二面角求解方法

二面角求解方法
二面角求解方法

教师: 学生: 年级: 科目: 课次: 时间: 年 月 日 内容: 二面角求解方法总结

二面角的作与求

求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。下面就对求二面角的方法总结如下:

1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。

2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。

3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。

4、投影法:利用s

投影面

=s

被投影面

θcos 这个公式对于斜面三角形,任意多边形都成立,

是求二面角的好方法。尤其对无棱问题

5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos

例1:若p 是ABC ?所在平面外一点,而PBC ?和ABC ?都是边长为2的正三角形,

PA=6,求二面角P-BC-A 的大小。

分析:由于这两个三角形是全等的三角形, 故采用定义法

解:取BC 的中点E ,连接AE 、PE

AC=AB ,PB=PC ∴

AE ⊥ BC ,PE ⊥BC

∴PEA ∠为二面角

P-BC-A 的平面角

P

C

B

A

E

在PAE ?中AE=PE=3,PA=6

∴PEA ∠=900

∴二面角

P-BC-A 的平面角为900。

例2:已知ABC ?是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。 [思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。

解1:(三垂线定理法)

取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ?平面PAC

∴平面

PAC ⊥平面ABC, 平面PAC 平面ABC=AC

∴BE ⊥平面

PAC

由三垂线定理知BF ⊥PC

∴BFE ∠为二面角

A-PC-B 的平面角

设PA=1,E 为AC 的中点,BE=

23,EF=4

2

∴tan BFE ∠=

6=EF

BE

∴BFE ∠=argtan 6

解2:(三垂线定理法)

取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FM

AB=AC,PB=PC ∴

AE ⊥BC,PE ⊥BC

∴ BC ⊥平面PAE,BC ?平面PBC

平面PAE ⊥平面PBC, 平面PAE 平面PBC=PE

P

C A

E

F M

E

P

C

B

A

F

图1

由三垂线定理知AM ⊥PC

∴FMA ∠为二面角

A-PC-B 的平面角

设PA=1,AM=

22,AF=7

21

.=PE AE AP

∴sin FMA ∠=

7

42=AM AF ∴FMA ∠=argsin

7

42

解3:(投影法)

过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ?平面PAC

∴平面

PAC ⊥平面ABC, 平面PAC 平面ABC=AC

∴BE ⊥平面

PAC

∴PEC ?是PBC ?在平面

PAC 上的射影

设PA=1,则PB=PC=2,AB=1

4

1

=

?PEC S ,47=

?PBC S

由射影面积公式得,77

cos

arg ,77=∴==??θθPBC PEC S S COS , 解4:(异面直线距离法)

过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=

2

2

,PB=PC=2 ∴BE=

PC S PBC 2

1?=414,CE=42,DE=42

由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =

7

7cos arg ,77=∴θ P

C

B

A

E

E

P

C

B

A D

图3

图4

[点评]本题给出了求平面角的几种方法,应很好掌握。

例3:二面角βα--EF 的大小为 120,A 是它内部的一点,AB ⊥α,AC ⊥β,B 、C 为垂足。

(1) 求证:平面ABC ⊥α,平面ABC ⊥β

(2) 当AB=4cm,AC=6cm 时求BC 的长及A 到EF 的距离。 分析:本题采用作棱的垂面法找二面角的平面角 解:(1)设过 ABC 的平面交平面α于BD,交平面β于CD

AB ⊥α,AB ?平面ABC

平面ABC ⊥α,同理平面ABC ⊥β

(2) AB ⊥α

∴AB ⊥EF

同理AC ⊥EF

∴EF ⊥平面ABDC

∴BD ⊥EF,

CD ⊥EF

∴BDC ∠= 120

∴ 60=∠BAC

∴BC=72606426422=??-+ COS cm

有正弦定理得点A 到EF 的距离为:d=

321

460sin =

BC cm α F

E

《二面角的求法》

一、教材依据:二面角的求法 二、设计思想:

A

B

C β

D

1、教材分析:

现行的高中数学教材中,对于立体几何中几何体这一部分有两种处理方案,一种是用传统的方法进行研究,另一种是采用向量为工具来进行研究,两种方法各有优点。采用传统的研究方法对逻辑推理能力的提高似更有好处,而以向量为工具来进行研究可以使有的问题更简捷,是一种新的研究思路。在教学中我们学校选用的是传统的演绎方法。

对空间对角的研究是很必要的,是定量刻画线线、线面、面面位置关系的手段。教材在三节中分别介绍两条直线所成的角、直线和平面所成的角和平面与平面所成的角。三种角的研究方法有共同之处:都是最终转化为平面上的角,并且三种角的定义都与日常经验相符,角的大小是唯一的。

在立体几何中,对角的研究可以分成两步来进行:一是先根据定义找到所要求的角,二是通过计算提出要求的角。

2、学情分析:

现有知识储备

学生通过一段时间的学习,对于立体几何的研究内容、研究方法有了一定的

了解。对于求角思路和方法基本掌握。

现有能力特征

具有一定空间想象能力,有把知识进行一步系统化,及等价转化、分类讨论

等数学思想方法的。

现有知识不足(1)对题目中所给的几何关系认识不清,识图能力不够;

(2)录求角的过程易忽略角的定义,从而导致所找的角不准确;

(3)运算能力不够。在找到角以后要通过平面几何的运算来求角,此时易出现运算错误。

3、选题目的:

湖南高考数学试题注重考查学生运用基础知识和数学基本方法的解题能力,近几年湖南高考大题涉及二面角的较多,这一专题目的是对二面角的一般求法和特殊方法作一个总结,使学生对它有一个全面的认识,同时对他们灵活运用这些方法解决相关问题提出一定的要求。

4、教学说明及教具使用:

这节课计划通过师生的双边活动在问题解决以及反思过程中,总结求二面角的一般方法及特殊方法,并将这些方法在一题多解时加以灵活运用。这一节课的教学设计,注重对学生思维能力的培养,静态视频信息比较多,又大量使用动态视频信息,故采用传统的板书加现代化多媒体教学辅助手段。

5、设计理念

学生为本,重视思维发生的过程,重视数学概念的形成过程,激发学生的学习兴趣,有意识培养学生的学习毅力。让学生学习有趣的数学,学习有用的数学,充分体现数学的应用价值、思维价值和人文价值。

三、教学目标:

知识目标——通过一系列问题的解决,总结出二面角的几种求法,使学生对二面角的各种解法有一个全面的认识。

能力目标——通过一题多解,训练学生灵活运用所学知识及基本方法解决问题的能力,培养学生的发散思维及数学直觉,以便学生在今后解决有关问题时能够选择恰当的方法。培养学生逻辑思维能力、空间想象能力、运算能力。

情感目标——通过平面和空间两个命题的类比及论证,培养学生数学思维的严谨性和对问题的探就能力。情感态度价值观:使学生在解决问题的过程中感受数学美,体会数学思想方法在学习中的应用。

四、教学重难点:

教学重点是各种角的求法; 教学难点是角的寻求方法的选择。

点评:二面角是立体几何中最重要的章节。二面角中的内容综合了线面垂直,三垂线定理及其逆定理和异面直线所成角等较多的知识点,是高考的热点和难点。在总结时,若能够引导学生进行对解二面角的问题进行探究和总结,对提高学生的数学思想方法是有帮助的,对提高学生灵活运用所学的也有很重要的作用。

五、教学过程: 一、复习引入:

1、什么是二面角及其平面角?范围是什么?

