从单元操作到分离过程_姜忠义

从单元操作到分离过程_姜忠义
从单元操作到分离过程_姜忠义

2005年11月Nov.2005化 学 工 业 与 工 程

CHEMICAL INDUS TRY AND ENGINEERING 第22卷 增刊Vol.22 Supplement

收稿日期:2005-10-31

作者简介:姜忠义(1966-),男,天津大学化工学院教授。联系人:姜忠义,E -mail:zhyjian g @https://www.360docs.net/doc/a614499816.html, 。

文章编号:1004-9533(2005)增刊-0056-04

从单元操作到分离过程

姜忠义,吴 洪,唐韶坤,刘家祺,李士雨

(天津大学化工学院,天津300072)

摘要:Arthur Little 首次提出的单元操作的概念包括了分离混合物的一系列不同的方法,在化学工程科学的发展中具有重要贡献。随着科学技术的不断发展,最初的单元操作以及后继出现的单元操作逐步交叉、渗透和融合而形成了相对独立的分离过程领域。本文主要介绍从单元操作到分离过程的这种发展和演变历史,对单元操作与分离过程加以比较,并强调分离过程课程开设的重要性和必要性:筛选适宜的分离剂、选择和设计优化的分离方法和技术、降低分离过程的能耗、开发新的分离方法。

关键词:分离过程;单元操作;比较;发展历史

From Unit Operation to Separation Processes

JIANG Zhong -yi,W U Hong,TANG Shao -kun,LIU Jia -qi,LI Sh-i yu

(School of Chemical Engineering and Technology,Tianjin Universi ty,Tianjin 300072,China)

1 前言

目前,分离过程逐渐形成了一个具有鲜明工程技术特点的相对独立的领域,在工业过程中得到越来越广泛的应用。欧美日和我国等许多国家高校的本科生和研究生培养方案中均设置了分离过程作为专业课。20世纪90年代起,美国化学工程师协会(AIChE)就开始下设分离过程分会,美国化学会(ACS)开始下设两个分离科学与技术分会。世界各地每年都要召开分离过程领域的多个学术会议。为满足科学研究成果交流的需要,创办了多种有关分离过程领域的专门学术期刊,如Separation and Purification Methods,Separation and

Purification

Technology;Separation Science and Technology,Journal of

Membrane

Science,

Journal

of

Chromatography;

Adsorption,Solvent E xtraction and Ion Exchange,Fluid Phase Equilibria,Journal of Supercritical Fluids 等等。

而30多年以前的情形却不是这样,分离过程尚未形成一个专门的领域,单元操作概念则处于绝对

的支配地位。分离过程之所以能够发展成为一个专

门的领域主要是由于下述原因:单元操作分类逐渐明晰。新型分离方法不断出现; 三传 特别是质量

传递研究日益深入;许多最初仅用于分析的方法逐步成为能够用于分离的方法;工业化和大规模的分离技术的需求与日俱增;化学工业正在迅速向着绿色化方向发展。而对分离过程发展起到推动作用的历史事件当推第二次世界大战期间的Manhattan 工程中同位素分离方法的研究。因此可以说,绝大多数的单元操作演变为分离过程领域可以看作化学工程发展历史的一个缩影。

2 单元操作

[1]

2 1 单元操作概念的提出

1950年Bro wn 等人这样描述了单元操作概念的起源:单元操作尽管人们在19世纪90年代末期就有所认识,但正式的提出则是在1915年,Arthur Little 博士在给麻省理工学院校长的报告中写到:任何化工过程,不管其规模多大多小,都可以认为由一

系列可以称为 单元操作 的过程所组成。这些 单元操作 包括干燥、结晶、过滤、蒸发和电解等等。由于当时科学技术的发展水平所限,这些单元操作的数量并不多,在一个具体的化工过程中也可能只会用到它们中的一些。

根据Little博士的定义,单元操作可以看作化工过程中的一个个通用的构建模块,它们可以按照不同的需要被组装到各个具体的过程中。各种单元操作的内在特性在不同的应用场合基本相同,只是具体的操作条件和设备条件会有所区别。

2 2 单元操作概念的发展过程

2 2 1 从教科书看单元操作概念的发展过程

麻省理工学院的Walker、Lewis和McAdams撰写的 化学工程原理 于1923年正式出版。这是第一本基于Little的观点来系统讲述单元操作概念的教材。该书的主要内容包括:流体流动、传热、燃烧、加热炉、气体发生装置、挤压和研磨、过滤、蒸发、蒸馏、吸收、萃取、增湿、空气调节和干燥。书中涉及了6种单元操作。

另一本关于单元操作的教科书,是由美国密歇根大学的George Granger B ro wn和他的多位同事于1950年编写完成的。他们把单元操作按照物质的状态加以分类:首先是涉及固相分离的单元操作,然后是涉及液相和气相分离的单元操作,接下来讲述了包括多种分离方法的多级操作,最后是传热和传质。Lehigh大学的Foust和他的同事们在1962年编写了一本类似的教科书。该书中把单元操作分为平衡级操作和速率操作,两者均以动量传递、热量传递和质量传递为基础。Macabe和Smith于1956年、1967年、1976年编著的教科书以及Harriott于1985年和1993年编著的教科书沿用多年,这两本书的体系与前述教科书基本相同,只不过把单元操作按照流体力学、热量传递及其应用、质量传递及其应用,含有固体粒子的操作等。这些教科书都是把单元操作分为流体流动、传热和传质,也就是人们非常熟悉的 三传 。

在 Mass Transfer Operations 一书中,Treybal把传质操作从 三传 中独立出来系统论述。由于大多数的分离过程是基于相平衡,因此该书的大部分内容是讨论平衡分离过程。首先讨论了扩散和传质,然后是气-液操作、液-液操作和固-液操作。Sher wood、Pigford和Wilke等在传质的基础理论和操作原理方面进行过深入的阐述。2 2 2 从级联理论及分析化学、色谱和分离科学发展看单元操作的发展过程

1)级联理论及其相关概念的提出:在分离任务中,经常会遇到一些待分离物系的分离因子接近于1的情形,采用级联操作往往不可避免。前面提到的第二次世界大战期间的Manhattan工程中就迫切需要同位素的分离特别是高纯U235和氘的分离方法,由于当时这些分离用到了许多平衡级和能量,因此促使人们开始注意并努力开发新型分离方法。在三传理论的指导下对候选的分离方法进行筛选以获得设备费、操作费和能量费用尽可能节约的过程设计。GE公司的Karl Cohen、Kellogg公司的Manson Benedict提出了级联理论的概念,并指出理想级联下指速率分离过程如气体扩散或热扩散等所需级数最少、能耗也最低。

针对同位素分离开发出的速率分离过程的特点是:过程为不可逆,根据组分通过一个 障碍物 的传递速度的不同实现分离,从原料到产品没有相变发生。显然,这些速率分离过程与Foust提出的速率过程有所区别。Benedict把级联理论扩展到 潜在可逆 和 部分可逆 的平衡分离过程以及在精馏过程中普遍存在的方块级联。理想级联和方块级联的最本质区别是理想级联在各级之间都有回流,而方块级联则在中间各级之间没有回流。归纳一下可以看出,Cohen、Benedict等人在同位素分离方面的工作已经提出了许多有用的概念,其中包括对于分离过程中能量需求理论以及 有用能 概念; 潜在可逆 、 部分可逆 和 不可逆 过程的明确区分;理想蒸馏的概念,设置中间回流、中间冷凝器和中间再沸器、热偶合等可以有效节约精馏过程的能耗。

应当指出,精馏塔热偶合的概念同时也得益于空气分级精馏过程的发展。 潜在可逆 、 部分可逆 和 不可逆 过程现在分别被称为加入能量分离剂、质量分离剂的平衡分离过程和速率分离过程。

