝牙技术 bluetooth)技术是近几年出现的,广受业界关注的近距无线连接技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。 蓝牙技术是一种无线数据与语音通信的开放性全球规范,其实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHz ISM频段,提供1Mbps的传输速率和10m的传输距离。 蓝牙技术诞生于1994年,Ericsson当时决定开发一种低功耗、低成本的无线接口,以建立手机及其附件间的通信。该技术还陆续获得PC行业业界巨头的支持。1998年,蓝牙技术协议由Ericsson、IBM、I ntel、NOKIA、Toshiba等5家公司达成一致。 蓝牙协议的标准版本为802.15.1,由蓝牙小组(SIG)负责开发。802.15.1的最初标准基于蓝牙1.1实现,后者已构建到现行很多蓝牙设备中。新版802.15.1a基本等同于蓝牙1.2标准,具备一定的QoS特性,并完整保持后向兼容性。 但蓝牙技术遭遇了最大的障碍是过于昂贵。突出表现在芯片大小和价格难以下调、抗干扰能力不强、传输距离太短、信息安全问题等等。这就使得许多用户不愿意花大价钱来购买这种无线设备。因此,业内专家认为,蓝牙的市场前景取决于蓝牙价格和基于蓝牙的应用是否能达到一定的规模。 Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)也是一种无线通信协议,正式名称是IEEE802.11b,与蓝牙一样,同属于短距离无线通信技术。Wi-Fi速率最高可达11Mb/s。虽然在数据安全性方面比蓝牙技术要差一些,但在电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约1 1Mb/s的速度接入Web。但实际上,如果有多个用户同时通过一个点接入,带宽被多个用户分享,Wi-Fi的连接速度一般将只有几百kb/s的信号不受墙壁阻隔,但在建筑物内的有效传输距离小于户外。 WLAN未来最具潜力的应用将主要在SOHO、家庭无线网络以及不便安装电缆的建筑物或场所。目前这一技术的用户主要来自机场、酒店、商场等公共热点场所。Wi-Fi技术可将Wi-Fi与基于XML或Java的Web 服务融合起来,可以大幅度减少企业的成本。例如企业选择在每一层楼或每一个部门配备802.11b的接入点,而不是采用电缆线把整幢建筑物连接起来。这样一来,可以节省大量铺设电缆所需花费的资金。 最初的IEEE802.11规范是在1997年提出的,称为802.11b,主要目的是提供WLAN接入,也是目前W

序列检测器

目录 第一章设计方案.........................................................1 1.1设计任务..........................................................1 1.2设计要求..........................................................1 1.2.1整体功能要求.................................................1 1.2.2测试要求.....................................................1 第二章设计思路.........................................................2 2.1数字频率计介绍....................................................2 2.2设计原理..........................................................2 2.2.1频率测量的基本原理...........................................2 2.2.2整体方框图及原理.............................................2 2.2.3序列器结构框图...............................................2 第三章模块介绍.........................................................4 3.1顶层文件模块......................................................4 3.1.1顶层文件原理.................................................4 3.1.2顶层文件模块verilog语言描述程序.............................4 3.2伪随机序列发生器模块..............................................4 3.2.1伪随机序列发生器.............................................4 3.2.2伪随机序列发生器原理.........................................5 3.2.3伪随机序列发生器模块verilog语言描述程序.....................6 3.3序列检测器模块....................................................7 3.3.1序列检测器原理...............................................7 3.3.2序列检测器模块verilog语言描述程序...........................7 第四章序列检测器的实现.................................................8 4.1序列检测器的verilog语言程序描述及仿真............................8 4.1.1序列检测器的verilog语言程序描述.............................8 4.1.2序列检测器的波形仿真.........................................9 4.2 设计中遇到的问题与解决方法.......................................10 4.2.1设计中遇到的问题.............................................10 4.2.2解决方法.....................................................10 第五章设计小结.........................................................11 5.1 心得体会..........................................................11