①从一条直线出发的两个半平面所成的图形叫做二面角,记作:二面角α—l —β。

②以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。 ③范围: [0,]θπ∈

点评:学生带着问题走进课堂,激发学生求知欲 2、二面角出现的状态形式有哪些?

竖立式 横卧式

点评:有序而巧妙的多媒体图象显示,激发了学生的兴趣。 2、二面角的类型及基本方法 (1)四种常规几何作求法

ω

θβ

l

α

n

n

定义法 垂面法;

三垂线法; 射影面积法cos θ=S 射影多边形/S 多边形

点评:根据内容,本节课选用的教学手段是多媒体及常规教学用具。对各种方法下角的形成过程通过多媒体展示,便于学生理解。在授课过程中,采用在课上作图的办法,便于对所出现的不同思路和想法进行研究,增加了课堂的灵活性。 (2)向量法:

①设m 和n 分别为平面βα,的法向量,二面角βα--l 的大小为θ,向量

m 、n 的夹角为ω,如图:

结论①:设m 和n 分别为平面βα,的法向量,二面角βα--l 的大小为θ,向量 m 、n 的夹角为ω,则有

θωπ+=或 θω=

结论②:一般地,若设m n ,分别是平面βα,的法向量,则平面α与平面β所成的二面角θ的计算公

式是:m

n m n ??=arccos θ 时)当二面角为锐角、直角(

或m

n m n ??-=arccos πθ 当二面角为钝角时)(,其

中锐角、钝角根据图形确定。

点评:寻找和求作二面角的平面角是解二面角问题的关键,这也是个难点。在从图形中作出二面角的平面角时,要结合已知条件来对图形中的线线、线面和面面的位置关系先进行分析,确定有哪些是平行、垂直的或者是特殊的平面图形,然后运用这些的有关性质和二面角的平面角的定义进行找出二面角的平面角。所以解关于二面角问题需要有很好的对线线、线面和面面的位置关系的分析判断能力。而在求作二面角的平面角的方法主要有三种:定义法、三垂线法、垂面法、射影面积法、向量法。至于在求解有关平面角的问题时,这平面角通常是在三角形中,所以常要用到解直角三角形和斜三角形的知识,这包括正弦和余弦定理的知识,也会用到其它的平面几何知识。

ωθβ

l

α

n

n

二、例题讲解:

以锥体为载体,对求角的问题进行研究

例1、如图,在底面是一直角梯形的四棱锥S-ABCD 中, AD ∥BC,∠ABC=90°,SA ⊥平面AC ,SA=AB=BC=1,

AD=2

1 .求面SCD 与面SAB 所成的角的大小。

解法1:可用射影面积法来求,这里只要求出S △SCD 与S △SAB 即可, 故所求的二面角θ应满足cos θ=

=1

112

12322

????=6

3 。

点评:(1)若利用射影面积法求二面角的大小,作为解答题,高考中是要扣分的,因为它不是定理.(2)由学生讨论解决,教师根据学生的解答情况进行引导、明确学生的解答。

解法2:(三垂线定理法)

解:延长CD 、BA 交于点E ,连结SE ,SE 即平面CSD 与平面BSA 的交线. 又∵DA ⊥平面SAB ,∴过A 点作SE 的垂线交于F .如图. ∵AD =2

1BC 且AD ∥BC ∴△ADE ∽△BCE ∴EA =AB =SA

又∵SA ⊥AE ∴△SAE 为等腰直角三角形,F 为中点,

2

22221===

SA SE AF 又∵DA ⊥平面SAE ,AF ⊥SE ∴由三垂线定理得DF ⊥SE ∴∠DFA 为二面角的平面角, ∴tan DFA =

2

2

=

FA DA 即所求二面角的正切值. 评注:常规法求解步骤:一作:作出或找出相应空间角;二证:通过简单的判断或推理得到相应角;三求:通过计算求出相应的角。

点评:是利用三垂线的定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法。这种方法关键是找垂直于二面角的面的垂线。此方法是属于较常用的。总之,在运用三垂线找平面角时,找垂线注意应用已知的条件和有关垂直的判定和性质定理,按三垂线的条件,一垂线垂直二面角的一个面,还有垂直于棱的一条垂线。且两垂线相交,交点在二面角的面内。

解法3:(向量法)

A

C

D 图1

S

D

C

B

A

解:如图,建立空间直角坐标系,则A(0,0,0),B(0,1,0),C(-1,1,0),D(0,2

1,0),S(0,

0,1),易知平面SAB 的法向量为m =(0,2

1,0);设平面SDC 的法向量为n =(x ,y ,z),而DC =(-1,2

1,

0),DS =(0,1

2

-, 1),∵n ⊥面SDC ,∴n ⊥DC ,n ⊥DS ,n 1⊥DC .

∴???00n DC n DS ?=?=得10

2102

x y y z ?-+=????-+=??

令1x =得:2,y =1z =。即n =(1,2,1) ∵面SAB 与面SCD 所成角的二面角为锐角θ,

cos ,n m ∴<>=

m n

m n ?=1

162

?=36

∴θ=arccos 3

6.

故面SCD 与面SBA 所成的角大小为arccos 3

6.

点评:通过此例可以看出:求二面角大小(空间面面角等于二面角或其补角)的常规方法是构造三角形求解,其关键又是作出二面角的平面角,往往很不简单。利用建立空间直角坐标系,避开了“作、证”两个基本步骤,通过求两个平面法向量的夹角来达到解决问题的目的,解题过程实现了程序化,是一种有效方法。搭建平台,自主交流,数形结合,扫清了学生的思维障碍,更好地突破了教学的重难点,体验数学的简约美,一题多解是训练学生思维的有效形式。

以柱体为载体,对求角的问题进行研究

例2、已知D 、E 分别是正三棱柱ABC 一A 1B 1C 1的侧棱AA 1和BB 1

上的点,且A 1D=2B 1E=B 1C 1.求过D 、E 、C 1的平面与棱柱的下底面所成二面角的大小.

(几何法)解:在平面M 1B 1B 内延长DE 和A 1B 1交于F ,则F 是面DEF 与面A 1B 1C 1的公共点,C 1也是这两个面的公共点,连结C 1F ,C 1F 为这两个面的交线,所求的二面

角就是D-C 1F-A 1. ∵A 1D ∥B 1E ,且A 1D=2B 1E , ∴E 、B 1分别为DF 和A 1F 的中点. ∵A 1B 1=B 1F=B 1C 1,∴FC 1⊥A 1C 1.