2)分析化学、色谱和分离科学:众所周知,分离在分析化学中一直占据重要位置,无论是定性分析还是定量分析。历史上,用于分析化学的分离方法与用于化工过程的分离方法有着很大的差别。造成这种差别的原因主要有:定量分析中要求完全清晰的分离,不太考虑分离过程的成本和规模,而成本和规模等对于化工过程则是不可回避的决定因素。这样就会遇到一些情形,有些分离方法在分析化学中广泛使用,而在化工过程中则很少或者根本没有使

57

2005年11月化工高等教育教学改革与课程建设研讨会论文集

用。当然,有不少分离方法在化工过程和分析化学均使用,如溶剂萃取。

20世纪40年代至60年代间产生了气相色谱和液相色谱分离方法。迄今为止,已经成为化学分析的普遍方法。受过程的固有特性制约,传统的色谱分离处理能力非常小,从而阻碍了色谱技术在化工过程中的大量应用。然而,由于色谱分离温和的操作条件和很高的选择性,色谱分离可以用来进行生物分子的分离纯化,而不会引起生物分子的变性;加之色谱处理能力的不断提高,色谱分离在化工过程中的应用越来越多。

另一种值得一提的是膜分离过程。自从Leob-Sourirajan成功研制出用于海水和苦咸水纯化的不对称醋酸纤维素膜以来,膜分离技术得到迅速的发展。

3 分离过程[2~4]

现在让我们把目光转向从单元操作和传质操作到分离过程的发展过程。

Bird、Ste wart和Lightfoot撰写的 传递现象 (Transport Phenomena)的出版对于分离过程和技术的发展起了很大的促进作用,该书出版不久,有关传递现象的课程就开始陆续开设,课程的内容包括流体力学、热量传递和质量传递等。

此外,专门介绍每一种分离方法的教科书相继出版。比较著名的教科书有Robinson Gilliland (1922,1930,1939,1950)Hengstebeck(1961)Van Winkle(1967)关于精馏方面的教科书,Treybal (1951,1963)有关萃取的教科书、Sher wood和Pigford (1937,1952)有关吸收和萃取的教科书、Mantell (1945,1951)有关吸附的教科书和Helfferich(1962)有关离子交换的教科书。显然,如果只把每一种分离方法中的传递现象分别认识,而忽略其内在联系,那么对于各种单元操作之间的内在联系和共性规律就会难以把握。因此,有必要开设一门涉及多种分离方法或全部分离方法的课程 分离过程。

20世纪60年代,出版了几本更为综合性的分离过程专著。Hanson(1962)和Holland(1963)提出了关于精馏和萃取过程的数值计算法(严格计算法)。B Smith提出了二元物系的多级精馏、共沸和萃取精馏、吸收和萃取的设计和分析方法。Oliver (1966)以石化工业中的常用分离过程为研究对象,将相平衡、工艺过程和设备的计算方法和选择原则等进行了系统阐述。

1967年Pratt主编了第一本综合性论述分离过程原理的专著。建立在Cohen和Benedict等人的级联理论、分离最小功和有用能损失等的基础上,Pratt 对平衡分离过程和速率分离过程进行了详细比较,对于二元精馏进行了广泛和深入的分析。与此同时,King于1971和1980年两次编写了 分离过程 (Separation Processes)一书。该书概括了各种常见的分离方法;解释了多级操作和逆流的依据,逆流过程、错流过程和并流过程的特点和处理能力;介绍了固定床和洗脱色谱方法。分别讨论了关于二元和多元组分的单级和多级精馏过程的分析解法、图解法和数值解法。受Hengstebeck的启发,King采用普遍化的McCabe-Thiele图解法来求解多级分离过程(包括多组分精馏和多组分的非精馏过程)的组成变化。以Benedict和Pratt等人的工作为基础,King的书中还专门设了一章讲述分离过程的能量需求,包括过程可逆性、有用能消耗等。该书还对分离方法的选择、分离顺序的选择和优化设计等内容作了介绍。Seader于1998年编写了 separation process principles ,就工业过程中广泛应用的平衡级分离过程和速率分离过程的原理、特点以及应用进行了非常系统的描述,目前,该书在许多国家得到使用。

近年来,Sc hweitzer、Rousseau等还分别编写了分离技术方面的手册和专著。对工业生产中的分离设备、各种分离过程及其选择等进行了详尽的阐述。

分离过程形成一个独立领域与下面两个事件不无关系:1984年华裔科学家、美国工程院院士Norman Lee组织召开的分离技术工程基础会议和1987年美国国家研究院的研究报告 分离和纯化:迫切需要和现实机会 。1991年美国化学工程师协会把国家项目委员会(National Progra m Committee)中的第二组由单元操作组更名为分离组,从而标志着单元操作向分离过程的过渡。

概括起来,分离过程与单元操作的主要区别在于:分离过程侧重分离方法的共性规律,而单元操作则侧重分离方法的个性规律;分离过程侧重多组分非理想物系,而单元操作则多侧重二元理想物系。从哲学的观点,两者之间显然具有不可割裂的关系。把分离过程作为一个独立领域对于提高单元操作的能力和效率都有帮助,原因如下:1)用来分析和提高不同分离过程中达到的分离程度的方法是相似的。

58

化工高等教育教学改革与课程建设研讨会论文集2005年11月

2)许多分离设备应用的分离原理相同,比如逆流操作和多级操作的概念就具有很强的通用性。3)以分离过程的知识为基础,把握分离过程的共性,对于从候选的分离方法中选择出完成特定分离任务需要的适宜方法以及确定合理的分离序贯是很有帮助的。

4)把握分离过程的共性对于分离过程可以帮助我们设计、筛选和制备出完成特定分离任务的质量分离剂。5)对于各种分离方法的分析比较帮助我们了解某一或某些分离过程的极限,从而选择确定出合适的分离方法,判断分离方法的可用性与否。6)对于分离过程的共性理解促进了新型分离方法的开发。这方面的例子有Othmer等人开发的特殊精馏, Gidding等人开发的场分离方法,以及目前非常热门的膜分离方法。7)对于分离过程的共性规律的认识可以使我们把分离过程应用到不同的场合和规模,从分析性分离、制备性分离到大规模的工业分离,同时有助于改善设计和操作条件以获得更高的分离程度,节约能量,降低设备费。

4 结束语

分离过程近年来得到了快速发展,新型分离技术不断被开发出来,分离过程的应用领域也在不断拓宽,从石油化工到生物、环境、医药工业、食品、能源等等。

对于大学教育来说,分离过程是为数不多的带有纯粹工程特点的课程。同反应工程一样,分离过程是一门帮助化学工程与工艺(技术)专业的本科生和研究生建立工程观点和强化工程意识的很好的课程。

参考文献:

[1]McCABE W L,SMITH J C,HARRIOTT P.Unit Operations

of Chemical Engineering(6th ed)[M].McGraw-Hill,2001.

[2]SEADER J D,HE NLEY,ERNES T J.Separation Process

Principles(1st ed)[M].Wiley-VC H,1998.

[3]NOB LE R D,AGRAWAL R.Separations Research Needs for

the21s t Century[J].Ind Eng Chem Res(Commentary),

2005,44(9):2887-2892.

[4]刘家祺.分离过程[M].北京:化学工业出版社,2002.

