超导储能

超导储能
超导储能

高温超导储能应用研究的新进展

侯炳林朱学武

(核工业西南物理研究院,成都,610041)

摘要:简要回顾了用于高温超导储能磁体的高温超导磁体材料的性能。重点介绍了近年来几种类型的高温超导储能磁体的研究新进展。然后分别介绍了Bi-2212和Bi-2223高温超导储能磁体的研究情况。最后简述了将来可能用YBCO(或NdBCO)涂层导体材料设计在液氮温区运行的高温超导储能磁体。

关键词:高温超导材料,高温超导磁体,磁储能

1引言

为了更有效地利用能源,必须设置能量的储存系统。现有电力系统中的电力储存技术主要是抽水储能。抽水储能电厂一般都建在远离负荷地点的山间,必需长距离的送变电设备。在储能效率仅65%~70%较为低下的基础上,长距离输送又要损耗不少电能,与分散型电力储存系统相比是极为不利的。 

超导储能(superconducting magnetic energy storage 简称SMES)是利用超导线圈通过整流逆变器将电网过剩的能量以电磁能形式储存起来,在需要时再通过整流逆变器将能量馈送给电网或作其他用途。由于超导线圈在超导状态下无焦耳热损耗运行,同时其电流密度比一般常规线圈高1-2个数量级。因此它不仅能长时间无损耗地储存能量,而且能达到很高的储能密度。它的储能效率高,响应速度快也是其它类型储能装置无法比拟的。随着高温超导材料研究逐步走向实用化,高温超导储能(简称HTS-SMES)也成为一个研究方向,并有相应的微型样机问世。HTS-SMES储能装置中的高温超导线圈是储能装置的核心部件;因此,本文就HTS-SMES装置中的超导线圈部分的研究作一些介绍。

2 目前储能用的高温超导材料

目前共出现了五代高温超导材料:镧系、钇系、铋系、铊系和汞系,其中最有实用前途的是钇系YBCO(YBa2Cu3O7-x)和铋系BSCCO(包括Bi2Sr2Ca2Cu3O y 简称Bi-2223和Bi2Sr2CaCu2O y简称Bi-2212)。Y系高温超导体的磁场特性优于Bi系,但是,其线材制作技术还不成熟。这主要是Y系难以采用包套管法(powder in tube简称PIT)。目前,采用PIT 制备、长1.0-2.0km的Ag(或Ag-Alloy)基Bi系多芯复合超导带的技术已比较成熟。工程电流密度达到100A/mm2(77K、自场)、长度为100-1000m的Bi-系多芯复合导线已商品化。因此,目前的高温超导磁体的设计和制造多选用铋系材料。铋系材料包括Bi2212和Bi2223材料;其中,Bi2Sr2CaCu2O8临界温度为80K,Bi2Sr2Ca2Cu3O10临界温度为110K。由于高温超导材料的电流密度比低温超导线的低,且价格较高,有关HTS-SMES系统的研究报道不多。

B i系高温超导带材在液氮温度(77K),其临界电流密度J C易受磁场的影响,即使在较小的磁场下,J C就明显下降。在77K时,Bi系材料的电流密度将随磁场的增加而急剧下降;这将对除电缆(因为高温超导电缆的导体层中相邻共轭层的带材绕向相反,且螺距相等,消除了轴向磁场)以外的应用带来严重的问题。如最近,以色列的研究人员用Bi-2223线材研制了一个工作在液氮温区的HTS-SMES装置,不含磁芯时,在52K、64K和77K时的储能分别是72J、49J和22.2J;含磁芯时在52K、64K和77K时的储能分别为193J、130J和60J[1]。这证明储能磁体工作在77K时储能效率大大下降。由于目前实用的高温超导材料性能的限制,高温超导磁体应用尚不能工作在液氮温度,一般工作在运行温度为20-40K的范围。液

图1 200kJ 高温超导储能磁体结构 图2 圆形和D 形线圈交替的环形线氮温区HTS-SMES 装置研制的核心技术是如何解决Bi 系超导线(带)材临界电流密度小以及临界电流密度随磁场增大而迅速下降的问题,这个问题在超导线圈的端部显得更为突出,因这里的漏磁场最为集中,且基本上垂直于超导带。

目前高温超导材料的性能与超导储能装置的要求尚有一些差距,HTS-SMES 装置主要是实验研究,如1998年芬兰Tampere 理工大学研制了一台5kJ 的HTS-SMES 模型。该超导储能的超导磁体由11个双饼Bi —2223线圈组成,外径317mm 、内径252mm 、高66mm 、工作于20K 、运行电流160A (平均电流密度85A/mm 2