又面AA 1C 1C ⊥面A 1B 1C 1,FC 1在面A 1B 1C 1内, ∴FC 1⊥面AA 1C 1C.而DC 1在面AA

1C 1C 内,

S

D

C

B

A

A

B C

C 1 Q

D 1

A 1

B 1

P x

y

z D

∴FC 1⊥DC 1.∴∠DC 1A 1是二面角D-FC 1-A 1的平面角.

由已知A 1D=B 1C=A 1C 1,∴∠DC 1A 1=4π.故所求二面角的大小为4π

.

法2:(向量法)

解:建立如图的空间直角坐标系A xyz -,设112B C =,则1(3B ,1,0),E(3,1,1),1C (0,2,0),D(0,0,2),易知平面A 1B 1C 1的法向量为n =(0,0,1), 设平面DEC 1的法向量为m =(x ,y ,z), 而DE =(3,1,-1),1

DC =(0,2,-2),由

100m DE m DC ??=??

?=??∴30220x y z y z ?+-=??-=?

?即y z =,不妨设0x =,得1y z ==∴m =(0,1,1)cos ,n m ∴<>=

22

∵面A 1B 1C 1与面DEC 1所成角的二面角为锐角θ,

4

π

θ∴=

点评:无棱的二面角一般是只已知一个共点,但两个面的交线不知道。若要找出二面角的平面角,则需要根据公理2或公理4来找出二面角的棱,化为有棱二面角问题,再按有棱二面角的解法解题。这种主要有两类:一类是分别在两个面内有两条直线不是异面又不是平行的二面角(两条在同一平面内且不平行)。那么延长这两条线有一交点,根据公理2,这点在二面角的棱上,连公共点和这点就是二面角的棱;另一类是分别在两个面内有两条直线是平行的二面角。这由直线和平面平行的判定和性质定理知这直线和面平行,所以直线平行于二面角的两个面的交线。由公理4,可知这两条直线平行于二面角的棱。所以过公共点作一条直线平行于这两直线,那么所作的直线是二面角的棱。

课堂反馈练习:

如图, 直四棱柱ABCD-A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AD ⊥DC ,CD=2,DD 1=DA=AB=1,P 、Q 分别是CC 1、C 1D 1的中点,求二面角B-PQ-D 的大小。

解:建立如图所示的坐标系D---xyz ,,则

())1,1,0(),2

1

,2,0(,0,1,1Q P B ,A(1,0,0),

).1,0,1(),21

,1,1(),0,0,1(-=-==BQ BP DA

因DA ⊥面PQD ,所以DA 是面PDQ 的法向量。设),,(z y x n =为面BPQ 的法 向量,则BQ n BP n ⊥⊥,,

,0

2

1?????=+-=++-∴z x z y x 解得???==y z z x 2, 取n =(2,1,2),

∴ cos 3

2

,=

??=

DA

n DA n DA n 。 从图中可知,二面角B-PQ-D 为锐角, 因此二面角B-PQ-D 的大小为3

2

arccos .

点评:二面角问题可以综合较多知识点,可以综合有关的平行、垂直的关系。用到的定理几乎是我们所学立几的知识。所以要有较扎实的基础知识才能够对付得了这类问题。在计算方面要用到解三角形的知识,要会在图中有关的三角形中求出所需的边或角,然后通常归结在一个三角形中去求出最后的结果。总的,解这类题,找平面角是关键的一步,要注意运用题中的条件分析图形,然后用有关的方法找出平面角,计算时要分析所要求的量是可由图中的哪些平面图形去逐步去求出。

三、课堂小结:

二面角的类型和求法可用框图:

点评:自主小结的形式将课堂还给学生,既是对一节课的简单回顾与梳理,也是对所学内容的再次巩固。

四、作业:

如图,正三棱柱111C B A ABC -的底面边长为3,侧棱32

3

1=

AA ,D 是CB 延长线上一点,且BC BD =。求二面角B AD B --1的大小。

解: 取BC 的中点O ,连AO 。由题意 平面⊥ABC 平面11B BCC ,BC AO ⊥,∴⊥AO 平面11B BCC ,则 )(32

3

,

0,0A ,以O 为原点,建立如图6所示空间直角坐标系,

)(0,0,23B ,)(0,0,29D ,)(0,32

3,231

B , ∴ )(32

3

,0,29-=AD , )(0,323,31-=D B ,

)(0,323

,

01=BB ,)(0,32

3

,

01=BB 为由题意 ⊥1BB 平面ABD , ∴

C B 1

B

O A 1

D

C 1

z

A

y

x

平面ABD 的法向量。设平面D AB 1的法向量为 ),,(2z y x n =,则 ?????⊥⊥D B n AD

n 122, ∴

????

?=?=?0

122D B n AD n , ∴ ??

???=-=-0

3233032329

y x z x ,即 ????

?

==

x

z y x 3323。 ∴ 不妨设 )23,1,23(2=n ,由 2

1

232

3

323

|

|||,c o s 212121=

?=

??>=

=

点评:作业分为三种形式,体现作业的巩固性和发展性原则。阅读作业中的问题思考是后续课堂的铺垫,而弹性作业不作统一要求,供学有余力的学生课后研究,它也是新课程标准里研究性学习的一部分。

三、设计说明:

1、教学设计是教师在新课程理论指导下,创造性地安排教学程序,选择和确定教学措施,高质量高效益地完成教学任务,实现教学目标的具体的教学实施方案。它是以先进的教育教学理念为依据,对教学过程中的各种因素进行分析,以期达成教学目标的系统化的设计与传统的备课相比,教学设计更注意理论和实践的结合,更强调教学情境的策划和教学手段的运用,更具有灵活性和创造性。

2、课改新理念下的教学组织形式时间和空间上应该是开放的,如利用多媒体或图书馆等教学资源在课上和课下研究函数问题。在教学组织上还可以采用小组分工合作方式,真正做到师生互动,生生交流。教师在教学设计时要根据不同的课型,充分考虑学生的特点灵活设计,必要时也可与学生共同设计。

3、本章教学内容的要求与现行高考的要求距离较远,而学生知识现状与课本要求较高之间的矛盾也较突出。学生原有的运算能力、分析想象问题的能力直接制约着本章的学习。这不仅与初中数学内容的衔接、学习方法有较大变化有关,而且与知识更新力度较大有关,使大部分学生不太适应本章的学习,在本章中很难达到预期要求。

点评:1、“以学生为本”的教育观是教学设计的根本指导思想。学生通过“经历”,“体会”,“感受”,最后形成概念的过程学习,充分体现了学生为本的现代教育观;练习和作业的分层设计尽量满足多样化的学习需求做到因材施教。但在具体实施中,分寸的把握需视情况而定。

