Caffe中卷基层和全连接层训练参数个数如何确定

Caffe中卷基层和全连接层训练参数个数如何确定
Caffe中卷基层和全连接层训练参数个数如何确定

Caffe中卷基层和全连接层训练参数个数如何确定以Mnist为例,首先贴出网络配置文件:

https://www.360docs.net/doc/9917626194.html,: "LeNet"

https://www.360docs.net/doc/9917626194.html,yer {

3. name: "mnist"

4. type: "Data"

5. top: "data"

6. top: "label"

7. data_param {

8. source: "examples/mnist/mnist-train-leveldb"

9. backend: LEVELDB

10. batch_size: 64

11. }

12. transform_param {

13. scale: 0.00390625

14. }

15. include: { phase: TRAIN }

16.}

https://www.360docs.net/doc/9917626194.html,yer {

18. name: "mnist"

19. type: "Data"

20. top: "data"

21. top: "label"

22. data_param {

23. source: "examples/mnist/mnist-test-leveldb"

24. backend: LEVELDB

25. batch_size: 100

26. }

27. transform_param {

28. scale: 0.00390625

29. }

30. include: { phase: TEST }

31.}

https://www.360docs.net/doc/9917626194.html,yer {

33. name: "conv1"

34. type: "Convolution"

35. bottom: "data"

36. top: "conv1"

37. param {

38. lr_mult: 1

39. }

40. param {

41. lr_mult: 2

42. }

43. convolution_param {

44. num_output: 20

45. kernel_size: 5

46. stride: 1

47. weight_filler {

48. type: "xavier"

49. }

50. bias_filler {

51. type: "constant"

52. }

53. }

54.}

https://www.360docs.net/doc/9917626194.html,yer {

56. bottom: "conv1"

57. top: "conv1"

58. name: "bn_conv1"

59. type: "BatchNorm"

60. param {

61. lr_mult: 0

62. decay_mult: 0

63. }

64. param {

65. lr_mult: 0

66. decay_mult: 0

67. }

68. param {

69. lr_mult: 0

70. decay_mult: 0

71. }

72.}

https://www.360docs.net/doc/9917626194.html,yer {

74. bottom: "conv1"

75. top: "conv1"

76. name: "scale_conv1"

77. type: "Scale"

78. scale_param {

79. bias_term: true

80. }

81.}

https://www.360docs.net/doc/9917626194.html,yer {

83. name: "pool1"

84. type: "Pooling"

85. bottom: "conv1"

86. top: "pool1"

87. pooling_param {

88. pool: MAX

89. kernel_size: 2

90. stride: 2

91. }

92.}

https://www.360docs.net/doc/9917626194.html,yer {

94. name: "relu_pool1"

95. type: "ReLU"

96. bottom: "pool1"

97. top: "pool1"

98.}

https://www.360docs.net/doc/9917626194.html,yer {

100. name: "conv2"

101. type: "Convolution" 102. bottom: "pool1" 103. top: "conv2"

104. param {

105. lr_mult: 1

106. }

107. param {

108. lr_mult: 2

109. }

110. convolution_param { 111. num_output: 50 112. kernel_size: 5 113. stride: 1

114. weight_filler { 115. type: "xavier" 116. }

117. bias_filler { 118. type: "constant" 119. }

120. }

121.}

https://www.360docs.net/doc/9917626194.html,yer {

123. bottom: "conv2" 124. top: "conv2"

125. name: "bn_conv2" 126. type: "BatchNorm" 127. param {

129. decay_mult: 0 130. }

131. param {

132. lr_mult: 0 133. decay_mult: 0 134. }

135. param {

136. lr_mult: 0 137. decay_mult: 0 138. }

139.}

https://www.360docs.net/doc/9917626194.html,yer {

141. bottom: "conv2" 142. top: "conv2"

143. name: "scale_conv2" 144. type: "Scale"

145. scale_param { 146. bias_term: true 147. }

148.}

https://www.360docs.net/doc/9917626194.html,yer {

150. name: "pool2"

151. type: "Pooling" 152. bottom: "conv2" 153. top: "pool2"

154. pooling_param { 155. pool: MAX

156. kernel_size: 2 157. stride: 2

158. }

159.}

https://www.360docs.net/doc/9917626194.html,yer {

161. name: "relu_pool2" 162. type: "ReLU"

163. bottom: "pool2" 164. top: "pool2" 165.}

https://www.360docs.net/doc/9917626194.html,yer {

167. name: "ip1"