59

2005年11月化工高等教育教学改革与课程建设研讨会论文集

化工单元操作

化工单元操作 作者:易卫国页数:324 出版:化学工业出版社ISBN:90232 上一个:化工制图习题集(第3版) 下一个:现代制造技术 化工单元操作 《化工单元操作》根据高职教育的特点、要求和教学实际,按照“工作过程系统化”课程开发方法,打破本科教材的常规,不再以传统的“三传”为主线来安排教学次序,而是将化工原理、化工装备、电器与仪表等课程的相关知识有机融合,以典型化工生产单元操作及其设备为纽带,进行理实一体化的模块化内容设计,且精简理论,删除繁琐的公式推导过程和纯理论型计算,放弃对过程原理及理论计算“过深、过细、过全、过难”的描述。 全书共分“流体流动及输送技术、传热技术(传热、冷冻)、分离技术(非均相物系的分离——沉降和过滤、蒸发、干燥、蒸馏、吸收、萃取、结晶、新型分离方法——膜分离和吸附)”三大模块,十一个子模块,各子模块均涵盖“技术应用”、“设备或流程认知”、“相关知识获取”、“操作方法”、“故障处理”、“安全生产”及“节

能”等内容,突出对学生工程应用能力、实践技能和综合素质的培养。 本教材可作为高职高专化工技术类及相关专业的教材,亦可供化工企业生产一线的工程技术人员参考。 绪论 任务一了解化工生产过程及单元操作 一、化工生产过程与单元操作 二、单元操作的分类 任务二了解本课程的性质、内容和课程目标 一、本课程的性质、内容 二、课程目标 任务三了解解决工程问题的基本思路和方法 任务四正确使用单位 一、单位和单位制 二、单位换算 习题 模块一流体流动及输送 任务一认知流体输送设备及管路 一、贮罐 二、化工管路 三、输送设备 任务二获取流体输送知识 一、流体的基本物理量 二、静力学方程式及其应用 三、连续性方程式及其应用 四、柏努利方程式及其应用 五、流体流动阻力及降低措施 六、流体的基本物理量的检测 任务三熟悉流体输送机械 一、液体输送机械 二、气体输送机械 任务四离心泵的操作 一、操作方法 二、故障分析及处理

化工生产单元操作设备简介

第三节化工装置基础与日常运行 化工生产过程中,化工装置的正常运行和安全生产是重中之重。任何化工生产装置都有与之相应的操作规程,以指导、组织和管理生产。 “三传一反”精辟概括了化工生产过程的本质。“三传”指化学工业中遵循共同的物理变化规律的三大基本单元操作,即动量传递、热量传递和质量传递过程;“一反”指化学反应。根据生产工艺要求,将若干单元有机组合起来,就构成了完整的化工生产过程。下面将简单介绍一些“三传一反”中的典型化工装置及日常运行和操作。一、流体输送装置 流体输送装置主要包括液体输送装置和气体的压缩与输送装置。 1.液体输送装置 液体输送装置统称泵。根据泵的工作原理和结构特征可划分为动力式泵、容积式泵、流体作用泵和其他类型泵等。动力式泵也称叶片式泵,包括离心泵、轴流泵和旋涡泵等,此类泵的压头随流量而变;容积式泵也称正位移泵,包括往复泵、隔膜泵、齿轮泵和螺杆泵等,此类泵的压头几乎与流量无关;流体作用泵是利用一种流体的作用来产生压力或真空环境,从而输送另一种流体的装置,如酸蛋、喷射泵、水锤泵和空气升液器等。 (1)离心泵 离心泵是典型的动力式泵,在化工生产中应用最为广泛。 ①离心泵的结构 离心泵的名称很形象,它是依靠离心力作用来输送流体的。 离心泵的主要构件有:叶轮、泵壳、轴封和泵轴等,见图1- 图1- 离心泵的结构 叶轮是离心泵中能量传递的部件,它的作用是将原动机的机械能传递给被输送的液体,以增加液体的静压能和动能。离心泵的叶轮可分为闭式、半闭式和开式三种,如图1- 所示。目前,大多数离心泵采用闭式叶轮,半开式和开式叶轮常用语输送含

有杂质的液体。 泵壳也称蜗壳,是离心泵的能量转化装置,它的作用是将叶轮提供的动能转化为静压能,并将叶轮甩出的液体收集起来导向泵的出口管或下一级叶轮。 轴封是用来封闭泵轴穿出泵壳处的间隙,以防止外界空气进入泵壳,或阻止泵内的高压液体泄漏到泵壳外面。轴封分为填料密封和机械密封两种类型,其中机械密封应用广泛。 ②离心泵的工作原理 启动前准备:开泵前,先在泵内灌满要输送的液体(灌泵)。同时关闭排出管路上的流量调节阀(出口阀),待电动机启动后,再打开出口阀。 泵的排液:启动后叶轮告诉旋转产生较强离心力,液体从叶轮中心被抛向外周,以很高的速度流向泵壳,部分动能转化为静压能,而以较高压力从排液口排出。 泵的吸液:当泵内液体从叶轮中心被抛向叶轮外缘时,在叶轮中心处形成低压区,液体在吸入液面与叶轮中心处的压强差的作用下,沿着吸入管连续不断地进入叶轮中心。其工作原理如图1- 所示。 离心泵无自吸能力,启动前需要灌泵,否则会发生气缚现象。 ③离心泵的特性曲线及应用 离心泵的主要参数有流量Q 、扬程(压头)H 、轴功率N 、有效功率e N 、效率 和转速n 等。 图1- 离心泵叶轮的类型 图1- 离心泵的工作原理

化工原理——其他化工单元操作过程

第八章其他化工单元操作过程 【例8-1】在中央循环管蒸发器内将NaOH水溶液由10%浓缩至20%,试求:(1)利用图8-2求50kPa时溶液的沸点。 (2)利用经验公式计算50kPa时溶液的沸点。 解:由于中央循环管蒸发器内溶液不断地循环,故操作时器内溶液浓度始终接近完成液的浓度。 从附录中查出压强为101.33kPa及50kPa时水的饱和温度分别为100℃及81.2℃,压强为50kPa时的汽化热为2304.5kJ/kg。 (1)利用图8-2求50kPa压强下的沸点50kPa压强下水的沸点为81.2℃,在图8-2的横标上找出温度为81.2℃的点,根据此点查出20%NaOH水溶液在50kPa压强下的沸点为88℃。 (2)利用经验公式求50kPa压强下的沸点用式8-5求20%NaOH水溶液的杜林线的斜率,即 k=1+0.142x=1+0.142×0.2=1.028 再求该线的截距,即 y m=150.75x2-2.71x=150.75×0.22-2.71×0.2=5.488 又由式8-4知该线的截距为 y m=t A′-kt w′=5.488 将已知值代入上式,得 t A′-1.028×81.2=5.488 解得t A′=88.96℃ 即在50kPa压强下溶液沸点为88.96℃。 由于查图8-2时引入误差,以及式8-5及式8-6均为经验公式,也有一定的误差,故二种方法的计算结果略有差异。 【例8-2】在单效蒸发器中每小时将5400kg、20%NaOH水溶液浓缩至50%。原料液温度为60℃,比热容为3.4kJ/(kg·℃),加热蒸汽与二次蒸汽的绝对压强分别为400kPa及50kPa。操作条件下溶液的沸点为126℃,总传热系数K o为1560W/(m2·℃)。加热蒸汽的冷凝水在饱和温度下排除。热损失可以忽略不计。试求: (1)考虑浓缩热时:①加热蒸汽消耗量及单位蒸汽耗量;②传热面积。 (2)忽略浓缩热时:①加热蒸汽消耗量及单位蒸汽耗量;②若原料液的温度改为30℃及126℃,分别求①项。 表8-1 蒸发器的总传热系数K值 蒸发器的型式 总传热系数W/(m2·℃) 水平沉浸加热式600~2300 标准式(自然循环)600~3000