2、在难点的突破上采取了有效的分解策略。

(1)宏观上的三类探究符合学生认知规律;(2)微观上的4步探究有效分解、突破重难点;(3)情景贯穿始终,兴趣伴随学习;(4)充分利用现代多媒体技术,数形结合分解难点。

3、形式和内容得到统一,具有很强的可操作性。

各类探究中,形式和内容和谐统一,教师指导及时、到位,具有很强的可操作性。

(完整版)二面角求解方法

二面角的作与求 求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。下面就对求二面角的方法总结如下: 1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。 2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。 3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。 4、投影法:利用s 投影面 =s 被投影面 θcos 这个公式对于斜面三角形,任意多边形都成立, 是求二面角的好方法。尤其对无棱问题 5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos 例1:若p 是ABC ?所在平面外一点,而PBC ?和ABC ?都是边长为2的正三角形, PA=6,求二面角P-BC-A 的大小。 分析:由于这两个三角形是全等的三角形, 故采用定义法 解:取BC 的中点E ,连接AE 、PE Θ AC=AB ,PB=PC ∴ AE ⊥ BC ,PE ⊥BC ∴PEA ∠为二面角 P-BC-A 的平面角 在PAE ?中AE=PE=3,PA=6 P C B A E

∴PEA ∠=900 ∴二面角P-BC-A 的平面角为900。 例2:已知ABC ?是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。 [思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。 解1:(三垂线定理法) 取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF Θ⊥PA 平面ABC ,PA ?平面PAC ∴平面 PAC ⊥平面ABC, 平面PAC I 平面ABC=AC ∴BE ⊥平面 PAC 由三垂线定理知BF ⊥PC ∴BFE ∠为二面角A-PC-B 的平面角 设PA=1,E 为AC 的中点,BE= 23,EF=4 2 ∴tan BFE ∠= 6=EF BE ∴BFE ∠=arctan 6 解2:(三垂线定理法) 取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FM ΘAB=AC,PB=PC ∴ AE ⊥BC,PE ⊥BC ∴ BC ⊥平面PAE,BC ?平面PBC ∴ 平面PAE ⊥平面PBC, 平面PAE I 平面PBC=PE 由三垂线定理知AM ⊥PC P C B A E F M E P C B A F 图1 图2

2013高中数学立体几何二面角问题求解方法大全

五法求二面角 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面 ABCD 为矩形,SD ⊥底面ABCD ,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD , 60ABC ∠=?,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的 E —A F —C 的余弦值. 二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 例2.(2009山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。 (1)证明:直线EE 1//平面FCC 1; (2)求二面角B-FC 1-C 的余弦值。 练习2(2008天津)如图,在四棱锥ABCD P -中,底面ABCD 是矩形. 已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 例3(2008湖南)如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°, E 是CD 的中点,P A ⊥底面ABCD ,P A =2. (Ⅰ)证明:平面PBE ⊥平面P AB ; (Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)的大小. 练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。 (1)求证:AC 1⊥BC ; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 四、射影面积法(cos s S q = 射影) 凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜 射S S = θ )求出二面角的大小。 例4.(2008北京理)如图,在三棱锥P ABC -中,2AC BC ==,90 ACB ∠=, AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; A B C E D P A C B P E A B C F E A B C D D A 1 D 1 B 1 C 1 E D B C A 图5

专题二:二面角的五种方法

专题二:二面角的五种方法 一、定义法:由图形的特殊条件按定义直接作出. 例1.如图, 过正方形ABCD的顶点A作P A⊥平面ABCD, 设P A=A B=a,求二面角B-PC-D 的大小. 例2.二面角α-BC-β大小为120°, A∈α,B∈β, 且AB⊥BC,BC⊥CD, AB=BC=CD=1, 求二面角A-BD-C的正切值. 二、垂面法:通过作二面角棱的垂面, 此垂面与二面角的两个面所交的两条射线构成的角就是这个二面角的平面角. 例3.⑴空间三条射线P A,PB,PC不共面, 若∠APC=∠APB=60°,∠BPC=90°, 则二面角B-P A-C的大小是______; ⑵已知∠AOB=90° , 过O点引∠AOB所在平面的斜线OC, 使它与OA,OB分别成45°,60°的角, 则二面角A-OC-B的余弦值为______. 例4.如图, 在△ABC中, AB⊥BC, SA⊥平面ABC, DE垂直平分SC, 且分别交AC,SC 于D,E, 又SA=AB, SB=BC, 求二面角E-BD-C的大小. 三、延伸法:若所求的两个面只有一个公共点是已知的, 所以要把两个面延伸面得到二面角的棱, 然后再求出它的平面角. 例5.直角梯形ABCD中, AB⊥AD, AD⊥CD, AB=2, CD=4, 平面P AD⊥平面ABCD, △PBC是边长为10的正三角形, 求平面P AD和平面PBC所成二面角的大小. 例6.设正方体ABCD-A1B1C1D1中, E为AA1中点, 求平面B1DE和底面ABCD所成二面角的大小. 四、垂线法:利用三垂线定理或其逆定理作出平面角. 例7.已知由O点出发的三条射线OA,OB,OC不共面,且∠AOB=∠AOC, 求证:二面角A-OB-C与二面角A-OC-B相等. 例8.二面角M-CD-N中, A为平面M上一定点, △ADC的面积为定值S, DC=a, B为 平面N内一点, AB⊥CD, 若AB与平面N成30°角;求△BCD面积的最大值, 并求此时二面角M-CD-N的大小. 五、射影法:若多边形面积为S, 它在一个平面上的射影的面积为S0, 则多边形所在平面与这个平面

用三垂线法求二面角地方法(新)

用三垂线法求二面角的方法 三垂线定理:平面内的一条直线,如果和这个平面内的一条斜线的射影垂直,那么它也和这条斜线垂直。 已知:如图, PB 是平面α的斜线, PA 是平面α的垂线, 直线a ?平面α,直线a 垂直;射影AB. 求证: a ⊥PB 证明:∵PA 是平面α的垂线, 直线a ?平面α ∴直线a ⊥PA 又∵直线a ⊥AB AB ?PA A = ∴直线a ⊥平面PAB 而PB ?平面PAB ∴a ⊥PB 总结:定理论述了三个垂直关系,①垂线PA 和平面α垂直;②射影AB 和直线a 垂直;③斜线PB 和直线a 垂直. 三垂线定理揭示了一个平面和四条直线所构成的三种垂直关系的内在联系,是线面垂直的性质,在立体几何中有广泛的应用。求二面角是高考考查的热点,三垂线法是求二面角最常用的方法,应用好定理的关键是实现斜线与其在面内射影垂直关系的转化,因此寻找垂线、斜线及其射影至关重要。 运用三垂线法求二面角的一般步骠: ①作:过二面角的其中一个平面上一点作(找)另一个平面的垂线,过垂足作二面角的棱的垂线。. ②证:证明由①所得的角是二面角的平面角(符合二面角的定义) 。 ③求: 二面角的平面角的大小(常用面积相等关系求垂线段长度) 。 1、如右图所示的四面体ABCD 中,AB ⊥平面BCD ,BC CD ⊥且1BC CD == ,AD =①求二面角 C AB D --的大小;②求二面角B CD A --的大小; 1.解: ①∵AB ⊥面BCD ∴BC AB ⊥ BD AB ⊥ ∴CBD ∠为二面角C AB D --的平面角 ∵BC CD ⊥且1BC CD ==∴CBD ∠=4 π ∴二面角C AB D --的大小为 4 π ②∵AB ⊥面BCD BC CD ⊥ ∴由三垂线定理得CD AC ⊥ ∴ACB ∠为二面角B CD A --的平面角 ∵BC CD ⊥ ∴BD = =∵AB ⊥平面BCD ∴AB BC ⊥ AB BD ⊥ ∴1AB = =在Rt ABC ?中,tan 1AB ACB BC ∠= =, ∴二面角B CD A --的大小为 4 π 方法点拨:本题①的方法是直接运用二面角的定义求解,本题②的关键是找出垂线 AB 、斜线AC 及 其射影BC,。从而得到二面角的平面角为ACB ∠。 A B D C