168. type: "InnerProduct" 169. bottom: "pool2" 170. top: "ip1"

171. param {

173. }

174. param {

175. lr_mult: 2

176. }

177. inner_product_param { 178. num_output: 500 179. weight_filler { 180. type: "xavier" 181. }

182. bias_filler {

183. type: "constant" 184. }

185. }

186.}

https://www.360docs.net/doc/9917626194.html,yer {

188. name: "relu1"

189. type: "ReLU"

190. bottom: "ip1"

191. top: "ip1"

192.}

https://www.360docs.net/doc/9917626194.html,yer {

194. name: "ip2"

195. type: "InnerProduct" 196. bottom: "ip1"

197. top: "ip2"

198. param {

199. lr_mult: 1

200. }

201. param {

202. lr_mult: 2

203. }

204. inner_product_param { 205. num_output: 10 206. weight_filler { 207. type: "xavier" 208. }

209. bias_filler {

210. type: "constant" 211. }

212. }

213.}

https://www.360docs.net/doc/9917626194.html,yer {

215. name: "accuracy"

216. type: "Accuracy"

217. bottom: "ip2"

218. bottom: "label"

219. top: "accuracy"

220. include {

221. phase: TEST

222. }

223.}

https://www.360docs.net/doc/9917626194.html,yer {

225. name: "loss"

226. type: "SoftmaxWithLoss"

227. bottom: "ip2"

228. bottom: "label"

229. top: "loss"

230.}

OK,在开始讲解之前我们先说明几个问题:

1、输入的图片大小是28*28,;

2、我们将分三部分讲解,因为三部分计算方式不同;

3、由于偏置量b的个数与卷积核的个数相同,因此我们讲解的主要是权重,偏置量个数加上就可以了。

1、第一个卷积conv1,之所把第一个卷积单独拿出来,是因为他和后面的卷积计算方式不同,他训练参数个数计算并不关心输入,这里的数据就是指data层中batch_size大小。也可以说第一个卷基层并不关心特征组合,只是提取特征。

在每一个卷积层中都以一个参数num_output,这个参数怎么理解呢?两种理解方式1、卷积的种类个数;2、输出特征图的个数,我么可以认为一种卷积核提取一种特征,然后输出一张特征。

由于第一个卷积层只是简单的提取特征,并没有进行特征组合,因此训练参数个数计算只是num_output*kernel_size^2.这里怎么理解呢?(由于我不会画图,需要大家一点想象力)假设我们的输入有5张图,num_output=3,kernel_size=5。没有进行特征组合,只是简单提取特征,指的是一种卷积核对5张图的同一区域使用相同的权重进行卷积计算,这样每幅图使用相同的卷积核就能提取到相同的特征,然后相同的特征组成一张特征图。

2、第二个卷积至全连接层之间的卷积,这些卷积层的训练参数个数和输入特征图的数量有关,因为这些卷积层需要进行特征组合。举个例子:conv1的num_output=20,说明卷积1层输出了20个特征图,那么卷积2层的输入就是20。conv2的num_output=50,kernel_size=5,那么计算公式是20*50*5*5.

为什么这些卷积层的训练个数和输入的特征图的数量有关呢?重点还

是在特征组合。输入的20个特征图,每个特征图代表一种特征,如果我们给每种特征不同的权重那是不是就进行了特征组合呢?conv2的

卷积核是5*5,对20个特征图进行卷积,那就会有20组(5*5)个连接(每张特征图是一组),如果这20组卷积核的权重相同,那就回到了第一个卷积层的情况,没有对20个特征进行组合,因为权重相同嘛!

只能看成简单的相加,如果20组权重不同,是不是就进行了线性相加了呢?所以对于一个卷积核(5*5)我们要学习的参数不是25个,而是25*20个。说到这里我相信你应该已经明白了吧!