光谱仪原理

光纤光谱仪的原理及基础知识 2014-05-25 光谱学是测量紫外、可见、近红外和红外波段光强度的一种技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度检测或电磁辐射分析等。 上海辰昶仪器设备有限公司是国内领先的光纤光谱仪的生产厂商,以“光谱引领生活”为理念,致力于为国内广大用户提供符合国情的一揽子光谱系统解决方案! 光谱仪器一般都包括入射狭缝、准直镜、色散元件(光栅或棱镜)、聚焦光学系统和探测器。而在单色仪中通常还包括出射狭缝,让整个光谱中一个很窄的部分照射到单象元探测器上。单色仪中的入射和出射狭缝往往位置固定而宽度可调,可以通过旋转光栅来对整个光谱进行扫描。 在九十年代,微电子领域中的多象元光学探测器迅猛发展,如CCD 阵列、光电二极管(PD )阵列等,使生产低成本扫描仪和CCD 相机成为可能。光纤光谱仪使用了同样的CCD 和光电二极管阵列(PDA )探测器,可以对整个光谱进行快速扫描而不必移动光栅。 由于光通信技术对光纤的需求大大增长,从而开发了低损耗的石英光纤。该光纤同样可以用于测量光纤,把被测样品产生的信号光传导到光谱仪的光学平台中。由于光纤的耦合非常容易,所以可以很方便地搭建起由光源、采样附件和光纤光谱仪组成的模块化测量系统。 光纤光谱仪的优点在于系统的模块化和灵活性。上海辰昶仪器的微小型光纤光谱仪的测量速度非常快,使得它可以用于在线分析。而且由于它选用低成本的通用探测器,所以光谱仪的成本也大大降低,从而大大扩展了它的应用领域。 ?光学平台设计 上海辰昶仪器的光谱仪采用Czerny-Turner 光学平台设计(如图1 所示)。 图1 EQ2000光学平台设计图

无线通信技术各自的特点和相互比较

无线通信技术各自的特点和相互比较 目前使用较广泛的近距无线通信技术是蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外数据传输(IrDA)。同时还有一些具有发展潜力的近距无线技术标准,它们分别是:Zigbee、超宽频(Ultra WideBand)、短距通信(NFC)、WiMedia、GPS、DECT、无线1394和专用无线系统等。它们都有其立足的特点,或基于传输速度、距离、耗电量的特殊要求;或着眼于功能的扩充性;或符合某些单一应用的特别要求;或建立竞争技术的差异化等。但是没有一种技术可以完美到足以满足所有的需求。 1、蓝牙技术 bluetooth技术是近几年出现的,广受业界关注的近距无线连接技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。 蓝牙技术是一种无线数据与语音通信的开放性全球规范,其实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHz ISM 频段,提供1Mbps的传输速率和10m的传输距离。 蓝牙技术诞生于1994年,Ericsson当时决定开发一种低功耗、低成本的无线接口,以建立手机及其附件间的通信。该技术还陆续获得PC行业业界巨头的支持。1998年,蓝牙技术协议由Ericsson、IBM、Intel、NOKIA、Toshiba等5家公司达成一致。 蓝牙协议的标准版本为802.15.1,由蓝牙小组(SIG)负责开发。802.15.1的最初标准基于蓝牙1.1实现,后者已构建到现行很多蓝牙设备中。新版802.15.1a 基本等同于蓝牙1.2标准,具备一定的QoS特性,并完整保持后向兼容性。 但蓝牙技术遭遇了最大的障碍是过于昂贵。突出表现在芯片大小和价格难以下调、抗干扰能力不强、传输距离太短、信息安全问题等等。这就使得许多用户不愿意花大价钱来购买这种无线设备。因此,业内专家认为,蓝牙的市场前景取决于蓝牙价格和基于蓝牙的应用是否能达到一定的规模。 2、Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)也是一种无线通信协议,正式名称是IEEE802.11b,与蓝牙一样,同属于短距离无线通信技术。Wi-Fi速率最高可达11Mb/s。虽然在数据安全性方面比蓝牙技术要差一些,但在电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速度接入Web。但实际上,如果有多个用户同时通过一个点接入,带宽被多个用户分享,Wi-Fi的连接速度一般将只有几百kb/s的信号不受墙壁阻隔,但在建筑物内的有效传输距离小于户外。 WLAN未来最具潜力的应用将主要在SOHO、家庭无线网络以及不便安装电缆的建筑物或场所。目前这一技术的用户主要来自机场、酒店、商场等公共热点场所。Wi-Fi技术可将Wi-Fi与基于XML或Java的Web服务融合起来,可