推荐-二面角求法大全 精品 精品

二面角求法之面面观 求解二面角是立体几何中最基本、最重要的题型,也是各地高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题. 总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事. 1 定义法 即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.定义法是“众法之源”,万变不离其宗,“树高千尺,叶落归根”,求二面角的一切方法盖源出定义这个“根”!. 例1 正方体ABCD-A 1B 1C 1D 1中,求二面角A-BD-C 1的正切值为 . 分析与略解:“小题”不必“大做”,由图1知所求二面角为 二面角C-BD-C 1的“补角”.教材中根本就没有“二面角的补角” 这个概念,但通过几何直观又很容易理解其意义,这就叫做直觉 思维,在立体几何中必须发展这种重要的思维能力.易知∠COC 1 是二面角C-BD-C 1的平面角,且tan ∠COC 1=2。 将题目略作变化,二面角A 1-BD-C 1的余弦值为 . 在图1中,∠A 1OC 1是二面角A 1-BD-C 1的平面角,设出正方体的棱长,用余弦定理易求得 cos ∠A 1OC 1= 3 1 例2(20XX 年江苏试题)如图2(1),在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 上的点,满足AE : EB=CF :FA=CP :BP=1:2.如图2(2),将△AEF 折起 到△A 1EF 的位置,使二面角A 1-EF-B 成直二面角,连 接A 1B 、A 1P. (Ⅰ)与(Ⅱ)略;(Ⅲ)求二面角B-A 1P-F 的余弦值。 分析与略解:在例1中,图形的对称和谐状态对解题产生了很好的启迪作用,在这里更离不开图形的这种对称和谐性.若取BP 的中点Q ,连接EQ ,则在正三角形ABC 中,很容易证得△BEQ ≌△ PEQ ≌△PEF ≌△AEF ,那么在图2(2)中,有A 1Q=A 1F.作FM ⊥A 1P 于M ,连接QH 、QF ,则易得△A 1QP ≌△A 1FP ,△QMP ≌△FMP ,所以∠PMQ=∠PMF=90o ,∠QMF 为二面角B-A 1P-F 的平面角,使题解取得了突破性的进展.设正三角形的边长为3,依次可求得A 1P=5,QM=FM=5 5 2,在△QMF 中,由余弦定理得cos ∠QMF=8 7- 。 练习:20XX 广东高考理18.(本小题满分13分) 如图5.在锥体P-ABCD 中,ABCD 是边长为1的菱形, 且∠DAB=60?,2PA PD == ,PB=2, E,F 分别是BC,PC 的中点. D B 1 图1 A O A 1 C B D 1 C 1 O 1 M A F A 1 Q P B C E C B P E F 图2(2) 图2(1) Q

二面角的几种方法及例题

二面角大小的求法(例题) 二面角的类型和求法可用框图展现如下: 一、定义法: 直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. O OA PA OB PAOB OA AOB AOB=120APB=60OB PB PB βαβ⊥⊥∴⊥⊥⊥∴⊥∴⊥∠∠?∠?做交线,交于点,连接平面交线同理交线又交线交线面交线即可得为面的二面角,所以 例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。 提示:PAB PCD ?,而且是直角三角形 P

二、三垂线定理法: 已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的tag 大小。 A AH BC BC H PH ABCD PA AB PA BC PHA PHA H ABH=30AB=a AH=a/2 tag PHA 2 PA BC AB ⊥⊥∴⊥⊥∴⊥∴∠∠?∴∴∠=过做,交于,连接面,面为二面角在中 , 例:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 提示:CO ⊥DE ,而且是长方体!!! p A B L H A B C D A 1 B 1 C 1 D 1 E O

求二面角的五种方法

五法求二面角 从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份, 并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,0 60=∠ABM ∴△ABM 是等边三角形,∴3= BF 在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG F G

二面角的几种求法

Aβ在V A OC中,OC=a,O A=a,AC=a,.. 二面角的几种求法 河北省武安市第一中学李春杰056300 摘要:在立体几何学习中,求二面角的大小是一个重点,更是一个难点。在每年的高考中,求二面角的大小,几乎成了必考的知识点,但学生却对这个知识点不太熟练,不知从何入手,更不能站在一个高度去求二面角。因而我们将一些求角的方法加以归纳、总结,从而更好更准确地解决问题。 关键词:二面角平面角三垂线定理空间向量 在高考中,立体几何占的分值比较大,学生觉得在学习的过程中有一定的难度,他们觉得,立几中要记的定义,定理,方法和基本图形比较多,再加上还要运用空间想象和空间思维能力,因此,空间立体几何对他们来说,真的有一定的难度。我们将有关二面角大小的方法加以归纳,为的是在以往有关解答此类问题时能有一定的解题技巧、方法,以便得心应手地面对各种有关的题型。 一:二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角α-l-β的棱上任取一点O,分别在两个半平面内作射线AO⊥l,BO⊥l,则∠AOB为二面角α-l-β的平面角。 α A B l 二:二面角的通常求法:O O B 1.利用定义作出二面角的平面角,并设法求出其大小。 例1、如图,空间四边形ABCD中,AB=BC=CD=DA=a,对角线AC=a,BD=2a.求二面角A-BD-C的大小。 解:取BD的中点为O,分别连接AO、CO Q AB=AD,BC=CD ∴AO⊥BD,C O⊥BD ∴∠A OC为二面角A-BD-C的平面角 Q AB=AD=a,BD=2a A ∴AO=2 2 a Q BC=CD=a,BD=2a 2 ∴OC=a 2B O D 22 22 OA2+OC2=AC2 ∴∠A OC=900 即二面角A-BD-C为900的二面角 C