3、全连接层,全连接层就是普通的神经网络,全连接层的num_output 和卷积层中num_output的理解不同,全连接层的num_output应该看成神经元的个数。

3.1、这里要细分一下,先说IP1也就是第一个全连接层。先讲一下ip1的输入,比如最后一个卷积层的num_output=50,那么IP1的输入是50吗?注意这里不是,要理解这个问题,我们只需将全连接层看成是一些列的普通神经网络就可以。比如IP1的num_output=500,也就是有500个神经元,每个神经元都和输入的每一个像素相连,最后一个卷积层输出了50个特征图,每个特征图大小是4*4(输入图像是28*28)那么每个神经元连接的个数就是50*16=800个,也就有800个参数需要学习。总共有500个神经元,因此对于IP1层共需要学习

800*500=400,000个参数。

3.2、对于iP2层,iP2的输入就是IP1的输出了,因为IP1输出的不是图像了(或矩阵)而是500个数字。比如ip2的num_output=10,也就是输出数据500维,输出10维的普通神经网络,那么需要学习的参数就是500*10=5000个。

极坐标和参数方程基础知识及重点题型word版本

高中数学回归课本校本教材24 (一)基础知识 参数极坐标 1.极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。 2.常见的曲线的极坐标方程 (1)直线过点M 00(,)ρθ,倾斜角为α常见的等量关系: 正弦定理 sin sin OP OM OMP OPM =∠∠,0OMP παθ∠=-+OPM αθ∠=-; (2)圆心P 00(,)ρθ半径为R 的极坐标方程的等量关系:勾股定理或余弦定理; (3)圆锥曲线极坐标:1cos ep e ρθ = -,当1e >时,方程表示双曲线;当1e =时,方程表示抛物线;当01 e <<时,方程表示椭圆.提醒:极点是焦点,一般不是直角坐标下的坐标原点。极坐标方程3 24cos ρθ =-表示的曲线 是 双曲线 3.参数方程:(1)圆222()()x a x b r -+-=的参数方程:cos ,sin x a r x b r θθ-=-= (2)椭圆22 221x y a b +=的参数方程:cos ,sin x a x b θθ== (3)直线过点M 00(,)x y ,倾斜角为α的参数方程:00tan y y x x α-=-即00 cos sin x x y y t θθ --==, 即00cos sin x x t y y t α α =+?? =+?注:0cos x x t θ-= ,0 sin y y t θ-=据锐角三角函数定义,T 几何意义是有向线段MP u u u r 的数量00000()00. t l M M x y M M M M M M t M M t >? =?=抛物线的参数方程为:为参数.由于,因此参数的几何意义是抛物线上的点与抛物线的顶点连线的斜率的倒数.

圆与方程基础训练题

圆与方程基础训练题 1.若直线0Ax By C ++=通过第二、三、四象限,则系数A 、B 、C 需满足条件( ). A. A 、B 、C 同号 B. AC <0,BC <0 C. C =0,AB <0 D. A =0,BC <0 2.(02年京皖春文)到两坐标轴距离相等的点的轨迹方程是( ). A. x -y =0 B. x +y =0 C. |x |-y =0 D. |x |-|y |=0 3.(1995上海卷)下列四种说法中的正确的是( ). A. 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示 B. 经过任意两个不同点111222(,),(,)P x y P x y 的直线都可以用方程 121121()()()()y y x x x x y y --=--表示 C. 不经过原点的直线都可以用方程1x y a b +=表示 D. 经过定点A (0,b )的直线都可以用方程y =kx +b 表示 4.已知点(0,1)P -,点Q 在直线x -y +1=0上,若直线PQ 垂直于直线x +2y -5=0,则点Q 的坐标 是 .A .(-2,1) B .(2,1) C .(2,3) D .(-2,-1) 5.已知两点A (1,-1)、B (3,3),点C (5,a )在直线AB 上,则实数a 的值是 6.点P 在直线x +y -4=0上,O 为原点,则|OP |的最小值是 . 7.圆22(2)(3)2x y -++=的圆心和半径分别是( ). A .(2,3)-,1 B .(2,3)-,3 C .(2,3)-,2 D .(2,3)-,2 8.已知直线l 的方程为34250x y +-=,则圆221x y +=上的点到直线l 的距离的最小值是 A. 3 B. 4 C. 5 D. 6 9.过两点P (2,2),Q (4,2) 且圆心在直线0x y -=上的圆的标准方程是( ). A .22(3)(3)2x y -+-= B. 22(3)(3)2x y +++= C. 22(3)(3)2x y -+-= D. 22(3)(3)2x y +++= 10.(04年天津卷理7)若(2,1)P - 为圆22(1)25x y -+=的弦AB 的中点,则直线AB 的方程是. A. 30x y --= B. 230x y +-= C. 10x y +-= D. 250x y --= 11.已知圆22(5)(7)4C x y -+-=:,一束光线从点(11) A -,经x 轴反射到圆周C 的最短路程是 A. 622- B. 8 C. 46 D. 10 12.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程为 . 13.(04年江苏卷.14)以点(1,2)为圆心,与直线43350x y +-=相切的圆的方程是 14.方程224250x y x y m ++-+=表示圆的条件是( ). A. 114m << B. 1m > C. 14 m < D. 1m < 15.M (3,0)是圆2282100x y x y +--+=内一点,过M 点最长的弦所在的直线方程是. A. 30x y +-= B. 30x y --= C. 260x y --= D. 260x y +-= 16.(04年重庆卷.文理3)圆222430x y x y +-++=的圆心到直线1x y -=的距离为( ). A . 2 B. 22 C. 1 D. 2 17.(1999全国文)曲线x 2+y 2+22x -22y =0关于( ). A. 直线x =2轴对称 B. 直线y =-x 轴对称 C. 点(-2,2)中心对称 D. 点(-2,0)中心对称 18.若实数,x y 满足224240x y x y ++--=,则22x y +的最大值是( ). A. 53+ B. 6514+ C. 53-+ D. 6514-+ 19.已知圆C :(x -1)2+y 2=1,过坐标原点O 作弦OA ,则OA 中点的轨迹方程是 . 20.(1997上海卷)设圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是 21.直线4x -3y -2=0与圆2224110x y x y +-+-=的位置关系是( ).