化工单元操作的危险性分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 化工单元操作的危险性分 析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4251-72 化工单元操作的危险性分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 化工单元操作是指各种化工生产中以物理过程为主的处理方法,主要包括加热、冷却、加压操作、负压操作、冷冻、物料输送、熔融、干燥、蒸发与蒸馏等。 1 加热 加热是促进化学反应和物料蒸发、蒸馏等操作的必要手段。加热的方法一般有直接火加热(烟道气加热)、蒸汽或热水加热、载体加热以及电加热等。 (1)温度过高会使化学反应速度加快,若是放热反应,则放热量增加,一旦散热不及时,温度失控,发生冲料,甚至会引起燃烧和爆炸。 (2)升温速度过快不仅容易使反应超温,而且还会损坏设备,例如,升温过快会使带有衬里的设备及各种加热炉、反应炉等设备损坏。

(3)当加热温度接近或超过物料的自燃点时,应采用惰性气体保护;若加热温度接近物料分解温度,此生产工艺称为危险工艺,必须设法改进工艺条件,如负压或加压操作。 2 冷却 在化工生产中,把物料冷却在大气温度以上时,可以用空气或循环水作为冷却介质;冷却温度在15℃以上,可以用地下水;冷却温度在0~15℃之间,可以用冷冻盐水。 还可以借某种沸点较低的介质的蒸发从需冷却的物料中取得热量来实现冷却,常用的介质有氟里昂、氨等。此时,物料被冷却的温度可达-15℃左右。 (1)冷却操作时,冷却介质不能中断,否则会造成积热,系统温度、压力骤增,引起爆炸。开车时,应先通冷却介质;停车时,应先停物料,后停冷却系统。 (2)有些凝固点较高的物料,遇冷易变得黏稠或凝固,在冷却时要注意控制温度,防止物料卡住搅拌器或堵塞设备及管道。

完整版化工单元操作试题含答案

《化工单元操作》试题 使用教材:化工单元操作试题范围:全册 出版社:化学工业出版社版次:第一版 学校名称: 一、填空题 1.化工单元操作主要包括:机械过程、物质传递过程、热力过程、 、。 2反应系统的三大平衡指的是、、三大平衡。 3.流体的粘度随温度而变化,流体的粘度随温度升高而, 气体的粘度随温度的升高而。 4.热力学温度和摄氏度的换算关系为。 5. 和是使气体液化的有效手段。 6.精馏与蒸馏的的区别在于。 7.回流比是影响分馏操作和的重要因素。 8.能自动排泄介质,防止设备或管路破坏,压力正常后又能自动闭合,具有这种作用的阀门叫。 9.相对挥发度愈大,液体混合物分离愈。 10.在分馏塔中沸点最或最高的组分最易从塔顶馏出。 二、单项选择题

1.有关单元操作的叙述错误的是() A.是化工生产过程的核心 B.是《化工单元操作》的研究对象 C.是基本物理操作 D.用于不同的化工生产过程中其基本原理和作用相同 2.化工原理中的“三传”是指() A.动能传递、势能传递、化学能传递 - 1 - B.动能传递、内能传递、物质传递 C.动量传递、能量传递、热量传递 D.动量传递、质量传递、热量传递 3.下列操作不属于单元操作的是()。 A.流体输送 B.传热 C. 氧化还原反应 D. 过滤 4.下列哪种设备不是属于沉降设备() A.沉降槽 B.旋风分离器 C.降尘室 D.袋滤器 5.热量传递的基本方式是() A.恒温传热和稳态变温传热 B.传导传热、对流传热与辐射传热 C.气化、冷凝与冷却 D.导热给热和热交换 6.在精馏塔中,加料板以上(不包括加料板)的塔部分称为() A.精馏段 B.提馏段 C.进料段 D.混合段 7.对于一定分离任务的分馏塔,若在最小回流比下操作,所需的理论

化工单元操作思考题

化工单元操作思考题 离心泵思考题 1.为什么离心泵启动前一定要打开入口阀灌泵? 答:离心泵开始工作时,若泵内有气体因为空气的密度比液体的密度小得多,在叶轮旋转时所产生的离心力不足以在泵内造成足够的真空度(真空度很小),贮槽液面和泵入口处的静压差很小,不能推动液体进入泵内,产生气缚。因此,在开泵前必须使泵的吸入系统内充满液体,也就是灌泵。 2.为什么离心泵启动前要关闭出口阀? 答:离心泵是靠叶轮的高速旋转将液体甩出泵外,流量越大,所消耗的功率越大,当流量为零时轴功率最小,所以离心泵启动时,为了减小启动功率,保护电机,可将出口阀关闭。待电机运转到额定转速后,再逐渐打开出口阀。 3.离心泵为什么会抽空?泵抽空有哪些现象,如何处理? 答:泵抽空原因是由于泵运转中进入泵内的液体不能满足需要,发生供不应求的现象,而这时泵还在高速运转,就会抽空。 泵抽空的原因:(1)塔、罐、容器的液面低或空;(2)油品带水,温度高会气化;(3)入口阀开得过小;(4)两泵同时运行(5)入口阀未打开或芯掉;(6)入口阀堵。 泵抽空的现象:压力、电流下降并波动、流量小或无、管线发出“叮、叮”响声,管线、泵体剧烈振动、严重时造成密封漏或泵盖垫漏。 处理方法:(1)关小出口阀,开打入口阀,并打开放空阀进行排气;(2)提高吸入泵液位,如液面低,可停泵,待液面上升后再启动;(3)若抽空时密封漏,可进行换泵;(4)若进口管线堵塞,要吹扫管线;入口阀芯坏掉要更换泵。4.离心泵轴承发热的原因是什么?有何危害?如何处理? 答:原因;(1)润滑油(脂)液面过高或过低、变质、脏;(2)冷却水、封油不足或管路堵;(3)滚珠架松、落、卡、花点;(4)安装质量差;(5)同心度不正;(6)机泵振动(7)机环甩脱或不转;(8)超负荷运行。 严重时,会烧坏轴承,造成停泵,给生产带来损失最大。 处理:(1)调整液面或换油(2)搞通管路,加大油量或封油量(3)更换轴承(4)联系谦恭处理。

典型化工单元操作过程安全技术.

典型化工单元操作过程安全技术 第一部分流体输送单元操作过程 在工业生产过程中,经常需要将各种原材料、中间体、产品以及副产品和废弃物从一个地方输送到另一个地方,这些输送过程就是物料输送。在现代化工业企业中,物料输送是借助于各种输送机械设备实现的。由于所输进的物料形态不同(块状、粉态、液态、气态等),所采取的输送设备也各异。 一、屏护(用于电机外壳、泵的转动部分保护外壳) 屏护就是使用屏障、遮栏、护罩、箱盒等将带电体与外界隔离。配电线路和电气设备的带电部分如果不便于包以绝缘或者单靠绝缘不足以保证安全的场合,可采用屏护保护。 用金属材料制成的屏护装置,为了防止屏护装置意外带电造成触电事故,必须将屏护装置接地或接零。 屏护装置一般不宜随便打开、拆卸或挪移,有时其上还应装有连锁装置(只有断开电源才能打开)。 @ 屏护装置还应与以下安全措施配合使用。屏护装置应有足够的尺寸,并应与带电体之间保持必要的距离。被屏护的带电部分应有明显的标志,标明规定的符号或涂上规定的颜色,遮栏、栅栏等屏护装置上应根据被屏护对象挂上“止步!”、“禁止攀登,高压危险!”、“当心触电”等警告牌;配合屏护采用信号装置和连锁装置。 前者一般用灯光或仪表指示有电,后者采用专门装置,当人体越过装置可能接近带电体时,所屏护的装置自动断电。 —

