MOSFET放大器设计仿真实验

MOSFET放大器设计仿真实验
MOSFET放大器设计仿真实验

使用2N7002完成电路设计

已知参数:2

1

2.45,100/,0.000267TN n V V K mA V LAMBDA V

-===,

设计电路使

Q 点的值2DQ I mA ≈,且Q 点位于饱和区中心,具有较大的对称输出电压摆幅。 如果较多未知数未确定,可以考虑将Vo 静态工作点设计于1V 。

4.1预习部分:根据电路要求,初步设计出电路,写出设计过程:

R1 = 102.55 k Ω R2= 17.45 k Ω RE= 450 k Ω RD= 5.5k Ω V o= 1V

验证仿真值和设计值是否一致?如果差别比较大,分析原因。

4.3 瞬态分析放大电路的增益

Av=22.8741Mv/2Mv=11.44

4.4 使用交流仿真确定放大器的最大增益及通频带,需要抓出交流仿真时通频带的波形图

①通频带波形图

4.5 最大不失真对称摆幅仿真波形图

输入信号峰峰值

4.6 最坏情况分析,静态工作点可能的最大值和最小值,以及出现这种情况的条件

输出的静态工作点标称值1.03841,最坏情况中为80.93199(最低方向),这样的情况发生在R1=101525Ω,R2=17624.5Ω,R3=445.5ΩRD=5555Ω

输出的静态工作点标称值 1.03841,最坏情况中为 1.87746(最高方向),这样的情况发生在R1=103576Ω,R2=17275.5Ω,R3=454.5ΩRD=5445Ω

4.7 ①Monte Carlo分析,静态工作点的分布情况,假如电路的静态工作点要求是-4V到4V,设计的电路的成品率为多少?(数据可以后面处理)

成品率100%

②Monte Carlo分析电路的交流小信号增益

分析结果显示,电路的最大增益的平均值为11.4423,标称值为11.4373

低频功率放大器电路设计

参加全国大学生电子设计大赛的同学们加 油了! 低频功率放大器设计与总结报告 作者:王汉光 一、任务 设计并制作一个低频功率放大器,要求末级功放管采用分立的大功率MOS 晶体管。 二、要求 1.基本要求 (1)当输入正弦信号电压有效值为5mV时,在8Ω电阻负载(一端接地)上,输出功率≥5W,输出波形无明显失真。 (2)通频带为20Hz~20kHz。 (3)输入电阻为600Ω。 (4)输出噪声电压有效值V0N≤5mV。 (5)尽可能提高功率放大器的整机效率。 (6)具有测量并显示低频功率放大器输出功率(正弦信号输入时)、直流电源的供给功率和整机效率的功能,测量精度优于5%。

2. 发挥部分 (1)低频功率放大器通频带扩展为10Hz~50kHz。 (2)在通频带内低频功率放大器失真度小于1%。 (3)在满足输出功率≥5W、通频带为20Hz~20kHz的前提下,尽可能降低输入信号幅度。 (4)设计一个带阻滤波器,阻带频率范围为40~60Hz。在50Hz频率点输出功率衰减≥6dB。 (5)其他。 摘要: 本系统采用了NE5534p作为前级的电压放大电路来给低通功率放大电路提供输入电压,通过低通功率放大电路将功率放大,由双踪示波器对整个系统的输入输出端进行监测,调节可变电阻,使输出波形无明显失真,从而使输出功率达到指定的输出功率要求。输入的频率范围为20Hz~20kHz。 一.概述: 本系统通过信号发生器输入电压为5mV,频率在20Hz~20kHz范围内的信号,对信号进行功率放大,低通功率放大器模块由+/-15V的直流电源提供,通过前级放大电路将输入电压放大,再由低通功率放大电路进行功率放大。在此期间,用示波器监测低通功率放大模块的输入输出端,观察波形是否失真,以及测量最大最小不失真频率。 二.系统工作原理及分析: 此系统由三部分组成,分别为电源模块、前级放大模块、低频功率放大模块。 如图所示:

基于Spectre运算放大器的设计

《集成电路CAD》课程设计报告 课题:基于Spectre运算放大器的设计 一:课程设计目标及任务 利用Cadence软件设计使用差分放大器,设计其原理图,并画出其版图,模拟器各项性能指标,修改宽长比,使其最优化。 二:运算放大器概况 运算放大器(operational amplifier),简称运放(OPA),如图1.1所示: 图1.1运放示意图 运算放大器最早被设计出来的目的是将电压类比成数字,用来进行加、减、乘、除的运算,同时也成为实现模拟计算机的基本建构方块。然而,理想运算放大器的在电路系统设计上的用途却远远超过加减乘除的计算。今日的运算放大器,无论是使用晶体管或真空管、分立式元件或集成电路元件,运算放大器的效能都已经接近理想运算放大器的要求。早期的运算放大器是使用真空管设计的,现在多半是集成电路式的元件。但是如果系统对于放大器的需求超出集成电路放大器的需求时,常常会利用分立式元件来实现这些特殊规格的运算放大器。 三:原理图的绘制及仿真

3.1原理图的绘制 首先在Cadence电路编辑器界面绘制原理图如下: 图3.1电路原理图 原理图中MOS管的参数如下表: Instance name Model W/m L/m Multiplier Library Cell name View name M1 nmosl 800n 500n 1 Gpdk180 nmos symbol M2 nmosl 800n 500n 1 Gpdk180 nmos symbol M3 pmosl 1.1u 550n 1 Gpdk180 pmos symbol M4 pmosl 1.1u 550n 1 Gpdk180 pmos symbol M5 nmosl 800n 500n 1 Gpdk180 nmos symbol

高频功率放大器的设计及仿真

东北大学秦皇岛分校电子信息系 综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。 2. 前言(绪论) 我们通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 3. 系统原理 3.1 高频功率放大器知识简介 在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,

实验1 单级放大电路

实验1 单级放大电路 1.实验目的 1)学习使用电子仪器测量电路参数的方法。 2)学习共射放大电路静态工作点的调整方法。 3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。2.实验仪器 示波器、信号发生器、交流毫伏表、数字万用表。 3.预习内容 1)三极管及共射放大器的工作原理。 2)阅读实验内容。 4.实验内容 实验电路为共射极放大器,常用于放大电压。由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。 1)联接电路 (1)用万用表判断实验箱上的三极管的极性和好坏。由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。改用万用表测量二极管档测量。对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。这说明该三极管是好的。用万用表判断实验箱上电解电容的极性和好坏。对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。这说明该电解电容是好的。 ⑵按图1.1联接电路。 ⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。若正常,则将12V 电源接至图1.1的Vcc。 图1.1 共射极放大电路

⑷ 测量电阻R C 的阻值。将V i 端接地。改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为0.5mA 、1mA 、1.5mA 时三极管的β值。建议使用以下方法。 b B cc 2b B B R V V R V I -=+ p 1b b R R R += B C I I =β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。本实验用测电阻值、电 压值来计算电流值,而不是直接测量电流,是因为本实验电路的电流较小,测量电流的测量误差较测量电压、电阻的误差大。同时还因为测量电流时万用表的内阻趋于零,使用不当很可能损坏万用表。 Vcc=11.992 V 图1.2是示意图。它示意i C 并不严格等于βi B , 只是近似等于βi B ;或者说β并不是一个常数。通常, β随i B 增大而增大。 对于一个三极管,β随i B 的变化越小越好。用图 解法表示共发射极放大器放大小信号的原理可知,β 随i B 变化而变化是正弦波小信号经共发射极放大器放 大后产生非线性谐波失真的原因。若表1.1中β的数 值较接近,则表1.6中的非线性谐波失真应较小。使 用不同实验箱的同学之间可验证上述分析。由此可见, 在制作小信号放大器时,若要求其非线性谐波失真尽可能小,则应挑选β值随i B 变化而变化尽可能小的三极管。 2) 调整静态 电压放大器的主要任务是使失真尽可能小地放大电压信号。为了使输出电压失真尽可能小,一般地说,静态工作点Q 应选择在输出特性曲线上交流负载线的中点。若工作点选得太高,放大器在加入交流信号后容易引起饱和失真;若选得太低,容易引起截止失真。对于小信号放大器而言,若输出交流信号幅度较小,电压放大器的非线性失真将不是主要问题,因此Q 点不一定要选在交流负载线的中点,而可根据其他要求来选择。例如,希望放大器耗电省、噪声低,或输入阻抗高,Q 点可选得低一些。 将V i 端接地。调整R P ,使V C =6V ,测量计算并填写表1.2,绘制直流负载线,估算静态工作点和放大电路的动态范围;分析发射极直流偏置对放大器动态范围的影响。