)、总安匝数160 kAT ,磁体系统采用G —M 制冷机冷却。德国EUS 也于1998年研制出一台8kJ 的HTS-SMES 原型样机。我国的清华大学、华中科技大学等开展了HTS-SMES 装置的研究工作[2]。 3高温超导储能磁体研究的现状

超导线圈通常是环形和螺管形。小型及数十MW.h 的中型储能磁体比较适合采用漏磁场小的环形线圈。螺管形的漏磁场较大,但其结构简单,实用于大型的超导储能及需要现场绕制的超导储能。

3.1环形超导线圈

使用环形线圈的优点是磁场完全约束在线圈内;因此,不存在漏磁问题和屏蔽要求。环形线圈的制造有两种方式:一种为连续的螺旋圆环绕组;另一种为由数个短螺线管线圈组成圆环,如图1所示的德国制造的200kJ HTS 储能线

圈[3]

对于螺旋圆环绕组线圈,日本的研究小组提出

了两种新的概念[4]:力平衡式线圈(Force-Balanced

Coil )和应力平衡式线圈(Stress-Balanced Coil )。力

平衡式线圈被Sato 等人运用在储能磁体上。应力平

衡式线圈在力平衡式线圈基础上的改进且用来优化

设计大环径比的超导线圈。

对于由数个短螺线管线圈组成的环形线圈,螺

线管线圈的数目优化是设计时首要考虑的问题。线

圈的数量和尺寸将影响整个磁体的尺寸,而且也影响制造的难易程度;制造的难易程度反过来又决定磁体设计的可行性。另一需要考虑的问题是螺线管线圈的形状;它可以是圆形线圈,也可以是“普林斯顿D ”形线圈。D 形线圈比单个

的圆形线圈更有效,但D 形结构复杂,制造费用增

加。

虽然环形线圈有完全封闭磁场的优点,但这仅

仅只限适用于螺旋圆环绕组线圈。由数个短螺线管

线圈组成的环形线圈磁体存在着漏磁问题。为了解

决漏磁问题,Vincat-ving 等人提出了两种储能线圈

形式。一种形式为由n 个D 形线圈组成封闭的圆环;

另一种形式为由圆形短螺线管线圈和D 形短螺线

管线圈交替排列组成的环形线圈,D 形线圈填充

在圆形线圈的“间隙”里面,如图2所示。 3.2螺线管超导线圈[4]

斯洛伐克一研究小组对HTS-SMES 磁体做了广泛的研究,尤其是对单螺线管的优化。Pitel 等人进行了饼式磁体线圈数量对临界电流影响的理论研究。研究发现:饼的数目大于10时,系统的临界电流仍然保持不变;当温度从77K 降到4.2K 时,临界电流增加一个数量

级。Pitel 等人还进行了另外一种研究,即当超导带材长度不变时,研究运行电流与绕组几何参数的影响。结果发现:在不同的温度条件下,所得到的优化绕组参数不同;对于给定的带材,改变螺线管内径对磁体的最大储能几乎没有影响;增加饼的数量,最大储能下降。

螺线管的轴截面传统形状是矩形截面;但Noguchi 等人设计了一种轴向截面为阶梯形的螺线管,用这种阶梯形截面的方法,磁体的体积能减小到矩形截面线圈体积的67%。这种阶梯截面线圈还能减小线圈端部磁场对高温超导体临界电流的影响,因此使临界电流增加。 4 Bi 系高温超导储能磁体的研究展望

目前的HTS-SMES 装置主要是实验研究,所研制出来的HTS-SMES 样机储存能量都比较小,一般在1MJ 级以下。大容量的HTS-SMES 磁体正处于理论研究与设计阶段,还没有大容量的储能样机问世。

4.1 10MJ 的Bi2212高温超导储能磁体的研究[5]