高考数学极坐标与参数方程(基础精心整理)教师版

第7讲 极坐标与参数方程(教师版 ) 【基础知识】 一.平面直角坐标系中的伸缩变换:设点(,)P x y 在变换?://,(0) ,(0) x x y y λλμμ?=>??=>??的作用下对应到点 ///(,)P x y ,则称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 二.极坐标知识点 1.极坐标系的概念:在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴. ①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐 标系的四要素,缺一不可. 2.极坐标与直角坐标的互化: 三.参数方程知识点 1.参数方程的概念:在平面直角坐标系中,若曲线C 上的点满足,该方程叫曲 线C 的参数方程,变量t 是参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 2.曲线的参数方程 (1)圆的参数方程可表示为. (2)椭圆的参数方程可表示为. (3)抛物线的参数方程可表示为. (4)经过点,倾斜角为的直线的参数方程可表示为(为参数). 注意:t 的几何意义 3.在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与普通方程的互化中,必须使的取值范围保持一致. 规律方法指导: 1.把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法. 常见的消参方法有: (,)P x y () () x f t y f t =?? =?2 2 2 )()(r b y a x =-+-)(.sin , cos 为参数θθθ? ??+=+=r b y r a x 122 22=+b y a x )0(>>b a )(. sin ,cos 为参数??????==b y a x px y 22 =)(.2, 22为参数t pt y pt x ? ? ?==),(o o O y x M αl ? ? ?+=+=.sin , cos o o ααt y y t x x t y x , ) 0(n t , sin , cos , 222≠===+=x x y a y x y x θθρθρρ

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________. 3.曲线C 的参数方程为? ???? x =sin θ, y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+1 2t , y =3 2t (t 为参数),椭圆C 的方程 为x 2 +y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ^ ? ? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; > (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

坐标系与参数方程-知识点总结

坐标系与参数方程 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0) x x y y λλ?μμ'=>?? '=>?的 作用下,点P(x,y)对应到点(,)P x y ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示, 在平面取一个定点O ,叫做极点, 自极点O 引一条射线Ox ,叫做极轴; 再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:(i)极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景; (ii)平面直角坐标系的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标 设M 是平面一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ; 以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ. 有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面一个点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.

3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴 作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设M 是坐标平面任意一点,它的直角 坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与 直角坐标的互化公式如下: 极坐标(,)ρθ 直角坐标(,)x y : cos sin x y ρθ ρθ=??=? 直角坐标(,)x y 极坐标(,)ρθ: 222 tan (0) x y y x x ρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程、直线与圆位置关系典型例 题 求半径为4,与圆相切,且和直线相切的圆的方程、解:则题意,设所求圆的方程为圆、圆与直线相切,且半径为4,则圆心的坐标为或、又已知圆的圆心的坐标为,半径为 3、若两圆相切,则或、(1) 当时,,或(无解),故可得、∴所求圆方程为,或、(2) 当时,,或(无解),、∴所求圆的方程为,或、例3 求经过点,且与直线和都相切的圆的方程、分析:欲确定圆的方程、需确定圆心坐标与半径,由于所求圆过定点,故只需确定圆心坐标、又圆与两已知直线相切,故圆心必在它们的交角的平分线上、解:∵圆和直线与相切,∴圆心在这两条直线的交角平分线上,又圆心到两直线和的距离相等、∴、∴两直线交角的平分线方程是或、又∵圆过点,∴圆心只能在直线上、设圆心∵到直线的距离等于,∴、化简整理得、解得:或∴圆心是,半径为或圆心是,半径为、∴所求圆的方程为或、例 4、设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程、解法一:设圆心为,半径为、则到轴、轴