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

单级放大电路实验

单级共射放大电路实验报告 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.计算实验电路的输入电阻Ri和输出电阻Ro。 5.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图1-1所示: 1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。

由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有 UB=RB2·VCC/(RB+RB2) 式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 U B=R B2·V CC/(R B+R B2) I C≈I E=(U B-U BE)/R E U CE=V CC-I C(R C+R E) 由以上式子可知,,当管子确定后,改变VCC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。 3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实验为UCE为4V即可),这表明放大电路的静态工作点基本上已设置在放大区,然后再测量B极对地的电位并记录,根据测量值计算态工作点值,以确保三极管工作在导通状态。(2)放大电路接通直流电源,并在输入端加上正弦信号(幅度约为10mV,频率约为1kHz),使其工作在交直流状态,用示波器监视输出电压波形,调整基极电阻RP,使输出信号波形不失真,并在输入信号增大信号增大时,输出波形同时出现截止失真和饱和失真。这表明电路的静态工作点处于放大区的最佳位置。撤去输入正弦信号(即令UI=0),使电路工作在直流状态,用直流状态,用直流电压表测量三极管三个极对地的电压UB、UE、UC,即可计算出放大器的直流工作点ICQ、UCEQ、UBEQ的大小。 4.电压放大倍数的测量与计算 电压放大倍数是指放大电路输出端的信号电压与输入端的信号电压之比,即:AU=Uo/Ui 图上电路中 Au=-β(Rc//RL)/rbe Rbe= rbb/+(1+β)26mV/IEQ 其中, r bb/一般取300Ω。 当放大电路的静态工作点设置合理后,在电路的输入端加入正弦信号,用示波器观察放大电路的输出波形,并调节输入信号幅度,使输出波形基本不失真。用交流毫伏表或示波器分别测量放大电路的输入、输出电压,按定义式计算即可得电路的电压放大倍数。 5.输入电阻Ri的计算 输入电阻的测量原理如下图所示。

低噪声前置放大器电路的设计方法

低噪声前置放大器电路的设计方法 收藏此信息打印该信息添加:不详来源:未知 前置放大器在音频系统中的作用至关重要。本文首先讲解了在为家庭音响系统或PD A设计前置放大器时,工程师应如何恰当选取元件。随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。最后,以PDA麦克风的前置放大器为例,列举了设计步骤及相关注意事项。 前置放大器是指置于信源与放大器级之间的电路或电子设备,例如置于光盘播放机与高级音响系统功率放大器之间的音频前置放大器。前置放大器是专为接收来自信源的微弱电压信号而设计的,已接收的信号先以较小的增益放大,有时甚至在传送到功率放大器级之前便先行加以调节或修正,如音频前置放大器可先将信号加以均衡及进行音调控制。无论为家庭音响系统还是PDA设计前置放大器,都要面对一个十分头疼的问题,即究竟应该采用哪些元件才恰当? 元件选择原则 由于运算放大器集成电路体积小巧、性能卓越,因此目前许多前置放大器都采用这类运算放大器芯片。我们为音响系统设计前置放大器电路时,必须清楚知道如何为运算放大器选定适当的技术规格。在设计过程中,系统设计工程师经常会面临以下问题。 是否有必要采用高精度的运算放大器? 输入信号电平振幅可能会超过运算放大器的错误容限,这并非运算放大器所能接受。若输入信号或共模电压太微弱,设计师应该采用补偿电压(Vos)极低而共模抑制比(CMRR)极高的高精度运算放大器。是否采用高精度运算放大器取决于系统设计需要达到多少倍的放大增益,增益越大,便越需要采用较高准确度的运算放大器。 运算放大器需要什么样的供电电压?