五种方法求二面角及练习题

五种方法求二面角及练习题 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 1.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求: (1)二面角C 1—BD —C 的正切值(2)二面角11B BC D -- 2.如图,四棱锥中,底面为矩形,底面,, ,点M 在侧棱上,=60,M 在侧棱的中点 (1)求二面角的余弦值。 二、三垂线法:三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。 1. 如图,在直四棱柱ABCD-A B C D 中,底面ABCD 为等腰梯形,AB//CD , AB=4, BC=CD=2, AA =2, E 、E 、F 分别是棱AD 、AA 、AB 的中点。 (1) 证明:直线EE //平面FCC ;(2)求二面角B-FC -C 的余弦值。 S ABCD -ABCD SD ⊥ ABCD AD 2DC SD ==SC ABM ∠SC S AM B --1111111111E A B C F E 1 A B 1 C 1 D D A B C D A D C B

2.如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知 60,22,2,2,3=∠====PAB PD PA AD AB . (Ⅰ)证明⊥AD 平面PAB ; (Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小. 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决 1.已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。 (1)求证:AC 1⊥BC ; (2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。 2:如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值. 3如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中 点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ; (Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小. 角的平面角(锐角). A B C E D P A B B 1 C 1 A 1 L A 1 D 1 B 1 C 1 E D B C A 图5

求二面角的方法收集

二面角 一.二面角的平面角的定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱 的两条射线,这两条射线所成的角叫做二面角的平面角 二.二面角的平面角的特点:① 顶点在棱上;② 两条边分别在两个平面内;③ 与棱都垂 直。 三.二面角的平面角的范围:( ]0 0180 ,0∈α 四.求二面角的平面角的方法:1.定义法(或垂面法) 图 A 2.三垂线法 图B 3.射影面积法 图C 典型例题: 方法一:定义法 1. 已知090=∠AOB ,过点O 引AOB ∠所在平面的斜线OC 与OA ,OB 分别成045, 60角,求二面角B OC A --的大小。 b a P 图A R Q P 图C 图B B A Q P

2.D 是ABC ?所在平面外一点,连接a AB CD BD AD 2,,,= , a CD BD AD BC AC =====,则二面角B CD A --的余弦值是_________________. 3.如图,正方体1111D C B A ABCD -中,E 为棱1CC 的中点,那么截面BD A 1和截面EBD 所成的二面角为______________ 4.在ABC ?中,ABC ,平面⊥⊥SA BC AB ,DE 垂直平分SC ,且分别交SC AC ,于E D ,,又BC SB AB SA ==,,求二面角C BD E --的大小。 O C B A E D1 B1 C1 A1 D C B A S E D C B A

5.如图,正方体1111D C B A ABCD -的棱长为1,P 是AD 的中点,求二面角P BD A --1的大小。 6.如图,已知点P 为正方体1111D C B A ABCD -的棱11B A 的中点,求二面角1D AC P --的余弦值。 方法二:三垂线法: 7.如图所示,平面⊥ABC 平面ABD CB CA ACB ABD ?==∠,,90,0 是正三角形,则二 面角A BD C --的平面角的正切角为___________________ ( 3 3 2) D1 B1 C1 A1 D C B A P D1 B1 C1 A1 D C B A P

求二面角的基本方法

求二面角的基本方法 ——定义法与法向量法 一、 在所给立体图形中直接寻找:看是否有二面角的平面角;寻找平面角的主要依据是根据二面角的平面角的主要特征——顶点在棱上,角的两边分别在两个半平面内且都与棱垂直(或角所在平面垂直于棱)。 例1 如图1,在三棱锥S —ABC 中,SA ⊥底面ABC,AB ⊥BC .DE 垂直平分SC,且分别交AC 、SC 于D 、E.又SA =AB,SB =BC.求以BD 为棱,以BDE 与BDC 为面的二面角的度数. 解析 由于SB =BC,且E 是SC 的中点,因此BE 是等腰三角形 SBC 底边SC 的中线,所以SC ⊥BE. 又已知SC ⊥DE,BE ∩DE =E, ∴SC ⊥面BDE,∴SC ⊥BD. 又∵SA ⊥底面ABC,BD 在底面ABC 上,∴SA ⊥BD. 而SC ∩SA =S,∴BD ⊥面SAC. ∵DE =面SAC ∩面BDE,DC =面SAC ∩面BDC, ∴BD ⊥DE,BD ⊥DC. ∴∠EDC 是所求的二面角的平面角. ∵SA ⊥底面ABC,∴SA ⊥AB,SA ⊥AC.设SA =a, 又因为AB ⊥ BC, ∴∠ACS =30.又DE ⊥SC, 所以∠EDC =60°即所求的二面角等于60°. 二.根据定义作出平面角:主要有两种作法,一是对于具有某种对称性立体图形,可以考虑利用定义,在棱上选择一点作棱的垂面,与两个半平面的交线所构成的角即为平面角;二是在其中一个半平面内选择一点M 向另一个半平面引 1 图

垂线(垂足为H ),过H 向棱l 引垂线(垂足为N ),由三垂线定理可知l PN ⊥,则PNH ∠即为平面角(或其补角)。 例2 如图2,正三角形ABC 的边长为3,过其中心G 作BC 边的平行线,分别交AB 、AC 于1B 、1C .将11C AB ?沿11C B 折起到111C B A ?的位置,使点1A 在平面C C BB 11上的射影恰是线段BC 的中点M .求:二面角M C B A --111 的大小。 解析 连接AM ,A 1G ,∵G 是正三角形ABC 的中心, 且M 为BC 的中点, ∴A ,G ,M 三点共线,AM ⊥BC(图3) . ∵B 1C 1∥BC ,∴B 1C 1⊥AM 于G ,即GM ⊥B 1C 1, GA 1⊥B 1C 1,∴∠A 1GM 是二面角A 1—B 1C 1—M 的平面角. ∵点A 1在平面BB 1C 1C 上的射影为M , ∴A 1M ⊥MG ,∠A 1MG=90°。在Rt △A 1GM 中,由 A 1G=AG=2GM 得∠A 1GM=60°,即二面角A 1— B 1 C 1—M 的大小是60°。 对于“无棱”二面角(即棱未明显给出)的常规求法是: 先找(或作)出棱,再找(或作)出平面角后求解,还可考 虑使用射影面积公式S S 射影 =θcos ,这里给出下述两例: 例3 如图4,在底面是直角梯形的四棱锥S—ABCD 中, ∠ABC=90°,SA⊥面ABCD , SA =AB =BC=1, AD=21.求面SCD 与面SBA 所成的二面角的正切值. 解析 延长BA 、CD 相交于点E ,连结SE ,则SE 是所 2图3图4 图

二面角的计算(方法加经典题型)

二面角的求法 (1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。注:o 点在棱上,用定义法。 (2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。注:o 点在一个半平面上,用三垂线定理法。 (3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。注:点O 在二面角内,用垂面法。 (4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ S A 图3 α β O B l O 图5 β α C B A