图1—1 警告牌 二、电机的安全知识(接地或接零) 1. 保护接地 保护接地就是将电气设备在故障情况下可能出现危险电压的金属部分(如外壳等)用导线与大地做电气连接。 2. 保护接零 保护接零是指将电气设备在正常情况下不带电的金属部分(外壳),用导线与低压电网的零线(中性线)连接起来。 【 3. 保护接零的原理 保护接零一般与熔断器、自动开关等保护装置配合,当发生碰壳短路时,短路电流就由相线流经外壳到零线(中性线),再回到中性点。由于故障回路的电阻、电抗都很小,所以有足够大的故障电流使线路上的保护装置(熔断器等)迅速动作,从而将故障的设备断开电源,起到保护作用 三、流体输送中的安全知识(消除流体流动中在管路中产生的静电) 1.工艺控制法 工艺控制法就是从工艺流程、设备结构、材料选择和操作管理等方面采取措施,限制静电的产生或控制静电的积累,使之达不到危险的程度。 (1)限制输送速度 降低物料移动中的摩擦速度或液体物料在管道中的流速等工作参数,可限制静电的产生。例如,油品在管道中流动所产生的流动电流或电荷密度的饱和值近似与油品流速的二次方成正比,所以对液体物料来说,控制流速是减少静电电荷产生的有效办法。为了不影响生产率,将最大允许流速定为安全流速,使物料在输送中不超过安全流速的规定。 … (2)加速静电电荷的逸散 在产生静电的任何工艺过程中,总是包括着产生和逸散两个区域。在静电产生的

化工单元过程及操作第三章传热

第三章传热 3.1 概述 3.1.1 传热在化工生产中的应用 传热,即热量的传递,是自然界中普遍存在的物理现象。由热力学第二定律可知,凡是有温度差存在的物系之间,就会导致热量从高温处向低温处的传递,故在科学技术、工业生产以及日常生活中都涉及许多的传热过程。 化工生产过程与传热关系十分密切。这是因为化工生产中的很多过程都需要进行加热和冷却。传热在化工生产中的应用主要有以下方面:1)创造并维持化学反应需要的温度条件:例如,为保证化学反应在一定的温度下进行,就需要向反应器输入或移出热量; 2)创造并维持单元操作过程需要的温度条件:蒸发、精馏、吸收、萃取、干燥等单元操作都与传热过程有关。 3)热能的合理利用和余热的回收:生产过程中的热量的合理使用以及废热的回收利用,换热网络的综合; 4)隔热与节能:化工生产设备的保温或保冷。 化工生产过程中需要解决的传热问题大致分为两类: (1)传热过程的计算,包括设计型计算和操作型计算; (2)传热过程的改进与强化。 3.1.2 强化传热与削弱传热 化工生产中常遇到的传热问题,通常有以下两类:一类是要求热量传递情况好,亦即要求传热速率高,这样可使完成某一换热任务时所需的设备紧凑,从而降低设备费用;另一类是像高温设备及管道的保温,低温设备及管道的隔热等,则要求传热速率越低越好。我们学习传热的目的,主要是能够分析影响传热速率的因素,掌握控制热量传递速率的一般规律,以便能根据生产的要求来强化和削弱热量的传递,正确地选择适宜的传热设备和保温(隔热)方法。 3.1.3 稳态传热和非稳态传热 · 稳态传热: 在传热系统中各点的温度分布不随时间而改变的 传热过程;稳态传热时各点的热流量不随时间而变,连续生产过程中的传热多为稳态传热。 ·非稳态传热: 传热系统中各点的温度既随位置又随时间而变的传热过程。 3.1.4 工业换热方法 3.1. 4.1 间壁式换热 3.1. 4.2直接接触式换热 3.1. 4.3 蓄热式换热 3.1.5 典型间壁式换热器 3.1.5.1 套管换热器 3.1.5.2 列管换热器

化工生产单元操作设备简介

化工生产单元操作设备简 介 Last updated at 10:00 am on 25th December 2020

第三节化工装置基础与日常运行化工生产过程中,化工装置的正常运行和安全生产是重中之重。任何化工生产装置都有与之相应的操作规程,以指导、组织和管理生产。 “三传一反”精辟概括了化工生产过程的本质。“三传”指化学工业中遵循共同的物理变化规律的三大基本单元操作,即动量传递、热量传递和质量传递过程;“一反”指化学反应。根据生产工艺要求,将若干单元有机组合起来,就构成了完整的化工生产过程。下面将简单介绍一些“三传一反”中的典型化工装置及日常运行和操作。 一、流体输送装置 流体输送装置主要包括液体输送装置和气体的压缩与输送装置。 1.液体输送装置 液体输送装置统称泵。根据泵的工作原理和结构特征可划分为动力式泵、容积式泵、流体作用泵和其他类型泵等。动力式泵也称叶片式泵,包括离心泵、轴流泵和旋涡泵等,此类泵的压头随流量而变;容积式泵也称正位移泵,包括往复泵、隔膜泵、齿轮泵和螺杆泵等,此类泵的压头几乎与流量无关;流体作用泵是利用一种流体的作用来产生压力或真空环境,从而输送另一种流体的装置,如酸蛋、喷射泵、水锤泵和空气升液器等。 (1)离心泵 离心泵是典型的动力式泵,在化工生产中应用最为广泛。 ①离心泵的结构 离心泵的名称很形象,它是依靠离心力作用来输送流体的。

图1- 离心泵的结构 离心泵的主要构件有:叶轮、泵壳、轴封和泵轴等,见图1- 叶轮是离心泵中能量传递的部件,它的作用是将原动机的机械能传递给被输送的液体,以增加液体的静压能和动能。离心泵的叶轮可分为闭式、半闭式和开式三种,如图1- 所示。目前,大多数离心泵采用闭式叶轮,半开式和开式叶轮常用语输送含有杂质的液体。

化工单元操作技术期末复习题

化工单元操作技术期末复习题 一、单项选择题 1.天津得大气压强分别为101、33kPa,苯乙烯真空精馏塔得塔顶要求维持5、3kPa得绝站压强、则真空表上读数为( )。 A.96.03kPa B.一96.03kPa C.106.63kPa D. 98.03kPa 2.流体流动中能量损失得根本原因在于流体存在着( )。 A.密度 B.湍流 C.黏性 D.动能 3.密度为1000kg/m3得流体,在Φ108×4得管内流动,流速为2m/s,流体得粘度为1cp,其只Re为( )。 A. 105 B.2×107 C. 2×106 D. 2×105 4.计量泵得工作原理就是( )。 A.利用离心力得作用输送流体 B.依靠重力作用输送流体 C.依靠另外一种流体得能量输送流体 D.利用工作室容积得变化输送流体 5.对离心泵错误得安装或操作方法就是( )。 A.吸入管直径大于泵得吸入口直径 B.启动前先向泵内灌满液体 C.启动时先将出口阀关闭 D.停车时先停电机,再关闭出口阀 6.微粒在降尘室内能除去得条件为:停留时间( )它得降尘时间。 A.不等于 B.大于或等于 C.小于 D.大于或小于 7.导热系数得单位为( )。 A.W/m·℃ B.W/m2·℃ C.W/kg·℃ D.W/S·℃ 8.物质导热系数得顺序就是( )。 A.金属>一般固体>液体>气体 B.金属>液体>一般固体>气体 C.金属>气体>液体>一般固体 D.金属>液体>气体>一般固体 9.两组分物系得相对挥发度越小,则表示采用精馏方法分离该物系越( ). A.容易 B.困难 C.完全 D.无法判断 10.某精馏塔得馏出液量就是50kmol/h,进料量为120kmol/h,则釜残液得流量就是( ). A.100kmol/h 13.50kmol/h C. 70kmol/h D.125kmol/h 11.精馏塔中由塔顶向下得第n-1、n、n+l层塔板,其气相组成关系为( )。 A. y n+1>y n>y n-1 B. y n+1=y n=y n-1 C. y n+1<y n<y n-1 D. y n+1≤y n≤y n-1 12.吸收操作得目得就是分离( )。 A.气体混合物 B.液体均相混合物 C.气液混合物 D.部分互溶得均相混合物