这个问题要看输入信号的动态电压范围、系统整体供电电压大小以及输出要求才可决定,但不同电源的不同电源抑制比(PSRR)会影响运算放大器的准确性,其中以采用电池供电的系统所受影响最大。此外,功耗大小也与内部电路的静态电流及供电电压有直接的关系。 输出电压是否需要满摆幅? 低供电电压设计通常都需要满摆幅的输出,以便充分利用整个动态电压范围,以扩大输出信号摆幅。至于满摆幅输入的问题,运算放大器电路的配置会有自己的解决办法。由于前置放大器一般都采用反相或非反相放大器配置,因此输入无需满摆幅,原因是共模电压(Vcm)永远小于输出范围或等于零(只有极少例外,例如设有浮动接地的单供电电压运算放大器)。增益带宽的问题是否更令人忧虑? 是的,尤其是对于音频前置放大器来说,这是一个非常令人忧虑的问题。由于人类听觉只能察觉大约由20Hz至20kHz频率范围的声音,因此部分工程师设计音频系统时会忽略或轻视这个“范围较窄”的带宽。事实上,体现音频器件性能的重要技术参数如低总谐波失真(TH D)、快速转换率(slew rate)以及低噪声等都是高增益带宽放大器所必须具备的条件。 图1,建议选用的放大器 深入了解噪声 在设计低噪声前置放大器之前,工程师必须仔细审视源自放大器的噪声,一般来说,运算放大器的噪声主要来自四个方面: 热噪声(Johnson):由于电导体内电流的电子能量不规则波动产生的具有宽带特性的热噪声,其电压均方根值的正方与带宽、电导体电阻及绝对温度有直接的关系。对于电阻及晶体

运算放大器的电路仿真设计

运算放大器的电路仿真设计 一、电路课程设计目的 错误!深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能; 错误!掌握理想运算放大器的特点及分析方法(主要运用节点电压法分析); ○3熟悉掌握Multisim软件。 二、实验原理说明 (1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。它的类型包括:反向比例放大器、加法器、积分器、微分器、电 压跟随器、电源变换器等. (2) (3)理想运放的特点:根据理想运放的特点,可以得到两条原则: (a)“虚断”:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断”。 (b)“虚短”:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短”. 已知下图,求输出电压。

理论分析: 由题意可得:(列节点方程) 011(1)822A U U +-= 0111 ()0422 B U U +-= A B U U = 解得: 三、 电路设计内容与步骤 如上图所示设计仿真电路. 仿真电路图:

V18mV R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 0.016 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 0.011 V + - 根据电压表的读数,, 与理论结果相同. 但在试验中,要注意把电压调成毫伏级别,否则结果误差会很大, 致结果没有任何意义。如图所示,电压单位为伏时的仿真结 果:V18 V R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 6.458 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 4.305 V + - ,与理论结果相差甚远。 四、 实验注意事项 1)注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。

实验三_晶体管共射级单管放大器实验报告

实验三晶体管共射级单管放大器实验报告学号:姓名: 一、题目:晶体管共射级单管放大器 二、实验原理: 下图为电阻分压式工作点稳定单管放大 器实验电路图。晶体管共射电路是电压反向放大器。当在放大器的输入端加入输入信号U i后,在放大器的输出端便可得到一个与U i相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。 实验电路图 三、实验过程