例题讲解 1、(本小题满分14分)如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱 PD ⊥底面,,ABCD PD CD E =是PC 的中点,作EF PB ⊥交PB 于点F 。 (I )求证://PA 平面EDB ; (II )求证:PB ⊥平面EFD ; (III )求二面角P BC D --的大小。 2、 如图1-125, PC ⊥平面ABC ,AB =BC=CA =PC ,求二面角B -PA -C 的平面角的正切值。(三垂线定理法) 3.在棱长为1的正方体1AC 中, (1)求二面角11A B D C --的大小的余弦值; (2)求平面1C BD 与底面ABCD 所成二面角1C BD C --的平面角大小 的正切值。 18、(本题满分14分) 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,, 60ABC ∠=°,PA AB BC ==,E 是PC 的中点. (Ⅰ)求PB 和平面PAD 所成的角的大小; (Ⅱ)证明⊥AE 平面PCD ; (Ⅲ)求二面角A PD C --的正弦值. O 1 A 1 C 1 D 1 B 1 D C B A A C D P E

找二面角的平面角的方法汇总

找二面角的平面角的方法汇总 二面角是高中立体几何中的一个重要内容,也是一个难点.对于二面角方面的问题,学生往往无从下手,他们并不是不会构造三角形或解三角形,而是没有掌握寻找二面角的平面角的方法. 我们试将寻找二面角的平面角的方法归纳为以下六种类型. 一、根据平面角的定义找出二面角的平面角 例 1 在 60的二面角βα--a 的两个面内,分别有A 和B 两点.已知A 和B 到棱的距离分别为2和4,且线段10=AB ,试求: (1)直线AB 与棱a 所构成的角的正弦值; (2)直线AB 与平面α所构成的角的正弦值. 分析:求解这道题,首先得找出二面角的平面角,也就是找出 60角在哪儿.如果解决 了这个问题,这道题也就解决了一半. 根据题意,在平面β内作a AD ⊥;在平面α内作α⊥BE ,EB CD //,连结BC 、AC .可以证明a CD ⊥,则由二面角的平面角的定义,可知ADC ∠为二面角βα--a 的平面角.以下求解略. 二、根据三垂线定理找出二面角的平面角 例2 如图,在平面β内有一条直线AC 与平面α成 30,AC 与棱BD 成 45,求平面α与平面β的二面角的大小. 分析:找二面角的平面角,可过A 作BD AF ⊥;⊥AE 平面 α,连结FE .由三垂线定理可证EF BD ⊥,则AFE ∠为二面角 的平面角. 总结:(1)如果两个平面相交,有过一个平面内的一点与另一 个平面垂直的垂线,可过这一点向棱作垂线,连结两个垂足.应用 三垂线定理可证明两个垂足的连线与棱垂直,那么就可以找到二面角的平面角. (2)在应用三垂线定理寻找二面角的平面角时,注意“作”、“连”、“证”,即“作 BD AF ⊥” 、“连结EF ”、“证明BD EF ⊥”. 三、作二面角棱的垂面,垂面与二面角的两个面的两条交线所构成的角,即为二面角的平面角 例3 如图1,已知P 为βα--CD 内的一点,α⊥PA 于A 点,β⊥PB 于B 点,如果 n APB =∠,试求二面角βα--CD 的平面角. 分析:⊥?⊥?⊥⊥?⊥CD CD PB PB CD PA PA βα平面PAB . 因此只要把平面PAB 与平面α、β的交线画出来即可.证明AEB ∠为βα--CD 的平面角, n AEB -=∠180(如图2). 注意:这种类型的题,如果过A 作CD AE ⊥,垂足为E ,连结EB ,我们还必须证明 图1 图2

求二面角方法定义法

二面角——1定义法 二面角 二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,作出二面角的平面角,有时亦可直接运用射影面积公式(设二面角的度数为θ,则侧面三角形 射影三角形S S = θcos ,多用于求无棱二面角)求出二面角的 大小。求二面角的大小的基本方法为先证后算,即先由有关立几结论找出二面角的平面角(大多数题是用三垂线法去找),然后借助于解三角形求出平面角.现将二面角大小的求法归类分析如下: 定义法: 利用二面角的平面角定义,在二面角棱上取一点(特殊点),过该点在两个半平面内作垂直于棱的射线、两射线所成角就是二面角的平面角.用定义法时,要认真观察图形的特性 1.如图,四面体ABCD 的棱BD 长为2 ,求:二面角A -BD -C 、B -AC -D 的大小 A B D

解析:(1)取BD 的中点O ,连AO 、OC 在ΔABD 中,∵AB =AD = BD =2, ∴ΔABD 是等腰直角三角形,AO ⊥BD , 同理OC ⊥BD ∴∠AOC 是二面角A -BD -C 的平面角。 又AO =OC =1,AC ∴∠AOC =90° 即二面角A -BD -C 为直二面角。 (2)取AC 的中点E ,连BE 、DE ∵AB =BC ,AD =DC ,∴BD ⊥AC ,DE ⊥AC , ∴∠BED 就是二面角的平面角 在ΔBDE 中,BE =DE =2 由余弦定理,得1cos 3 α=- 2.在四棱锥P -ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA =AB =a ,求二面角B -PC -D 的大小。 A B C D O E P B A D

二面角的计算方法精讲

图1 二面角的计算方法精讲 二面角是高中数学的主要内容之一,是每年高考数学的一个必考内容,本文主要通过一些典型的例子说明二面角的三种基本计算方法,供同学们学习参考。 一 、直接法:即先作出二面角的平面角,再利用解三角形知识求解之。通常作二面角 的平面角的途径有: ⑴定义法:在二面角的棱上取一个特殊点,由此点出发 在二面角的两个面内分别作棱的垂线; ⑵三垂线法:如图1,C 是二面角βα--AB 的面β内 的一个点,CO ⊥平面α于O ,只需作OD ⊥AB 于D ,连接CD ,用三垂线定理可证明∠CDO 就是 所求二面角的平面角。 ⑶垂面法:即在二面角的棱上取一点,过此点作平面γ,使γ垂直于二面角的棱,则γ 与二面角的两个面的交线所成的角就是该二面角的平面角。 例1 如图2,在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形, 平面V AD ⊥底面ABCD . (1)证明AB ⊥平面V AD ; (2)求面V AD 与面VDB 所成的二面角的大小. 解:(1)证明: V A D A B C D A B A D A B V A D A B A B C D A D V A D A B C D ⊥? ?⊥??⊥????=? 平面平面平面平面平面平面 (2)解:取VD 的中点E ,连结AF ,BE , ∵△V AD 是正三形,四边形ABCD 为正方形, ∴由勾股定理可知, BD VB,= == ∴AE ⊥VD ,BE ⊥VD , ∴∠AEB 就是所求二面角的平面角. 又在Rt △ABE 中,∠BAE=90°, AB ,