为了研究高温超导储能磁体等装置,自从1988

年以来,日本的研究者们对Bi2212进行了广泛的研

究,他们用Bi2212研制了多种类型的卢瑟福电缆

(Rutherford cable ),尤其是对规格为61×7颇有研

究。当导体的直径为0.8mm 时,规格61×7的电缆

超导股线约为15um 。各种卢瑟福电缆的截面图如图

3所示。

与常规超导体相比,Bi2212导体可靠性高且温

度裕度大,能承受扰动引起的大的温升。利用Bi2212

导体设计储能磁体存在着一系列的优点:①Bi2212

超导储能线圈能解决常规超导体线圈的大功率电绝

缘问题;能承受高电压和高输出功率。②在高磁场

强度时Bi2212导体非常稳定且能承受大电流;大电

流产生高的磁场。而储能密度正比于磁场的平方,结构紧凑的储能磁体能产生高的磁场,因而高磁场的储能磁体在小的空间储存大能量。③虽

然超导线圈在直流的情况下的电损耗很小可以忽略

不计;但线圈在储能和释放能量时处于交流状态,

通过交流损耗,如磁滞损耗或涡流损耗,将产生电

损耗。因此储能线圈必须用动力冷却。Bi2212超导

储能线圈能承受大的温升;而且能用在超导体和冷

却剂之间有相对大的温度梯度的间接冷却系统的传

导方式冷却。

为了利用所研制Bi2212超导材料设计

10MJHTS-SMES 磁体,他们预先用Bi2212材料研制

了一个小线圈并进行了测试。所研制的小线圈;匝

数145;电感11.8mH ;储能为5.5kJ (电流为1000A );最大磁场1.299T 。在此基础上于2002年进行了10MJ 的储能磁体设计。为了减小漏磁场,储能磁体由相邻线圈电流方向相反的4个螺线管构成。图4为10MJ HTS-SMES 磁体的鸟瞰图。磁体的设计参数如表1所示。 4.2 1GJ 的Bi2223高温超导储能磁体的研究[6]

日本九州电力公司和九州大学等单位用Bi2223材料进行了储能为1GJ 的设计研究。储能磁体示意图如图5所示,储能磁体由12个单元线圈组成,每3个单元线圈为一组。单元图4 10MJ-MW Bi2212储能磁体鸟瞰图 图3 B i-2212卢瑟福电缆横截面

线圈的结构示意图如图6所示。单根Bi2223

带材的尺寸为0.248×3.145mm2。磁体用

CICC形导体绕制;CICC形导体(14×

14mm2)由100根Bi2223带材组成,77K时,

临界电流为7500A。磁体用氦气冷却,运行

温度为20K。储能容量为1GJ,额定输出功

率为100MW。单元线圈的平均半径R m、内

半径R i、外半径R o和线圈宽度a以及线圈

厚度d对磁体的磁场都有影响。改变这些参

数能使磁体的磁场达到最优。通过改变线圈

所计算的a和d 的值,最大磁场、磁体尺寸、

磁体体积以及作用在HTS带材和支撑结构上的应力就确定了。通过所确定的单元线圈R i,a 和d的值,可以计算出电感。

研究结果表明:磁体的体积和磁场有一定的约束关系;磁场增加得越多,线圈体积变得越小。这有助于所需超导体材料用量的减少。

在低磁场范围,随着磁体直径的增加,磁体体

积可能增加。然而在10T或大于10T的高磁

场范围里,线圈的体积也可能随着临界电流的

降低而增加。在14T或大于14T磁场范围,

由于导体的临界电流降低,磁体的体积变大

了。线圈尺寸a对磁体的体积影响较小。线圈

的环径比几乎不影响线圈的体积。根据这些研

究,认为10T——14T的磁场能有效地减小磁

体的尺寸和体积以及作用在HTS带材和支撑

结构上的应力。1GJ的HTS-SMES磁体设计

结果如表2所示。

表1储能磁体10MJ-10MW设计参数表2 高温超导储能磁体1GJ的设计结果

名称单位或数量线圈形状4螺线管

额定电压6kV

电感8.9H×4

储能10MJ

最大磁场8.94T

内半径0.157m

外半径0.270m

高0.700m

名称单位或数量

线圈数量12

临界电流密度51A/mm2

环形线圈半径7050mm

最大磁场13.4T

带材的最大周向应力250Mpa

单元线圈内半径719mm

单元线圈外半径1055mm

单元线圈宽度504mm

单元线圈厚度336mm

单元线圈导体长度 4.8km

单元线圈匝数864 图6 单个储能磁体线圈示意图 

图5 1GJ/100MW Bi-2223储能磁体示意图

4.3高温超导储能制冷系统

由于目前实用的高温超导材料性能的限制,高温超导磁体应用尚不能工作在液氮温度(77K),一般选用低温制冷机直接冷却高温超导磁体。这种用制冷机直接传导冷却超导磁体技术,已引起了人们很大的兴趣。国外有许多单位正在对制冷机传导冷却固氮保护高温超导磁体系统进行研究[7];这项研究可用于高温超导储能磁体。国内华中科技大学等单位已开始研制制冷机直接冷却中小型高温超导系统[8]。 