的距离分别为和、由题设知:圆截轴所得劣弧所对的圆心角为,故圆截轴所得弦长为、∴又圆截轴所得弦长为 2、∴、又∵到直线的距离为∴当且仅当时取“=”号,此时、这时有∴或又故所求圆的方程为或解法二:同解法一,得、∴、∴、将代入上式得:、上述方程有实根,故,∴、将代入方程得、又 ∴、由知、同号、故所求圆的方程为或、类型二:切线方程、切点弦方程、公共弦方程例5 已知圆,求过点与圆相切的切线、解:∵点不在圆上,∴切线的直线方程可设为根据∴ 解得 所以即因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在、易求另一条切线为、说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解、本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解)、还可以运用,求出切点坐标、的值来解决,此时没有漏解、例6 两圆与相交于、两点,求它们的公共弦所在直线的方程、分析:首先求、两点的坐标,再用两点式求直线的方程,但是求两圆交点坐标的过程太繁、为了避免求交点,可以采用“设而不求”的技巧、解:设两圆、的任一交点坐标为,则有: ①

(完整版)高中数学必修2圆的方程练习题(基础训练).doc

专题:直线与圆 1.圆 C1 : x2+ y2+ 2x+ 8y- 8=0 与圆 C2 : x2+ y2- 4x+4y- 2= 0 的位置关系是 ( ) . A .相交B.外切C.内切D.相离 2.两圆 x2+ y2-4x+ 2y+ 1= 0 与 x2+ y2+ 4x-4y- 1= 0 的公共切线有 ( ) . A.1 条B.2 条C.3 条D.4 条 3.若圆 C 与圆 ( x+ 2) 2+ ( y- 1) 2= 1 关于原点对称,则圆 C 的方程是 ( ) . A . ( x- 2) 2+ ( y+ 1) 2= 1 B. ( x- 2) 2+ ( y- 1) 2=1 C. ( x- 1) 2+ ( y+ 2) 2= 1 D.( x+ 1) 2+ ( y- 2) 2= 1 4.与直线 l : y= 2x+ 3 平行,且与圆x2+ y2-2x- 4y+ 4=0 相切的直线方程是 ( ) . A . x- y± 5 = 0 B. 2x- y+ 5 = 0 C. 2x- y- 5 = 0 D.2x- y± 5 = 0 5.直线 x- y+ 4= 0 被圆 x2+ y2+ 4x-4y+ 6= 0 截得的弦长等于 ( ) . A . 2 B. 2 C.2 2 D. 4 2 6.一圆过圆 x2+ y2- 2x=0 与直线 x+ 2y- 3=0 的交点,且圆心在y 轴上,则这个圆的方程是( ) . A . x2+ y2+4y- 6= 0 B. x2+ y2+ 4x- 6= 0 C. x2+ y2- 2y= 0 D. x2+ y2+ 4y+ 6= 0 7.圆 x2+ y2- 4x-4y- 10= 0 上的点到直线 x+y- 14= 0 的最大距离与最小距离的差是( ) . A.30 B. 18 C.6 2 D. 5 2 8.两圆 ( x- a) 2+ ( y-b) 2= r 2和 ( x- b) 2+( y- a) 2= r 2相切,则 ( ) . A . ( a- b) 2= r2 B. ( a- b) 2= 2r2 C. ( a+ b) 2= r 2 D.( a+ b) 2= 2r 2 9.若直线 3x- y+ c= 0,向右平移 1 个单位长度再向下平移 1 个单位,平移后与圆 x2+ y2= 10相切,则 c 的值为 ( ) .A.14 或- 6 B.12 或- 8 C.8 或- 12 D.6 或- 14 10.设 A( 3,3,1) ,B( 1,0,5) ,C( 0,1,0),则 AB 的中点 M 到点 C 的距离 | CM| =( ) . 53 B.53 53 D. 13 A .C. 2 4 2 2 11.若直线 3x- 4y+ 12= 0 与两坐标轴的交点为A,B,则以线段AB 为直径的圆的一般方程为____________________. 12.已知直线x= a 与圆 ( x- 1) 2+y2= 1 相切,则a 的值是 _________. 13.直线 x= 0 被圆 x2+ y2― 6x― 2y―15= 0 所截得的弦长为_________. 14.若 A( 4,- 7, 1) ,B( 6, 2, z) , | AB| = 11,则 z= _______________ . 15.已知 P 是直线 3x+ 4y+ 8= 0 上的动点, PA,PB 是圆 ( x- 1) 2+ ( y- 1) 2= 1 的两条切线, A, B 是切点, C 是圆心,则四边形PACB 面积的最小值为. 三、解答题 16.求下列各圆的标准方程: ( 1) 圆心在直线y=0 上,且圆过两点A( 1, 4) , B( 3, 2) ; ( 2) 圆心在直线2x+ y=0 上,且圆与直线x+y- 1= 0 切于点 M( 2,- 1) .