序列信号发生器和序列信号检测器

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 实验三序列信号检测器设计 (一)实验目的 1.进一步熟悉PH-1V型实验装置和QuartusⅡ软件的使用方法; 2.学习有限状态机法进行数字系统设计; 3.学习使用原理图输入法进行设计。 (二)设计要求 完成设计、仿真、调试、下载、硬件测试等环节,在PH-1V型EDA实验装置上实现一个串行序列信号发生器和一个序列信号检测器的功能,具体要求如下: 1.先用原理图输入法设计0111010011011010序列信号发生器; 2.其最后8BIT数据用LED显示出来; 3.再设计一个序列信号检测器,检测上述序列信号,若检测到串行序列 “11010”则输出为“1”,否则输出为“0”; (三)主要仪器设备 1.微机 1台 2.QuartusII集成开发软件1套 3.PH-1V型EDA实验装置1套 (四)实验总体设计 本实验要求先设计一个信号发生器,采用原理图设计方法,要求产生 0111010011011010序列,16位,便可采用74161计数器和74151选择器,161计数输出QD,QC,QB,QA从0000计至1111,然后将161计数输出低三位QC,QB,QA分别接到151的C,B,A端,高位QD用来控制151两片的片选,即两片151分别实现序列的高八位和低八位的输出。最后将二片151的输出相或便可得到最后要产生的序列。 序列检测器即为一个状态机,首先画出状态转移图,根据状态转移图设计 出序列检测器,当检测到预置的序列,则RESULT输出1,否则输出0 (五)实验重难点设计 1. 用原理输入法设计序列信号发生器 (1)打开Quartus II软件,进入编辑环境。 (2)创建新的原理图BDF文件,命名为FASHENGQI,根据其总体设计思路设计 出如下原理图:

无线电信号的特性

无线电信号的特性 无线电信号的特性 在高频电路中, 我们要处理的无线电信号主要有三种: 基带(消息)信号、高频载波信号和已调信号。所谓基带信号, 就是没有进行调制之前的原始信号, 也称调制信号。 1、时间特性 (1)、信号的描述:一个无线电信号, 可以将它表示为电压或电流的时间函数, 通常用时域波形或数学表达式来描述。 (2)、时间特性的概念:无线电信号的时间特性就是信号随时间变化快慢的特性。信号的时间特性要求传输该信号的电路的时间特性(如时间常数)与之相适应。 2、频谱特性 对于较复杂的信号(如话音信号、图像信号等), 用频谱分析法表示较为方便。 信号的频谱特性的概念:信号的频谱特性就是信号中各频率成分的特性。 对于周期性信号, 可以表示为许多离散的频率分量(各分量间成谐频关系), 例如图1 —3即为图1 —2所示信号的频谱图; 对于非周期性信号, 可以用傅里叶变换的方法分解为连续谱, 信号为连续谱的积分。 频谱特性包含幅频特性和相频特性两部分, 它们分别反映信号中各个频率分量的振幅和相位的分布情况。

任何信号都会占据一定的带宽。从频谱特性上看, 带宽就是信号能量主要部分(一般为90%以上)所占据的频率范围或频带宽度。 图1 — 3 频谱图 3、传播特性 传播特性:是指无线电信号的传播方式、传播距离、传播特点等。无线电信号的传播特性主要根据其所处的频段或波段来区分。 电磁波从发射天线辐射出去后, 不仅电波的能量会扩散, 接收机只能收到其中极小的一部分, 而且在传播过程中, 电波的能量会被地面、建筑物或高空的电离层吸收或反射, 或者在大气层中产生折射或散射等现象, 从而造成到达接收机时的强度大大衰减。根据无线电波在传播过程所发生的现象, 电波的传播方式主要有直射(视距)传播、绕射(地波)传播、折射和反射(天波)传播及散射传播等, 如图 1 — 5 所示。决定传播方式和传播特点的关键因素是无线电信号的频率。

相关文档
最新文档