4.4高温超导材料的新进展

最近两年来,YBCO(或NdBCO)涂层导体 (也称第2代带材)已成为高温超导带材发展的重要方向。由于YBCO带材在77K和外磁场下具有比Bi-系超导带材更为良好的载流性能,YBCO带材的实用化将使工作于液氮温区的高温超导电力设备成为现实。

根据美国"加速涂层导体发展计划(ACCl)"2007年长度为千米量级的第2代带材将可以实现商业化。第2代高温超导带材成为各国竞相研究开发的焦点和发展趋势。最具实力的美国超导公司计划在五年内完全放弃第1代带材的生产,将材料研究开发的全部精力投入到第2代带材的研究开发和产业化中。根据ACCI的计划,美国超导公司计划将高温超导带材的价格降低到10-25$/kA·m。届时高温超导储能应用将完全具备实用化推广的可能。

我国在第1代高温超导带材的研究开发方面已取得了很大的进步,临界电流水平达到世界最高水平的80%以上。在第2代带材研究开发方面,我国总体上还处于起步阶段,与国际水平差距极为悬殊。

5结束语

低温SMES在我国电力系统尚未投入实际应用的主要障碍是液氦的来源和价格问题,我国的氦资源不足,在很大程度上依赖于进口,价格十分昂贵。高温超导体将来可以在液氮温度下运行。如何挖掘这一潜力,不用或部分使用制冷机,对于研制性价比适合我国电力系统的分布式SMES系统具有重要意义。研制并不断完善仅使用液氮的高温SMES系统可能更加适合我国国情。

参考文献

[1] 王志等.高温超导体在小型储能装置中的应用.能源技术,2002,23(1):26~29

[2] 林良真等. 高温超导电力技术.中国科学院电工研究所论文报告集,第37集,2002年10月:39~45

[3] http://presse.fzk.de/programme/supra/eak23.html

[4] https://www.360docs.net/doc/b616791198.html,.au R.L Causley, et al. Design of a high temperature superconductor magnetic energy storage

system

[5] https://www.360docs.net/doc/b616791198.html, . Development of the Bi-2212 S uperconductor for High Voltage Magnets and Evaluation

of the Temperature and Magnetic Stability

[6] H. Hayashi, et al. Design study of 1 GJ class HTS-SMES(1) Conceptual design of a magnet system. Phisica

C 357-360(2001) 1327-1331

[7] 张博等. 制冷机传导冷却固氮保护的高温超导磁体系统的研究进展. 低温与超导,2004年第4期,p15

[8] 徐虹玲等, 低温技在高温超导(HTS)电力系统中的应用. 低温工程,2003年第2期,p20

New Progress of the High Temperature Superconductor Magnetic Energy Storage

Hou Binglin, Zhu Xuewu

(Southwestern Institute of Physics, Chengdu, 610041)

Abstract: The performance of the high temperature sperconducting material applied to high temperature sperconducting magnet for superconducting magnetic energy storage is briefly reviewed. The R&D activity of some kinds of high temperature superconducting coils for magnetic energy storage in recent years is introduced mainly. The R&D of the two kinds of high temperature sperconducting magnet used for magnetic energy storage, made of the material Bi2212 and Bi2223, is described i n this paper. It is possible that the device of the high temperature sperconducting magnetic energy storage will be made of the coated coductor material YBCO(or NdBCO) in the future, and operation temperature is 77K.

Keywords: high temperature sperconducting material, high temperature sperconducting magnet, magnetic energy storage