高中数学选修极坐标与参数方程知识点与题型

选做题部分 极坐标系与参数方程 一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化 点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化公式 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为)4 ,2(π ,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32, )4π B .5(32,)4π- C .5(3,)4π D .3(3,)4 π- 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标.

人教版九年级数学 中考数学 基础训练

人教版九年级数学 中考数学 基础训练 (卷面分值:150分;考试时间:120分钟) 一、 选择题(本大题共10小题,每小题4分,共40分)每题的选项中只有一项符合题目要求. 1. 一个几何体的三视图如图所示,则该几何体是( ) 2. 9的平方根是( ) A .±3 B .﹣3 C .3 D .± 3.下列运算正确的是( ) A. 2 2 122a a -= B. ()32628a a -=- C. ()2 2 24a a +=+ D. 2a a a ÷= 4. 等腰三角形的两边长为方程x 2 -7x +10=0的两根,则它的周长为( ) A .12 B .12或9 C .9 D .7 5. 某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( ) A. 33603624120x y x y +=??+=? B. 33602436120x y x y +=??+=? C. 12036243360x y x y +=??+=? D. 12024363360 x y x y +=??+=? 6.一个三角形三边的长分别为15,20和25,则这个三角形最长边上的高为( ) A.12 B.15 C.20 D.25 7.用配方法解方程0522 =--x x 时,配方后得到的方程为( ) A .9)1(2 =+x B. 9)1(2 =-x C. 6)1(2 =+x D. 6)1(2 =-x 8.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m2,设小路宽为xm ,那么x 满足的方程是( ) A 、x 2 -25x+32=0 B 、x 2 -17+16=0 C 、2x 2 -25x+16=0 D 、x 2 -17x-16=0 9.当1x =时,代数式3 34ax bx -+的值是7,则当1x =-时,这个代数式的值是( ) A.7 B.3 C.1 D.7- 10.如图,在矩形ABCD 中,对角线BD AC ,交于点 O ,DB CE ⊥于 E ,1:31 :=∠∠DCE ,则OCE ∠=( ) A.?30 B.?45 C.?60 D.?5.67 二、填空题(本大题共5小题,每小题4分,共20分)把答案直接填在答题卷的相应位置处. 11. 若2ab =,1a b -=-,则代数式2 2 a b ab -的值等于 . 12. 关于x 的方程3kx 2 +12x +2=0有实数根,则k 的取值范围是________. 13. 据统计,今年“国庆”节某市接待游客共14900000人次,用科学记数法表示为 . 14.如果代数式有意义,那么字母x 的取值范围是 . 15.如图,CF 是ABC ?的外角ACM ∠的平分线,且CF ∥AB ,?=∠100ACM ,则B ∠的度数为 . 三、解答题(本大题Ⅰ—Ⅴ题,共9小题,共90分)解答时应在答题卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ. (本题满分15分,第16题5分,第17题10分) 16.计算:()()03 32015422 ---+÷- 17. (1) 2(3)2(3)0x x x -+-=; (2)x 2 -5x +2=0 Ⅱ. (本题满分30分,第18题、第19题、第20题每题10分) 18.化简:x x x x x x x x 4 )44122(2 2-÷+----+,然后从3,2,1,0中选择一个你喜欢的x 的值代入求值.