1.放大器静态工作点的测量与测试 ①静态工作点的测量 置输入信号U i=0,将放大器的输入端与地端短接,然后选用量程合适的万用表分别测量晶体管的各电极对地的电位U、U和U。通过 I=(U-U)/R 由U确定I。 ②静态工作点的调试 在放大器的输入端加入一定的输入电压U i,检查输出电压U o的大小和波形。若工作点偏高,则放大器在加入交流信号后易产生饱和失真,若工作点偏低则易产生截止失真。 2.测量最大不失真输出电压 将静态工作点调在交流负载的中点。在放大器正常工作的情况下,逐步加大输入信号的幅度,并同时调节R w,用示波器观察U o,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用示波器直接读出U opp。 3.测量电压放大倍数 调整放大器到合适的静态工作点,然后加入输入电压U i,在输出电压U o不失真的情况下,测出U i和U o的有效值, A u=U o/U i 4.输入电阻R i的测量 在被测放大器的输入端与信号源之间串入一已知电阻R,

在放大器正常工作的情况下,用毫伏表测出U s和U i。 根据输入电阻的定义可求出R i。 5.输出电阻R o的测量 在放大器正常工作条件下,测出输出端不接负载的输出电压U o和接入负载的输出电压U L。 U L=R L U O /(R O+R L) 计算出Ro。 在测试中保证负载接入前后输入信号的大小不变。 四、实验数据 1.调试静态工作点 测量值计算值 U(V)U(V)U(V)R(K)U(V)U(V)I(mA) 2.测量电压放大倍数 ∞

仪用放大器的应用电路设计

课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________ 实验名称:仪用放大器的应用电路设计类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习并了解仪用放大器与运算放大器的性能区别。 2.掌握仪用放大器的电路结构及设计方法。 3.掌握仪用放大器的测试方法。 4.学习仪用放大器在电子设计中的应用。 二、实验内容和原理 1. 仪用放大器 仪用放大器是一种精密差动电压放大电路。 在实际的生产生活中,实际的信号获取单元经常需要面对强噪声背景下的微弱信号,这些强噪声将以共模的形式进入测量单元。虽然运放具有共模抑制比,但信号电压和共模电压一起被传送到输出端,将降低放大器的有效输出范围。 2.基本差动放大器与带输入缓冲的差动放大器 基本差动放大器:带输入缓冲的差动放大器: 3.标准的三运放构成的仪用放大器 造成差动放大器误差的两个主要因素为:运算放大器的参数和电阻器匹配的精确度。 若在输入运算放大器周围增加匹配电阻,把增益设臵放在前端实现,就构成了仪用放大器。 仪用放大器的传输函数为:

运放A1、A2 为同相差分输入方式。同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,来提高共模抑制比。 4.单片仪用放大器 5.双孔梁应变式传感器 力传感器单元是这个实验的传感器,为信号输入部分。它内部含有由4个全桥电路。

二级运算放大电路版图设计

1前言1 2二级运算放大器电路 1 2.1电路结构 1 2.2设计指标 2 3 Cadence仿真软件 3 3.1 schematic原理图绘制 3 3.2 生成测试电路 3 3.3 电路的仿真与分析 4 3.1.1直流仿真 4 3.1.2交流仿真 4 3.4 版图绘制 5 3.4.1差分对版图设计 6 3.4.2电流源版图设计 7 3.4.3负载MOS管版图设计 7 3.5 DRC & LVS版图验证 8 3.5.1 DRC验证 8 3.5.2 LVS验证 8 4结论 9 5参考文献 9

本文利用cadence软件简述了二级运算放大器的电路仿真和版图设计。以传统的二级运算放大器为例,在ADE电路仿真中实现0.16umCMOS工艺,输入直流电源为5v,直流电流源范围27~50uA,根据电路知识,设置各个MOS管合适的宽长比,调节弥勒电容的大小,进入stectre仿真使运放增益达到40db,截止带宽达到80MHz和相位裕度至少为60。。版图设计要求DRC验证0错误,LVS验证使电路图与提取的版图相匹配,观看输出报告,要求验证比对结果一一对应。 关键词:cadence仿真,设计指标,版图验证。 Abstract In this paper, the circuit simulation and layout design of two stage operational amplifier are briefly described by using cadence software. In the traditional two stage operational amplifier as an example, the realization of 0.16umCMOS technology in ADE circuit simulation, the input DC power supply 5V DC current source 27~50uA, according to the circuit knowledge, set up each MOS tube suitable ratio of width and length, the size of the capacitor into the regulation of Maitreya, the simulation of stectre amplifier gain reaches 40dB, the cut-off bandwidth reaches 80MHz and the phase margin of at least 60.. The layout design requires DRC to verify 0 errors, and LVS validation makes the circuit map matching the extracted layout, viewing the output report, and requiring verification to verify the comparison results one by one. Key words: cadence simulation, design index, layout verification.