作者简介:侯炳林,男,1972年生。核工业西南物理研究院核能科学与工程专业硕士生,工程师。主要从事低温与超导技术应用研究。

超导电力技术的运用

超导电力技术的运用 引言 超导电力技术将是21世纪具有经济战略意义的高新技术1。超导技术的实用化、产业化会对电力领域产生巨大影响。国际超导技术界普遍 认为,新一代高温超导带材(钇系高温超导带材)有望在5年后商品化,之后超导电力技术将会出现一个快速增长的时期,在2010年~2015年期间,各种高温超导电力装置将会陆续进入实用化阶段。据国际超导 工业界预测:2020年,全球超导电力技术产业的产值将达到750亿美元。目前,超导电力技术已进入高速发展时期2,若干超导电力设备,如超导电缆、超导变压器、超导限流器、超导储能装置等已在电力系 统试运行。采用超导电力技术,可以大大提升电力工业的发展水平、 促进电力工业的重大变革。广东电网是全国最大的省级电网,随着电 网的高速发展,系统短路电流水平稳步增大,威胁着电网的安全稳定 运行。变电站站址和线路走廊落实困难,电网建设滞后,已影响到电 力供应的安全性和可靠性。本文从超导电力设备的特点和优势出发, 初步探讨了超导电力装置在广东电网应用的可行性。 1超导电力技术简介 高温超导电缆采用无阻和高电流密度的高温超导材料作为载流导体, 具有载流能力大、损耗低和体积小的优点,其传输容量将比常规电缆 高3~5倍,而电缆本体的热损耗几乎为零。2005年4月,北京云电英纳电缆公司研发出75m、35kV/2kA三相交流高温超导电缆,安装在云 南普吉变电站试验运行。超导故障限流器的基本原理是将超导装置接 入电网,系统正常运行,电流在临界电流以下时,超导体电阻几乎为0,对系统运行无影响。发生故障时,短路电流急剧上升超过临界电流, 超导体失超,电阻迅速增加,从而限制短路电流。故障切除后一段时间,超导体又从正常态恢复到超导态。2000年ABB瑞士研究中心研制 出单相6.4MVA该型故障限流器。2009年,云南电力研究院、昆明供电局、云电英纳超导电缆有限公司等单位在云南普吉变对35kV超导限流

高温超导储能系统

高温超导储能系统 一、什么是超导储能系统? 超导储能系统(Superconducting Magnetic Energy Storage, SMES)是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其它负载的一种电力设施,一般由超导线圈、低温容器、制冷装置、变流装置和测控系统部件组成。 超导储能系统可用于调节电力系统峰谷(例如在电网运行处于其低谷时把多余的电能储存起来,而在电网运行处于高峰时,将储存的电能送回电网),也可用于降低甚至消除电网的低频功率振荡从而改善电网的电压和频率特性,同时还可用于无功和功率因素的调节以改善电力系统的稳定性。超导储能系统具有一系列其它储能技术无法比拟的优越性: (1)超导储能系统可长期无损耗地储存能量,其转换效率超过90%; (2)超导储能系统可通过采用电力电子器件的变流技术实现与电网的连接,响应速度快(毫秒级); (3)由于其储能量与功率调制系统的容量可独立地在大范围内选取,因此可将超导储能系统建成所需的大功率和大能量系统; (4)超导储能系统除了真空和制冷系统外没有转动部分,使用寿命长; (5)超导储能系统在建造时不受地点限制,维护简单、污染小。 目前,超导储能系统的研究开发已经成为国际上在超导电力技术研究开发方面的一个竞相研究的热点,一些主要发达国家(例如美国、日本、德国等)在超导储能系统的研究开发方面投入了大量的人力和物力,推动着超导储能系统的实用化进程和产业化步伐。 二、开发超导储能系统的必要性 由于电力系统的“电能存取”这一环节非常薄弱,使得电力系统在运行和管理过程中的灵活性和有效性受到极大限制;同时,电能在“发、输、供、用”运行过程中必须在时空两方面都达到“瞬态平衡”,如果出现局部失衡就会引起电能质量问题(闪变),瞬态激烈失衡还会带来灾难性电力事故,并引起电力系统的解列和大面积停电事故。要保障电网安全、经济和可靠运行,就必须在电力系统的关键环节点上建立强有力的电能存取单元(储能系统)对系统给与支撑。基于以上因素,电能存取技术越来越受到各国能源部门和电力部门的重视。 超导储能系统由于其存储的是电磁能,这就保证超导储能系统能够非常迅速