《化工单元操作》课程标准

《化工单元操作》课程标准 课程名称:化工单元操作 适用专业:应用化工、石油化工的等化工类相关专业 课程类别:专业核心课 修课方式:必修 《 课程时数:256学时 一、课程性质和任务 (一)课程定位 《化工单元操作》是承前启后、由理及工的桥梁,主要研究化工过程中各种单元操作,是一门强调工程观念、定量运算、设计、操作能力的训练,强调理论和实际相结合、提高分析问题、解决问题的能力及应用知识的综合技能课程,是高职院校化工类专业学生在具备了必要的数学、物理、物理化学、化工制图和计算技术等基础知识之后必修的专业课,目的使学生获得今后从事化工生产过程与化工生产工艺操作、管理等必备的技能。课程内容是以化工生产企业工段长以上岗位职工所需的职业能力为依据进行设置,其功能是使学生掌握常用的化工单元操作过程和反应过程的相关原理及相应设备操作及维护技能,会进行化工单元过程方案的选择、设备的选用及部分设备的简单设计,为今后学习《化工工艺》、《反应过程与技术》、《精细化工生产技术》、《石油加工生产技术》等核心课程的学习打下坚实的基础,注重培养学生的自学能力、分析问题和解决问题的能力、人际沟通能力,为走上工作岗位打下良好的基础。 (二)课程设计思路 。 按照“以能力为本位,以职业实践为主线,以项目课程为主体”的总体设计要求,以化工专业工程技术人员的相关工作任务和职业能力分析为依据,构建工作过程完整的课程体系。 该门课程以培养化工单元过程方案选择能力、设备选用与简单设计能力、装置的操作运行能力为基本目标,打破传统的学科完整体系,构建工作过程完整的学习过程,紧紧围绕工作任务完成的需要来选择和组织课程内容,突出工作任务与知识的联系,让学习者在职业实践活动的基础上掌握知识,增强课程内容与职业岗位能力要求的相关性,提高学习者的自学能力与就业能力。

《化工原理生产过程单元操作规律》课件

《化工原理生产过程单元操作规律》课件 绪论 化工原理主要研究生产过程中各种单元操作的规律,并利用这些规律解决实际生产中的过程问题。该课程紧密联系实际,实践性很强,是化工、环工、生物化工等工科专业学生必修的技术基础课。作为一门研究化工生产过程的工程学科,它已形成了完整的教学内容和教学体系。 化工原理实验是学习、掌握和运用这门课程必不可少的重要教学环节。它与课堂讲授、习题课和课程设计等教学环节构成一个有机的整体。化工原理实验属于工程实验范畴,具有典型的工程特点。每一个单元操作按照其操作原理设置,工艺流程、操作条件和参数变量等都比较接近于工业应用,因此,一个单元操作实验相当于化工生产中的一个基本过程,通过它能建立起一定的工程概念。随着实验的进行,会遇到大量的工程实际问题,对学生来说,可以在实验过程中更实际、更有效地学到更多的工程实验方面的原理和测试手段,可以看到复杂的真实设备与工艺过程同描述这一过程的数学模型之间的关系。学习和掌握化工原理的实验及其研究方法,是学生从理论学习到工程应用的一个重要实践过程。 长期以来,化工原理实验常以验证课堂理论为主,教学安排上也仅作为《化工原理》课程的一部分。近20年来,由于化学工程、石油化工、生物工程的飞跃发展,要求研制新材料,寻找新能源,开发高新科技产品,对化工过程与设备的研究提出了格外能够高的要求,新型高效率低能耗的化工设备的研究也更为迫切。为适应新形势的要求,化工原理实验单独设课,指定实验课的教学大纲,加强学生实践环节的教育,培养有创造性和有独立的科技人才,从而确立化工原理实验在培养学生中应有地位。 第一节实验教学目的和要求 一、化工原理实验的教学目的 为提高实验课教学质量,我们在调整理论课教学内容的同时,编写了实验课教材-----《化工实验技术基础》。按照实验课教学大纲的基本要求,针对学生普遍存在的实践薄弱环节,在内容编排上,我们从以下几个方面进行了考虑: 1.巩固和深化课堂所学的理论 根据全国高校化工原理教学指导委员会的规定,从实验目的、实验原理、装置流程、数据处理等方面,组织各单元操作的实验内容。这样,通过实验可进一步学习、掌握和运用学过的基础理论,加深对化工单元操作的理解,巩固和深化所学的理论知识。例如离心泵特性曲线测定实验,第一步改变阀门开度,可以测得一组定转速下的特性曲线。第二步固定管路中阀门的开度,改变泵的转速可以得到一条管路特性曲线。再改变管路中阀门的开度,就可以测得改变管路阻力得一系列管路特性曲线。也就是说通过实验改变管路得阀门开度可得到泵的特性曲线;改变泵的转速可测得管路的特性曲线。使学生进一步了解泵性能和管路性能的各种影响因素,帮助学生理解从书本谁较难弄懂的概念。 2.培养基本的实验和科研能力 对于化工类专业来说,化工原理实验之前有物理、化学、物化等基础实验,其后有专业实验和毕业论文环节,从教学角度,应从纵的方向培养和逐步提高学生的实验和科研能力。

化工单元操作技术课程标准

《化工单元操作技术》课程标准 课程代码:00520205、00520209 适用专业:应用化工技术 学时:196 学分:11 开课学期:第二学期、第三学期、第四学期 第一部分前言 1.课程性质与地位 《化工单元操作技术》是应用化工技术专业的一门重要专业基础课程,核心能力课程,主要讲解化工生产中通用的物理操作过程,涉及化工生产中的流体输送、精馏、传热、吸收和干燥等单元操作,首次把学生带入化工生产领域真实和复杂的问题中,它的前续课程有《基础化学》、《化工制图与AutoCAD》等,后续课程有《化工生产技术》、《离子膜法制碱工艺》、《聚氯乙烯生产技术》、《炼焦工艺》等,在基础课和专业课之间起到了承上启下的桥梁作用,在整个课程体系中起到个承上启下的作用。学生通过该课程的学习,具备化工操作工和化工中控工工作岗位的能力,可取得“化工总控工”职业资格,因而该课程的学习是化工类专业学生综合职业能力培养和职业素质养成的重要支撑。 2.课程的设计思路 课程本着服务地方区域经济的原则,依据应用化工技术专业人才培养目标,深入企业调研,在满足企业岗位需求的基础上,融入化工总控工职业标准,从当前学情分析结合教学对象,确定课程的教学目标;打破传统的知识体系,以工作过程为导向序化课程内容,整合原来分散在《化工单元操作技术》、《化工仿真》、《化工设备使用与维护》等课程中的相关知识,由易到难设计贴近工作实践的学习情境、寻找企业真实项目载体、并以完成项目的工作过程为导向来设计工作任务进行教学内容的重构,对于每步工作任务,以“学生为中心”,从学生实际出发,精心设计提炼教学方案;最终构建“以能力为本位,理论突出应用,实践为重”的教学内容,突出教学内容职业化。 针对课堂教学活动需要、课程重难点和学生特点采用多样化的教学方法,激发学生学习兴趣,树立学习自信心。在以项目载体、任务驱动教学为主,实训教学、仿真教学、多媒体教学手段为辅的基础上,采用微课资源,引进角色转换轮岗操作法、以赛促教教学方法、分层次教学、互动启发式教学方法、问题探究式教学、分组讨论式、案例教学法、生活举例法、头脑风暴法、分类归纳法等教学方法创新教学做一体化教学模式。 本着以能力为本位的教学原则,打破传统的考核模式,探索构建时间灵活化、评价指标多元化、评价方式多样化、评价主体多元化的以能力为本位的评价考核体系,完成从知识、能力、职业素质三方面进行综合评价,过程性评价与终结性评价方式相结合评价,制定“量化评价”指标,构建合理的“评价”分值结构的目标,调动学生学习的积极性和主动性,发挥学生的学习潜能和创造性,使学生对自己的学习目标树立自信心。