因此,tan ∠AEB= .3 3 2=AE AB 即得所求二面角的大小为.33 2arctan 例2 如图3,AB ⊥平面BCD ,DC ⊥CB ,AD 与平面 BCD 成30°的角,且AB=BC. (1)求AD 与平面ABC 所成的角的大小; (2)求二面角C-AD-B 的大小; (3)若AB=2,求点B 到平面ACD 的距离。 解:(1) ∵AB ⊥平面BCD , ∴∠ADB 就是AD 与平面BCD 所成的角,即∠ADB=300,且CD ⊥AB , 又∵DC ⊥BC ,AB BC B = , ∴ CD ⊥平面ABC , ∴ AD 与平面ABC 所成的角为∠DAC , 设AB=BC=a,则AC=a 2, BD=acot300=a 3,AD=2a, a BC BD CD 222=-=, ∴ tan ∠DAC=122== a a CD AC , ∴ 0 45=∠DAC , 即,AD 与平面ABC 所成的角为450. (2)作CE ⊥BD 于E ,取AD 的中点F ,连CF , ∵ AB ⊥面BCD ,ABD AB ?面, ∴ 面ABD ⊥面BCD , 又∵ 面ABD 面BCD=BD ,BCD CE ?面,CE ⊥BD , ∴ CE ⊥面ABD , 又∵AC=BC=a 2,AF=FD ,∴AD ⊥EF , 有三垂线定理的逆定理可知,∠CFE 就是所求二面角的平面角. 计算可知, BC CD CE BD ?=,2AD a,==1 2 CF AD a ==, ∴ CE sin CFE CF ∠= =,∴∠. 故,所求的二面角为

二面角的求法---三垂线法

” 三垂线法作二面角的平面角的技巧求二面角的大小是考试中经常出现的问题,而用三垂线法作二面角的平面角是求二面角大小的一个重要方法,许多同学在解题过程中由于没有有效地利用三垂线定理(或逆定理)作出二面角的平面角,使得解题受阻.我们把用三垂线定理(或逆定理)作二面角的平面角的方法称为三垂线法,其作图模型为: 如图1,在二面角α—l一β中,过平面α内一点A作AO⊥平面β,垂足为O,过点O作OB⊥l于B(过A点作AB⊥于B),连结AB(或OB),由三垂线定理(或逆定理)知AB⊥l(或OB⊥l),则∠ABO为二面角。α—l—β的平面角.作图过程中,作出了两条垂线AO与OB(或AB),后连结AB两点(或OB两点),这一过程可简记为“两垂一连,其中AO为“第一垂线.“第一垂线”能否顺利找到或恰当作出是用三垂线法作二面角的平面角的关键,在具体解题过程中要注意以下几点: 1.善于利用图中已有的“第一垂线” 例1已知斜三棱柱ABC—A 1 B 1 C 1 中,∠BCA=90°,AC=BC,A 1 在底 面ABC的射影恰为AC的中点M,又知AA 1 与底面ABC所成的角为60°. (1)求证:BC⊥平面AA 1 CC 1 ; (2)求二面角B一AA 1 —C的大小. -可编辑修改-

的平面角.设 AC =BC = ,正△ a AA 1C 的边长 为 a ,所以 CN = 3 a ,在 Rt△ ” ” 剖析:注意该题的第(1)问,事实上本题已经暗示了 BC 就是我们要寻求 的“第一垂线. 略解 2 A 1A 与底面 AB 成的角为 60°,所以∠A 1AC =60°,又 M 是 AC 中点,所以 △AA 1C 是正三角形,作 CN ⊥AA 1 于 N ,点 N 为 A 1A 的中点,连 结 BN ,由 BC ⊥平面 AA 1CC 1,BN ⊥AA 1,则∠BNC 为二面角 B 一 AA 1 一 C 2 BNC 中,tan∠BNC = BC = a = 2 3 ,即∠BNC = arctan 2 3 . NC a 3 3 3 2 例 2 如图 3,在底面是直角梯形的四棱锥 S —ABCD 中,∠ABC =90°, SA ⊥面 ABCD ,SA =AB =BC =1,AD = 1 2 (1)求四棱锥 S —ABCD 的体积; (2)求面 SCD 与面 SBA 所成的二面角的正切值. 剖析:由 SA ⊥面 ABCD 及∠ABC =90°,不难发现,BC 即为“第一垂线, 但是,本题要作二面角的平面角,还需首先作出二面角的棱. 略解 2 延长 BA 、CD 相交于点 E ,连结 SE ,则 SE 是所求二面角的棱, 因为 AD ∥BC ,BC =2AD ,所以 EA =AB =SA ,所以 SE ⊥SB ,因为 SA ⊥面 ABCD , 得面 SEB ⊥面 EBC ,EB 是交线,又 BC ⊥EB ,所以 BC ⊥面 SEB ,故 SB 是 CS 在面 SEB 上的射影,所以 CS ⊥SE ,所以∠BSC 是所求二面角的平面角, 因为 SB = SA 2 + AB 2 = 2 ,BC =1,BC ⊥SB ,因为 tan∠BSC = = BC = 2 ,即所 SB 2 求二面角的正切值为 2 . 2 -可编辑修改-

解二面角问题三种方法(习题及答案)

C A D A A 1 B D C C 1 B 1 解二面角问题 (一)寻找有棱二面角的平面角的方法和求解。 (1)定义法:利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。下面举几个例子来说明。 例1:如图,立体图形V -ABC 的四个面是全等的正三角形,画出二面角V -AB -C 的平面角并求出它的度数。 例2:在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。 这样的类型是不少的,如下列几道就是利用定义法找出来的: 1、在正方体ABCD -A 1B 1C 1D 1中,找出二面角B -AC -B 1的平面角并求出它的度数。 2、.边长为a 的菱形ABCD ,∠ACB=600,现沿对角线BD 将其折成才600的二面角,则A 、C 之间的距离为 。(菱形两条对角线互相垂直,对折后的一条对角线成两条线段仍都垂直于另一条对角线,则所成的角是二面角的平面角) 3、正三棱柱ABC —A 1B 1C 1的底面边长是4,过BC 的一个平面与AA 1交于D ,若AD =3,求二面角D ―BC ―A 的正切值。 总之,能用定义法来找二面角的平面角的,一般是图形的性质较好,能够较快地找到满足二面角的平面角的三个主要特征。并且能够很快地利用图形的一些条件来求出所要求的。在常见的几何体有正四面体,正三棱柱,正方体,以及一些平面图形,正三角形,等腰三角形,正方形,菱形等等,这些有较好的一些性质,可以通过它们的性质来找到二面角的平面角。至于求角,通常是把这角放在一个三角形中去求解。由图形及题目的已知条件来求这个三角形的边长或者角,再用解三角形的知识去求解。

二面角求法及经典题型归纳

二面角求法归纳 18题,通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。 以下是求二面角的五种方法总结,及题形归纳。 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,0 60=∠ABM ∴△ABM 是等边三角形,∴3= BF 在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 222-=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

相关文档
最新文档