超导磁体

4.9 超导磁体 4.9.1 概述 磁体系统是谱议的关键部件之一,它提供高强度和一定均匀度的恒定磁场,供主漂移室测量带电粒子的径迹,用以研究基本粒子间的相互作用和规律。超导磁体利用轭铁提供磁场回路。 根据BESIII 物理工作的需要,要求主漂移室有高的动量分辨率,但主漂移室的动量分辨率主要由室内物质的多次库仑散射决定,此时改进室的空间分辨率和测量次数(增加灵敏丝的层数)以改进测量统计性都不能改进动量分辨率,而增加磁场强度可以达到这一目的。但另一方面,如果磁场强度过高,更多的低能量粒子会陷在漂移室内打圈而很难测量。综合各种因素,选择北京谱仪磁铁的中心磁场设计值为1.0T 。 为避免在粒子径迹拟合时做过多的离线计算机校正,要求径迹区内磁场不均匀度较小。但由于线圈工艺复杂,体积宏大,加工生产中必然会产生不圆度。另外由于各子探测器电子学的需要,轭铁上电缆孔很多,参照BESII 的情况,目前仍将不均匀度指标定在≤5%。基于主漂移室IV 动量分辨率的要求,磁场测量精度应≤0.1%。 4.9.2 超导磁体设计 4.9.2.1 磁体基本参数设计及计算 根据北京谱仪BESIII 的物理要求,参照国际上同类磁体的设计进经验,确定采用单层线圈结构,间接冷却方式,超导电缆采用基于纯铝稳定体的设计。根据总体和内部子探测器的尺寸要求,初步确定磁体外形尺寸长度为4.91m ,内直径为2.75m ,外直径为3.4m ,线圈的长度为3.52m ,线圈中心直径为2.95m 。 若取线圈电流I 为3000A ,nI B 00μ=,其中T B 10=,可得1m 长的线圈匝数为n ≈266匝,超导电缆沿线圈轴向方向的厚度为3.7mm ,考虑到匝间的绝缘层的厚度后,线圈总匝数为921匝。考虑到线圈绕制时,由于超导电缆的连接会减少线圈的有效匝数,现将工作电流定为3150A 。 线圈的储能l D B l S B V B H E ???=??? =?=42121)21(2 0202πμμ = 9.5兆焦耳。从 n D B n S B ??=??=Φ42π=6063.6韦伯,dt dI L dt d =Φ,I L Φ =得出电感L = 2.1亨利。 考虑到在发生失超时,线圈吸收全部储能,最大温升控制在70K 以下,从超导电缆的焓差,可以确定超导电缆沿线圈径向方向的高度尺寸为20mm 。 超导线圈通电后,会产生很大的径向扩张力,需要设计一个支撑圆筒来箍住线圈,支撑筒必须是无磁材料,具有良好的焊接性能和机械强度。国外一般采

新能源储能系统发展现状及未来发展趋势

新能源储能系统发展现状及未来发展趋势 目录 第一章新能源储能系统相关论述 (1) 新能源相关论述 (1) 新能源定义 (1) 新能源分类 (1) 储能技术相关论述 (1) 储能技术的定义 (1) 储能技术的分类 (1) 第二章国内外新能源储能系统的发展动态分析 (2) 日本新能源储能系统的发展动态分析 (2) 新能源储能电池的发展现状及未来发展趋势 (2) 新能源储能系统的未来发展趋势 (3) 新能源储能系统在实际中的应用 (3) 美国在新能源储能系统的应用中漫漫求索 (4) 政策与投资力度 (4) 储能技术的经济性瓶颈 (5) 我国新能源储能系统的现状 (5) 储能是构建智能电网的关键环节 (6) 商业模式不成熟制约储能发展 (6) 第三章国内外在相关新能源储能技术上的发展现状 (8) 新能源储能系统的实际应用 (8) 创能、节能与储能的完美搭配 (9) 国内新能源储能技术瓶颈解析 (10) 新能源科技发展的核心—储能技术 (10) 新能源无"仓库储能"的尴尬 (10) 储能技术的突破效应 (11) "不能等肚子饿了才去种麦子" (12) 第四章新能源储能系统的发展趋势 (13) 日本新能源储能系统的发展趋势 (13) 储能电池的发展趋势 (13) 我国新能源储能系统的发展趋势 (13) 我国智能电网带动储能产业发展态势研究分析 (13) 新能源并网储能市场发展前景预测分析 (14)

第一章新能源储能系统相关论述 新能源相关论述 新能源定义 新能源的定义为:以新技术和新材料为基础,使传统的可再生能源得到现代化的开发和利用,用取之不尽、周而复始的可再生能源取代资源有限、对环境有污染的化石能源,重点开发太阳能、风能、生物质能、海洋能、地热能和氢能。 新能源分类 新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、水能、风能、地热能、波浪能、洋流能和潮汐能,以及海洋表面与深层之间的热循环等;此外,还有氢能、沼气、酒精、甲醇等,而已经广泛利用的煤炭、石油、天然气、水能、等能源,称为常规能源。随着常规能源的有限性以及环境问题的日益突出,以环保和可再生为特质的新能源越来越得到各国的重视。 储能技术相关论述 储能技术的定义 储能技术是将电力转化成其他形式的能量储存起来,并在需要的时候以电的形式释放。 储能技术的分类 目前全球储能技术主要有物理储能(如抽水储能、压缩空气储能、飞轮储能等)、化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)和电磁储能(如超导电磁储能等)三大类。目前技术进步最快的是化学储能,其中钠硫、液流及锂离子电池技术在安全性、能量转换效率和经济性等方面取得重大突破,产业化应用的条件日趋成熟。