心电放大器的设计与仿真

电子线路CAD短学期 设计报告 学院:电子信息学院 学号: 15041523 班级: 15040211 姓名:卢虎林 日期: 2017年3月11日

一、实验目的 通过一个实例来说明Pspice对设计方案和具体电路进行分析的过程,理解电路的自上而下的设计方法。 二、实验原理 设计一个心电图信号放大器。已知: (1)心电信号幅度在50μV~5mV之间,频率范围为0.032Hz~250Hz。 (2)人体内阻、检测电极板与皮肤的接触电阻(即信号源内阻)为几十千欧。 (3)放大器的输出电压最大值为-5V~+5V。 1、确定总体设计目标 由已知条件(1)可知该放大器的输入信号属于微弱信号,所要求的放大器应具有较高的电压增益和低噪声、低漂移特性。由已知条件(2)可知,为了减轻微弱心电信号源的负载,放大器必须有很高的输入阻抗。另外,为了减小人体接收的空间电磁场的各种信号(即共模信号),要求放大器应具有较高的共模抑制比。因此,最后决定的心电放大器的性能指标如下: 差模电压增益:1000(5V/5mV); 差模输入阻抗: >10MΩ; 共模抑制比:80dB; 通频带:0.05Hz~250Hz。 2、方案设计 根据性能指标要求,要采用多级放大电路,其中前置放大器的设计决定了输入阻抗,共模抑制比和噪声,可选用BiFET型运放,本设计采用了LF4111型运放(其中Avo=4 10 ,Rid≈4 10 Ω,Avc=2),由

于单极同相放大器的共模抑制比无法达到设计要求(可通过Pspice 仿真波形看出),本设计采用了由三个LF411型运放构成的仪用放大器。 第二级放大器的任务是进一步提高放大电路的电压增益,使总增益达到1000。其次为了消除高、低噪声,需要设计一个带通滤波器。因为滤波器没有特殊要求,本设计可采用较简单的一阶高通滤波器和一阶低通滤波器构成的带通滤波器。 3、详细设计 根据上述设计方案,确定了心电放大电路的原理图,如图5-1所示。A1、A2、A3及相应的电阻构成前置放大器,其差模增益被分配为40,其中A1、A2构成的差放被分配为16,其计算公式为:Avd1=(Vo1-Vo2)/Vi=(R1+R2+R3)/R1,Avd2=Vo3/(Vo1-Vo2)=- R6/R4=1.6。 为了避免输入端开路时放大器出现饱和状态,在两个输入端到地之间分别串接两个电阻R11、R22,其取值很大,以满足差模输入阻抗的要求。第二级由 A4及相应的电阻、电容构成。在通带内,其被分配的差模增益应为(1000/40=25),即 Avd3=vo/vo3=1+R10/R9=25 取R9=1KΩ,R10=24KΩ。C1、R8 构成高通滤波器,要求 f =0.05Hz。取R8=1MΩ,则可算出C1=4.58μF,取标称值电容 C1=4.7μF,算得fL=1/(2л C1 R8)=0.034Hz。C2,R10构成低通滤波器,要求f =200Hz。取R10=24KΩ,可算出C2=0.03316μF,取标称值电容C2=0.033μF,最后算出f =1/(2л C2 R10)=251.95Hz。可见满足带宽要求。