化工单元操作吸收与解析

吸收与解吸 一.原理及典型流程 1. 原理 吸收解吸是石油化工生产过程中较常用的重要单元操作过程。吸收过程是利用气体混合物中各个组分在液体(吸收剂)中的溶解度不同,来分离气体混合物。被溶解的组分称为溶质或吸收质,含有溶质的气体称为富气,不被溶解的气体称为贫气或惰性气体。 溶解在吸收剂中的溶质和在气相中的溶质存在溶解平衡,当溶质在吸收剂中达到溶解平衡时,溶质在气相中的分压称为该组分在该吸收剂中的饱和蒸汽压。当溶质在气相中的分压大于该组分的饱和蒸汽压时,溶质就从气相溶入溶质中,称为吸收过程。当溶质在气相中的分压小于该组分的饱和蒸汽压时,溶质就从液相逸出到气相中,称为解吸过程。 2. 典型流程图 氧气吸收解吸装置流程图 1、氧气钢瓶 2、氧减压阀 3、氧压力表 4、氧缓冲罐 5、氧压力表 6、安全阀 7、氧气流量调节阀 8、氧转子流量计 9、吸收塔 10、水流量调节阀11、水转子流量计12、富氧水取样阀 13、风机14、空气缓冲罐 15、温度计16、空气流量调节阀 17、空气转子流量计 18、解吸塔 19、液位平衡罐 20、贫氧水取样阀21、温度计 22、压差计23、流量计前表压计24、防水倒灌阀

二.操作方法 1.吸收塔开停车 (1)开车操作规程 装置的开工状态为吸收塔解吸塔系统均处于常温常压下,各调节阀处于手动关闭状态,各手操阀处于关闭状态,氮气置换已完毕,公用工程已具备条件,可以直接进行氮气充压。 1.1、氮气充压 (1)确认所有手阀处于关状态。 (2)氮气充压 ①打开氮气充压阀,给吸收塔系统充压。 ②当吸收塔系统压力升至1.0Mpa(g)左右时,关闭N2充压阀。 ③打开氮气充压阀,给解吸塔系统充压。 ④当吸收塔系统压力升至0.5Mpa(g)左右时,关闭N2充压阀。 1.2、进吸收油 (1)确认 ①系统充压已结束。 ②所有手阀处于关状态。 (2)吸收塔系统进吸收油 ①打开引油阀V9至开度50%左右,给C6油贮罐D-101充C6 油至液位70%。 ②打开C6油泵P-101A(或B)的入口阀,启动P-101A(或 B)。 ③打开P-101A(或B)出口阀,手动打开FV103阀至30%左右给吸收塔T-101充液至50%。充油过程中注意观察D-101液位,必要时给D-101补充新油。 (3)解吸塔系统进吸收油 ①手动打开调节阀FV104开度至50%左右,给解吸塔T-102进吸收油至液位50%。 ②给T-102进油时注意给T-101和D-101补充新油,以保证D-101和T-101的液位均不低于50%。 1.3、C6油冷循环

化工单元操作 实训报告

实训报告 大一下学期的第10周,我们第一次在校实训——化工单元操作实训。流体输送不论是用来输送何种物料,其目的都是将流体从一个设备输送至另一个设备;加热与冷却的目的都是得到需要的操作温度;分离提纯的目的都是得到指定浓度的混合物等。把这些包含在不同化工产品生产过程中,发生同样物理变化,遵循共同的物理学规律,使用相似设备,具有相同功能的基本物理操作,称为单元操作。 本次实训的地点是学校实验楼。按老师要求,我们分成了小组,每个小组6、7个人一起拆装,这样有利于同学交流!第一天,大家都觉得很开心,很有趣,一个零件一个零件的仔细拆装,各个组在比赛谁快谁慢。老师也在耐心的给我们一边演示一边讲解! 在老师的讲解下,我们对书本知识有了更深刻的了解!对离心泵、往复泵、旋转泵、旋涡泵、真空泵,有了深入的了解和认识。

泵,输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。泵主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。 我们每个人拿着扳手,活口扳,锤子认真的拆装实验室里的管道,管道泵是适用于高层建筑增压送水、园林喷灌、冷却塔上水、远距离输水、空调、制冷冲洗、浴室等冷;暖水循环加压。使用温度80℃以下。内部窝轮转动使水上升,内部压强变小,由于大气压,水又进入窝轮部分。实际上也是水泵,一般直接装在水管道上、叫管道泵。 民用小型管道泵常用于水压不足的水管上增加水压,也可用于其他水循环系统。 化工单元操作是应用于各种化工生产中,在20世纪初,由美国麻省理工学院的科学家总结成一门独立的学科,和化工单元过程一起,组成学习化学工业生产的基础知识,这些单元的原理和计算方法,可以应用到各种化工门类的设计和生产过程中。

典型化工单元操作过程安全技术

安全管理编号:LX-FS-A30850 典型化工单元操作过程安全技术 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

典型化工单元操作过程安全技术 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 (一)非均相分离 化工生产中的原料、半成品、排放的废物等大多为混合物,为了进行加工。得到纯度较高的产品以及环保的需要等,常常要对混合物进行分离。混合物可分为均相(混合)物系和非均相(混合)物系。非均相物系中,有一相处于分散状态,称为分散相,如雾中的小水滴、烟尘中的尘粒、悬浮液中的固体颗粒、乳浊液中分散成小液滴的液相;另一相处于连续状态,称为连续相(或分散介质),如雾和烟尘中的气相、悬浮液中的液相、乳浊液中处于连续状态的液相。从有毒有害物质处理的角度,非均相分离过程就是这些物质

化工单元操作试题含答案

精品文档 《化工单元操作》试题 使用教材:化工单元操作试题范围:全册 出版社:化学工业出版社版次:第一版 学校名称: 一、填空题 1.化工单元操作主要包括:机械过程、物质传递过程、热力过程、 、。 2反应系统的三大平衡指的是、、三大平衡。 3.流体的粘度随温度而变化,流体的粘度随温度升高而, 气体的粘度随温度的升高而。 4.热力学温度和摄氏度的换算关系为。 5. 和是使气体液化的有效手段。 6.精馏与蒸馏的的区别在于。 7.回流比是影响分馏操作和的重要因素。 8.能自动排泄介质,防止设备或管路破坏,压力正常后又能自动闭合,具有这种作用的阀门叫。 9.相对挥发度愈大,液体混合物分离愈。 10.在分馏塔中沸点最或最高的组分最易从塔顶馏出。 二、单项选择题