超导磁储能系统(SMES)及其在电力系统中的应用

高温超导磁储能系统及在电力系统中的应用 一、超导磁储能基本原理 1、什么是超导磁储能系统? 超导储能系统(Superconducting Magnetic Energy Storage, SMES)是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其它负载的一种电力设施,一般由超导线圈、低温容器、制冷装臵、变流装臵和测控系统部件组成。 超导储能系统可用于调节电力系统峰谷(例如在电网运行处于其低谷时把多余的电能储存起来,而在电网运行处于高峰时,将储存的电能送回电网),也可用于降低甚至消除电网的低频功率振荡从而改善电网的电压和频率特性,同时还可用于无功和功率因素的调节以改善电力系统的稳定性。超导储能系统具有一系列其它储能技术无法比拟的优越性: (1)超导储能系统可长期无损耗地储存能量,其转换效率超过90%; (2)超导储能系统可通过采用电力电子器件的变流技术实现与电网的连接,响应速度快(毫秒级); (3)由于其储能量与功率调制系统的容量可独立地在大范围内选取,因此可将超导储能系统建成所需的大功率和大能量系统; (4)超导储能系统除了真空和制冷系统外没有转动部分,使用寿命长; (5)超导储能系统在建造时不受地点限制,维护简单、污染小。 目前,超导储能系统的研究开发已经成为国际上在超导电力技术研究开发方面的一个竞相研究的热点,一些主要发达国家(例如美国、日本、德国等)在超导储能系统的研究开发方面投入了大量的人力和物力,推动着超导储能系统的实用化进程和产业化步伐。 2、储能工作原理 SMES在电力系统中的应用首先是由Ferrier在1969年提出的。最初的设想是将超导储能用于调节电力系统的日负荷曲线。但随着研究的深入,人们逐渐认识到调节现代大型电力系统的日负荷曲线需要庞大的线圈,在技术和经济上存在着困难。现在,SMES在电力系统应用中的研究重点主要着眼于利用SMES四象限的有功、无功功率快速响应能力,提高电力系统稳定性、改善供电品质等。超导磁能储存的概念最开始来自于充放电时间很短的脉冲能量储存,大规模能量储存开始于电器元件,其原理就是电能可以储存在线圈的磁场中。如果线圈是由超导材料制成,即保持在临界温度以下,即使发生变化,电流也不会发生衰减。线圈卸载荷,可以将电流释放回电路中去。 电流I循环储存在线圈中的能量E为

基于混合储能系统电动车的研究

基于混合储能系统电动车的研究 摘要:超级电容器具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点,是一种新型储能装置。混合储能系统结合了蓄电池和超级电容的诸多优点,本文以提高动力电源的输出特性与实现能量的优化匹配为目的,研究了基于超级电容器与蓄电池的电动车混合储能系统,建立了混合储能系统的模型并对控制器进行了研究,最后分析了系统电池性能。 关键词:混合储能系统;超级电容器;蓄电池

目录 引言 (1) 1 复合电源的优势及研究意义 (1) 2 电源特性介绍及复合电源建模 (1) 2.1 蓄电池特性 (1) 2.1.1 蓄电池的充放电特性 (1) 2.1.2 蓄电池的温度特性 (2) 2.1.3 混合动力车用蓄电池的选择 (2) 2.1.4 蓄电池的容量特性 (3) 2.2 超级电容器的特性 (3) 2.2.1超级电容的充放电特性 (3) 2.2.2超级电容的温度特性 (4) 2.2.3超级电容模型 (5) 2.3 DC/DC 转换器的介绍 (6) 2.4 本章小结 (7) 3 复合电路结构及复合系统参数匹配 (7) 3.1 复合电源的基本结构和工作原理 (7) 3.1.1 复合电源的基本结构 (7) 3.1.2 复合储能电源的工作原理 (8) 3.2 复合系统的匹配参数优化 (9) 3.2.1 蓄电池和超级电容电量状态控制参数 (11) 3.2.2 电容能量利用系数K (11) 3.3 SOC 估算模型的建立 (11) 3.3.1 SOC模型的构成 (11) 3.3.2 初始SOC 的估算 (12) 3.3.3 过程SOC 的估算 (12) 3.3.4 蓄电池SOC 估算模型的建立 (13)