(完整)高中数学参数方程大题(带答案)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 考点:参数方程化成普通方程;直线与圆锥曲线的关系. 专题:坐标系和参数方程. 分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以 sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值. 解答: 解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ, 故曲线C的参数方程为,(θ为参数). 对于直线l:, 由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ). P到直线l的距离为. 则,其中α为锐角. 当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为. 当sin(θ+α)=1时,|PA|取得最小值,最小值为. 点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 考点:参数方程化成普通方程. 专题:坐标系和参数方程. 分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可; (2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化求解. 解答: 解:(1)∵直线l的极坐标方程为:, ∴ρ(sinθ﹣cosθ)=,

圆的方程、直线和圆的位置关系(附答案)

高考能力测试数学基础训练25 基础训练25 圆的方程、直线和圆的位置关系 ●训练指要 掌握圆的标准方程及一般方程,会用待定系数法,求圆的方程. 熟练掌握直线与圆的位置关系的代数确定方法与几何确定方法. 一、选择题 1.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是 A.a <-2或a >3 2 B.-32<a <0 C.-2<a <0 D.-2<a < 32 2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于 A.6 B.2 25 C.1 D.5 3.方程x 4-y 4-4x 2+4y 2=0表示的曲线是 A.两个圆 B.四条直线 C.两条平行线和一个圆 D.两条相交直线和一个圆 二、填空题 4.经过点M (1,3)的圆x 2+y 2=1的切线方程是_________. 5.若圆经过点A (a ,0),B (2a ,0),C (0,a )(a ≠0),则这个圆的方程为_________.

三、解答题 6.求过直线2x+y+4=0和圆x2+y2+2x-4y+1=0的交点,且面积最小的圆的方程. 7.当C为何值时,圆x2+y2+x-6y+C=0与直线x+2y-3=0的两交点P、Q满足OP⊥OQ?(其中O为坐标原点) 8.已知圆C:x2+(y-1)2=5,直线l:mx-y+1=0, (1)求证:对m∈R,直线l与圆C总有两个不同交点; (2)设l与圆C交于A、B两点,若|AB|=17,求l的倾斜角; (3)求弦AB的中点M的轨迹方程.

高考能力测试数学基础训练25答案 一、1.D 2.A 3.D 二、4.x =1或4x -3y +5=0 5.x 2+y 2-3ax -3ay +2a 2=0 三、6.5 4)56()513(22=-++y x 提示:求得直线与圆的交点A (-5 2,511),B (-3,2),利用圆的直径式方程得所求圆方程为.5 4)56()513(.0)2)(52()3)(511(22=-++=--+++y x y y x x 即 7.C =3 提示:联立直线与圆方程,消去x 得5y 2-20y +12+C=0. 由Δ>0?c <8. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4,y 1y 2=5 12C +. x 1·x 2=(3-2y 1)(3-2y 2)=-15+5 4(12+C ). OP ⊥OQ ?x 1x 2+y 1y 2=0?C =3. 满足C <8. ∴C =3为所求. 8.(1)略;(2)60°或120° (3)x 2+y 2-x -2y +1=0(x ≠1) 提示:(1)l 方程化为y -1=mx ,

直线的参数方程教案

直线的参数方程 教学目标: 1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想. 3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度. 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t(数轴上的点坐标)与点在直角坐标系中的坐标,x y之间的联系. 教学方式:启发、探究、交流与讨论. 教学手段:多媒体课件. 教学过程: 一、回忆旧知,做好铺垫 教师提出问题: 1.曲线参数方程的概念及圆与椭圆的参数方程. 2.直线的方向向量的概念. 3.在平面直角坐标系中,确定一条直线的几何条件是什么? 4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程.

5.如何建立直线的参数方程? 这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考. 【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备. 二、直线参数方程探究 1.回顾数轴,引出向量 数轴是怎样建立的?数轴上点的坐标的几何意义是什么? 教师提问后,让学生思考并回答问题. 教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M 的坐标为t ,那么: ①OA u u u r 为数轴的单位方向向量,OA u u u r 方向与数轴的正方向一致,且OM tOA =u u u u r u u u r ;②当OM u u u u r 与OA u u u r 方向一致时(即OM u u u u r 的方向与数轴正方向一致时),0t >; 当OM u u u u r 与OA u u u r 方向相反时(即OM u u u u r 的方向与数轴正方向相反时),0t <; 当M 与O 重合时,0t =; ③||OM t =u u u u r .教师用几何画板软件演示上述过程. 【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备. 2.类比分析,异曲同工 问题:(1)类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴? (2)把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?