实用功放电路设计

题目五:实用低频功率放大器 一、设计任务与要求: (一)、任务: 设计并制作具有弱信号放大能力的低频功率放大器。 其原理示意图如下: (二)、要求: 1.在放大通道在正弦信号输入电压幅度为(5-700)mV,等效负值载电阻R1。:812下,放大通道应满足: a、额定输出功率P oK≥10W; b、带宽BW≥(50-1000)HZ; c、在P oK下和BW内的非线性失真系数≤3%; d、在P oK下的效率≥55%; e、在前置放大级输人端交流短路接地时,R L=8Ω上的交流声功率≤10mV。 2。自行设计并制作满足设计要求的稳压电源。 (三)、发挥部分(选作部分): 1. 测放大器的时间响应: a、方波发生器:由外供正弦信号源经变换电路产生正、负极性的对称方波。频率为1000HZ;上升和下降时间1≤uS;峰一峰值电压为200mV b、用上述方波激励放大通道时,在R8下,放大通道应满足 (1)、额定验出功率P ok≥10W; (2)、P oK下,输出波形上升或下降时间12≤uS; (3)、在P oK下,输出波形顶部斜降≤2% (4)、在P oK下,输出波形过冲电压≤5% (四)、设计电路、画布线图、编写调试步骤以及调试方法:根据任务要求,设计该低频功率 放大电路及电源电路,要求有电路、有参数及设计过程,画出布线图,并在面包板上插接、调试。 (五) 答辨: 答辨前必须完成下列资料 1.设计说明书:方案选择、设计过程、原理图、布线图及说明; 2.总结调试方法、测试技术指标: 整理原始记录数据 故障处理、(出现何现象、原因及解决办法)。 (六)、参考元器件型号: STK465 集成功率放大电路 uA741 0P-27/0P-37 电阻、电容、电位器、稳压块等。

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406 实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 反相比例放大电路

输入输出关系: 输入电阻: Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图 i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

压输入输出波形图 同相比例放大电路 输入输出关系: 输入电阻: Ri=∞ 输出电阻: Ro=0 同相比例放大电路仿真电路图 i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+ =

电压输入输出波形图 差动放大电路电路图

差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。 (2)输入f=1kHz、ui=100mV的正弦交流信号,测量相应的uo,

高输入阻抗放大电路的设计仿真与实现

课程设计任务书 学生姓名:专业班级:电信1101班 指导教师:工作单位:信息工程学院 题目: 高输入阻抗放大电路的设计仿真与实现 初始条件: 可选元件:运算放大器,三极管,电阻、电位器、电容、二极管若干,直流电源Vcc= +12V,V EE= -12V,或自选元器件。 可用仪器:示波器,万用表,直流稳压源,毫伏表等。 要求完成的主要任务: (1)设计任务 根据要求,完成对高输入阻抗放大电路的设计、装配与调试,鼓励自制稳压电源。(2)设计要求 ①电压增益>=100,输入信号频率<100HZ,共模抑制比≥60dB; ② 选择电路方案,完成对确定方案电路的设计; ③ 利用Proteus或Multisim仿真设计电路原理图,确定电路元件参数、掌握电 路工作原理并仿真实现系统功能; ④ 安装调试并按规范要求格式完成课程设计报告书; ⑤ 选做:利用仿真软件的PCB设计功能进行PCB设计。 时间安排: 1、前半周,完成仿真设计调试;并制作实物。 2、后半周,硬件调试,撰写、提交课程设计报告,进行验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) 1.电路方案选择 (4) 2.高输入阻抗放大电路设计 (5) 2.1差分放大电路 (5) 2.1.1零点漂移 (5) 2.1.2差模信号与共模信号 (5) 2.1.3.共模抑制比 (6) 2.1.4差分放大电路的分析 (6) 2.2镜像恒流源 (7) 2.2.1镜像电流源电路特点 (8) 2.2.2镜像电流源电路分析 (8) 2.3同向比例放大电路 (8) 2.4电压串联负反馈 (9) 2.5电路原理设计图 (10) 3.直流稳压电源的设计 (10) 3.1理论分析 (10) 3.2原理图 (11) 3.3直流稳压电源仿真结果 (11) 4高输入阻抗放大电路仿真 (12) 5实物安装和调试 (17) 5.1布局焊接 (17) 5.2调试方法 (17) 5.3测试结果分析 (17) 5.4实物展示 (18) 6. PCB制作 (19) 7.个人总结 (23) 参考文献 (24)