1.有关单元操作的叙述错误的是() A.是化工生产过程的核心 B.是《化工单元操作》的研究对象 C.是基本物理操作 D.用于不同的化工生产过程中其基本原理和作用相同 2.化工原理中的“三传”是指() A.动能传递、势能传递、化学能传递 精品文档. 精品文档 B.动能传递、内能传递、物质传递 C.动量传递、能量传递、热量传递 D.动量传递、质量传递、热量传递 3.下列操作不属于单元操作的是()。 A.流体输送 B.传热 C. 氧化还原反应 D. 过滤 4.下列哪种设备不是属于沉降设备() A.沉降槽 B.旋风分离器 C.降尘室 D.袋滤器 5.热量传递的基本方式是() A.恒温传热和稳态变温传热 B.传导传热、对流传热与辐射传热 C.气化、冷凝与冷却 D.导热给热和热交换 6.在精馏塔中,加料板以上(不包括加料板)的塔部分称为() A.精馏段 B.提馏段 C.进料段 D.混合段

《化工单元操作技术》知识点、习题解答

《化工单元操作技术》知识点、习题解答 一、填空题 1. 粘度的物理意义是促使流体流动产生单位速度梯度的剪应力。 解答:该题目主要考核流体粘度的物理意义。液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏性,粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度的物理意义是促使流体流动产生单位速度梯度的剪应力。 2.在完全湍流区,摩擦系数λ与 Re 无关,与ε/d 有关。在完全湍流区则λ与雷诺系数的关系线趋近于水平线。 解答:该题目主要考核对莫狄图的理解。其中在此图中完全湍流区的特点为:摩擦系数λ与 Re 无关,与ε/d 有关,且λ与雷诺系数的关系线趋近于水平线。 3.在间壁式换热器中,间壁两边流体都变温时,两流体的流动方向有并流、逆流、错流、和折流四种。 解答:该题目主要考核间壁式换热器中两流体流动的四种方式:并流、逆流、错流、和折流。 4.某化工厂,用河水在一间壁式换热器内冷凝有机蒸汽,经过一段时间运行后,发现换热器的传热效果明显下降,分析主要原因是传热壁面上形成污垢,产生附加热阻,使K 值下降。 解答:该题目主要考核影响热量传递的因素,主要为污垢热阻的增大使得K 值下降。 5.离心泵启动前应关闭出口阀;旋涡泵启动前应打开出口阀。 解答:该题目主要考核离心泵及旋涡泵的正确开启方法。 6.离心泵通常采用出口阀门调节流量;往复泵采用旁路调节流量。 解答:该题目主要考核离心泵和往复泵常用的流量调节方法。 7.降尘室内,颗粒可被分离的必要条件是气体在室内的停留时间θ应≥颗粒的沉降时间t θ。 解答:该题目主要考核降尘室中颗粒可被分离的必要条件。 8.过滤操作有恒压过滤和恒速过滤两种典型方式。 解答:该题目主要考核过滤操作的两种方式:恒压过滤和恒速过滤。 9.精馏塔的作用是提供气液接触进行传热和传质的场所。 解答:该题目主要考核精馏塔的作用:提供气液接触进行传热和传质的场所。 10.空气进入干燥器之前一般都要进行了预热,其目的是提高空气干球温度,而降低

化工单元操作试题(含答案)

化工单元操作试题(含答案)

《化工单元操作》试题 使用教材:化工单元操作试题范围:全册 出版社:化学工业出版社版次:第一版 学校名称: 一、填空题 1.化工单元操作主要包括:机械过程、物质传递过程、热力过程、 、。 2反应系统的三大平衡指的是、、三大平衡。 3.流体的粘度随温度而变化,流体的粘度随温度升高而,气体的粘度随温度的升高而。 4.热力学温度和摄氏度的换算关系为。 5. 和是使气体液化的有效手段。 6.精馏与蒸馏的的区别在于。 7.回流比是影响分馏操作和的重要因素。 8.能自动排泄介质,防止设备或管路破坏,压力正常后又能自动闭合,具有这种作用的阀门叫。 9.相对挥发度愈大,液体混合物分离愈。 10.在分馏塔中沸点最或最高的组分最易从塔顶馏出。 二、单项选择题 1.有关单元操作的叙述错误的是() A.是化工生产过程的核心 B.是《化工单元操作》的研究对象 C.是基本物理操作 D.用于不同的化工生产过程中其基本原理和作用相同 2.化工原理中的“三传”是指() A.动能传递、势能传递、化学能传递 - 2 -

- 3 -

10.精馏塔中自上而下() A.分为精馏段、加料板和提馏段三个部分 B.温度依次降低 C.易挥发组分浓度依次降低 D.蒸汽质量依次减少 三、多项选择题 1.离心泵主要由哪些部件构成() A.叶轮 B.泵壳 C.活塞 D.轴封装置 2.影响重力沉降的因素有哪些() A.颗粒的特性 B.流体的性质 C.流体的流动状态 D.容器壁的影响 3.采用下列方法可以提高过滤速率的有() A.增大滤饼和介质两侧间的压差 B.冷却料浆 C.加助滤剂 D.加热料浆 4.往复式压缩机的工作循环包括()过程。 A.吸气 B.膨胀 C.压缩 D.排气 5.向一杯清水中加入少许细沙构成一非均相物系,其中沙是() A.分散相 B.连续相 C.轻相 D.重相 6.换热过程中冷热流体的流向有() A.并流 B.逆流 C.错流 D.折流 7.强化传热的三种途径是() A.增大冷热流体流量 B.提高传热推动力 C. 增大传热面积 D.提高传热系数 8.影响对流传热膜系数的因素有() A.流体种类 B.流动形态 C.是否发生相变 D.流体的物理性质 9.工业换热方法包括() A.间壁式换热 B.混合式换热 - 4 -

化工生产单元操作设备简介

化工生产单元操作设备 简介 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第三节化工装置基础与日常运行化工生产过程中,化工装置的正常运行和安全生产是重中之重。任何化工生产装置都有与之相应的操作规程,以指导、组织和管理生产。 “三传一反”精辟概括了化工生产过程的本质。“三传”指化学工业中遵循共同的物理变化规律的三大基本单元操作,即动量传递、热量传递和质量传递过程;“一反”指化学反应。根据生产工艺要求,将若干单元有机组合起来,就构成了完整的化工生产过程。下面将简单介绍一些“三传一反”中的典型化工装置及日常运行和操作。 一、流体输送装置 流体输送装置主要包括液体输送装置和气体的压缩与输送装置。 1.液体输送装置 液体输送装置统称泵。根据泵的工作原理和结构特征可划分为动力式泵、容积式泵、流体作用泵和其他类型泵等。动力式泵也称叶片式泵,包括离心泵、轴流泵和旋涡泵等,此类泵的压头随流量而变;容积式泵也称正位移泵,包括往复泵、隔膜泵、齿轮泵和螺杆泵等,此类泵的压头几乎与流量无关;流体作用泵是利用一种流体的作用来产生压力或真空环境,从而输送另一种流体的装置,如酸蛋、喷射泵、水锤泵和空气升液器等。 (1)离心泵 离心泵是典型的动力式泵,在化工生产中应用最为广泛。 ①离心泵的结构 离心泵的名称很形象,它是依靠离心力作用来输送流体的。

离心泵的主要构件有:叶轮、泵壳、轴封和泵轴等,见图1- 叶轮是离心泵中能量传递的部件,它的作用是将原动机的机械能传递给被输送的液体,以增加液体的静压能和动能。离心泵的叶轮可分为闭式、半闭式和开式三种,如图1- 所示。目前,大多数离心泵采用闭式叶轮,半开式和开式叶轮常用语输送含有杂质的液体。 泵壳也称蜗壳,是离心泵的能量转化装置,它的作用是将叶轮提供的动能转化为静压能,并将叶轮甩出的液体收集起来导向泵的出口管或下一级叶轮。 图1- 离心泵的结构 图1- 离心泵叶轮的类型

相关文档
最新文档