(完整word版)椭圆基础训练题.doc

椭圆基础训练题 1.已知椭圆长半轴与短半轴之比5:3,焦距是 8,焦点在 x 轴上,则此椭圆的标准方程是()(A) x2 y2 1 (B) x2 y2 1 (C) x2 y2 1 (D) x2 y2 1 5 3 25 9 3 5 9 25 2. 已椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是() ( A )1 (B) 2 (C) 3 (D) 3 2 2 2 3 3.椭圆mx2 y2 1 的离心率是 3 ,则它的长半轴的长是()2 ( A ) 1 (B) 1 或 2 (C ) 2 (D) 1 或 1 2 4. 已知椭圆的对称轴是坐标轴,离心率 e 2 ,长轴长为6,那么椭圆的方程是()3 (A) x 2 y 2 1 (B) x 2 y 2 x 2 y 2 1 36 20 36 20 1或 36 20 (C ) x2 y2 1 (D) x2 + y2 =1或 x2 y2 1 5 9 9 5 5 9 5. 椭圆25x2 16 y2 1的焦点坐标是() ( A )( 3,0) (B) ( 1 , 0) (C) ( 3 , 0) (D) (0, 3 ) 3 20 20 x2 y2 1 上的动点,过 P 作椭圆长轴的垂线PD,D 是垂足, M 是 PD 6. P( x, y)是椭圆 9 16 的中点,则M 的轨迹方程是() (A) x2 y2 1 (B) x2 y2 1 (C) x2 4 y2 1 (D) x2 y2 1 4 9 64 9 16 9 16 36 7. 椭圆 4x2 9 y2 144 内有一点 P(3, 2) ,过P点的弦恰好以P 为中点,那么这条弦所在的直线方程是()。 A. 3x 2 y 12 0 B. 2x 3y 12 0 C. 4x 9 y 144 0 (D) 4x 9 y 144 0 8. 椭圆 x 2 y2 1 的焦距等于()。 32 16 (A ) 4 (B) 8 (C) 16 (D) 12 3 9. F 是椭圆的一个焦点,BB '是椭圆的短轴,若BFB ' 是等边三角形,则椭圆的离心 率e 等于 ( ). ( A )1 (B) 1 (C) 2 (D) 3 422 2

极坐标和参数方程-一轮复习

教学内容 【知识结构】 知识点一:极坐标 1.极坐标系 平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。 2.极坐标系内一点的极坐标 平面上一点到极点的距离称为极径,与轴的夹角称为极角,有序实数对 就叫做点的极坐标。 3. 极坐标与直角坐标的互化 当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;③长度单位相同),平面上一个点的极坐标和直角坐标有如下关系: 直角坐标化极坐标:; 极坐标化直角坐标:. 此即在两个坐标系下,同一个点的两种坐标间的互化关系. 知识点三:参数方程 1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数: ,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).

相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。 知识点四:常见曲线的参数方程 1.直线的参数方程 (1)经过定点,倾斜角为的直线的参数方程为: (为参数); 其中参数的几何意义:,有,即表示直线上任一点M到定点的距离。(当在上方时,,在下方时,)。 (2)过定点,且其斜率为的直线的参数方程为: (为参数,为为常数,); 其中的几何意义为:若是直线上一点,则。 2.圆的参数方程 (1)已知圆心为,半径为的圆的参数方程为: (是参数,); 特别地当圆心在原点时,其参数方程为(是参数)。 (2)参数的几何意义为:由轴的正方向到连接圆心和圆上任意一点的半径所成的角。 (3)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。 3. 椭圆的参数方程

高中数学必修二-圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 解法一:(待定系数法) 解法二:(直接求出圆心坐标和半径) 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程. 说明:圆相切有内切、外切两种. 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程. 分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上. 例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程. 分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.

类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解. 本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解). 例 6 两圆0111221=++++F y E x D y x C :与02222 22=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程. 分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧. 例7、过圆12 2=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。 练习: 1.求过点(3,1)M ,且与圆2 2 (1)4x y -+=相切的直线l 的方程. 2、过坐标原点且与圆02 5 242 2 =+ +-+y x y x 相切的直线的方程为 3、已知直线0125=++a y x 与圆022 2=+-y x x 相切,则a 的值为 . 类型三:弦长、弧问题 例8、求直线063:=--y x l 被圆042:2 2=--+y x y x C 截得的弦AB 的长.

相关文档
最新文档