电子专业技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

————————————————————————————————作者:————————————————————————————————日期:

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (5) 二、实验仪器 (5) 三、实验原理 (5) (一)单级低频放大器的模型和性能 (5) (二)放大器参数及其测量方法 (7) 四、实验内容 (9) 1、搭接实验电路 (9) 2、静态工作点的测量和调试 (10) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (11) 4、放大器上限、下限频率的测量 (12) 5、电流串联负反馈放大器参数测量 (13) 五、思考题 (13) 六、实验总结 (13)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

测量放大电路的设计

测量放大电路的设计 作者: 【摘要】:测量放大器能够将微弱的电信号进行放大,在生活中应用也十分广泛,如在自动控制领域,往往需要用电压信号进行控制,也就必然离不开电压测量放大器,由于测量放大器应用十分广泛,因而现在已经有集成的测量放大器供使用了。本次设计就是围绕测量放大器展开的,测量放大器主要是通过运用集成运放将所测量的信号进行不失真的放大,并且不对所测量的电路产生影响,这就是需要放大器有高的输入电阻和较高的共模抑制比。 【关键字】:放大电路二阶高通有源滤波器二级低通有源滤波器 一、设计技术与要求: 如图所示,测量放大器由基本测量放大器、二阶高通有源滤波器、二阶 低通有源滤波器三部分组成。 1、性能技术指标: (1)输入阻抗Ri>1m? (2)电压放大倍数Au≥1000(即输入信号Ui-p=1mv时,输出信号Uop-p>1v (3)频带宽度B=10?10KHZ (4)共模抑制比Kcmr>80dB 二:基本测量放大电路 如下图:放大器电路有两个同相放大器和一个基本差动放大电路组合而成;该电路具有输入阻抗高、电压增益容易调节,输出不包含共模信号等优点。若不接R时,该电路由于引入了串联负反馈,所以其差模输入电阻Rid和共模输入电阻Ric都很大;当接入电阻R后,由于R很小,则R与Rid(或Ric)并联后,该电路的差模输入电阻Rid≈2R,共模输入电阻Ric≈R/2。其中RL是负载电阻。 基本放大电路有(前置放大电路组成)下:

图(1) 1其中放大倍数: Aud1==1+2R2/R1=81 Aud1’==1+2R2/R1=31

2其中放大倍为: Aud2==Rf/R3=20 由上可知在前置放大电路中,总的放大倍数为: Aud==Aud1·Aud2=81·20=1620 Aud==Aud1’·Aud2=31·20=620 由以上电路图(2)可观察到,Ri1是一个高输入阻抗的模块的组合放大电路,即输入电阻 Ri1=∞Ω>1MΩ 但由于引入了电阻R,因此,其引入的R达到要求的指标,两个R串联电阻之和2R满足: R>0.5MΩ 为了有更好显示效果,取标称值R=1.2MΩ。 同时,共模抑制比K CMR ,由于放大电路由两级放大电路组成,K CM R1 表示第 一级放大电路的共模抑制比, K CMR2 表示第二级放大电路的共模抑制比,即该型运放的共模抑制比,则 K CMR = K CM R1 ·K CMR2 其中,K CM R1=Aud1/Auc1,K CMR2 = Aud2/Auc2。 又Aud1≥1,K CM R1 ≥1,因此有; Aud1≈1+2R2/R1=81,Aud1==1+2R2/R1=31, Auc1≈1 则有K CM R1=Aud1/Auc1≈Aud1≈81,K CM R1 =Aud1/Auc1≈Aud1≈31,

相关文档
最新文档