各种储能系统优缺点对比学习资料

史上最全储能系统优缺点梳理 谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。 全球现有的储能系统 1、机械储能 机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。 (1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。

不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。 (2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞穴,当系统发电量不足时,将压缩空气经换热器与油或天然气混合燃烧,导入燃气轮机作功发电。国外研究较多,技术成熟,我国开始稍晚,好像卢强院士对这方面研究比较多,什么冷电联产之类的。 压缩空气储也有调峰功能,适合用于大规模风场,因为风能产生的机械功可以直接驱动压缩机旋转,减少了中间转换成电的环节,从而提高效率。 不足之处:一大缺陷在于效率较低。原因在于空气受到压缩时温度会升高,空气释放膨胀的过程中温度会降低。在压缩空气过程中一部分能量以热能的形式散失,在膨胀之前就必须要重新加热。通常以天然气作为加热空气的热源,这就导致蓄能效率降低。还有可以想到的不足就是需要大型储气装置、一定的地质条件和依赖燃烧化石燃料。

风能和超级电容器的混合储能系统

风能和超级电容器的混合储能系统 随着经济的发展,国家对能源的需求越来越多,而生活中处处离不开电能的存在,此时,运用可再生能源——风能进行发电的方式逐渐进入人们的视野,并越来越受到重视。 然而,风能具有间歇性和不稳定性,在向电网并网输电时输送的电功率也不稳定。随着科技的进步以及对风电进行技术创新的要求与日俱增,人们发现需要在风力发电中应安装储能设备,而超级电容器具有诸多优点:在用电高峰期时,超级电容器可以将储存的电能释放到电力系统中去;而在风能发电高峰期时,可以将电力系统中剩余的电能储存到超级电容器中。双向DC/DC功率变换器作为连接超级电容器和直流侧母线的纽带,是风电并网运行、储能等控制电能质量至关重要的部分。 目录 1 风能资源 (3) 1.1 风能的估算 (3) 1.1.1 风能的计算 (3) 1.1.2 平均风能密度 (3) 1.1.3 理论可用风能 (5) 1.1.4 有效可用风能 (5) 1.1.5 平均有效风能 (5) 1.2 中国范围内的风能分布 (5) 2 风力发电机组 (8) 2.1 能量转换和传输理论 (8) 2.1.1 能量传递理论 (8) 2.1.2 机电能量转换理论 (9) 2.2 风电设备的工作原理 (12) 2.3 风力发电机的分类 (13) 2.4 风力发电机组的设计基础 (14) 2.4.1 设计的技术要求 (14) 2.4.2 主要尺寸 (16) 2.4.3 电机绕组 (16) 2.4.4 参数计算 (18) 2.4.5 发电机性能 (19) 3 风力发电的发展 (20) 3.1 风力发电发展的影响因素及存在的问题 (20) 3.1.1 风力发电发展的影响因素 (20) 3.1.2 风力发电发展存在的问题 (20)

浅谈储能技术

浅谈储能技术 电力工程学院电自144 吕正伟 20141050141616 通过这连个星期的学习,我对电力系统这个行业有了更加深入得了解,各种新奇的技术和应用让我们大开眼界,以前一直以为电力系统就是发发电,送送电。听了老师所讲的以后我才知道电力系统还远远不止这些,除了发电送电以外还有很多其他的技术比如储能技术、变电技术等等。而现在我主要介绍的是储能技术。 储能技术主要分为储电与储热。目前储能方式主要分为三类:机械储能、电磁储能、电化学储能。 储能技术主要分为物理储能(如抽水储能、压缩空气储能、飞轮储能等)、化学储能(如铅酸电池、氧化还原液流电池、钠硫电池、锂离子电池)和电磁储能(如超导电磁储能、超级电容器储能等)三大类。根据各种储能技术的特点,飞轮储能、超导电磁储能和超级电容器储能适合于需要提供短时较大的脉冲功率场合,如应对电压暂降和瞬时停电、提高用户的用电质量,抑制电力系统低频振荡、提高系统稳定性等;而抽水储能、压缩空气储能和电化学电池储能适合于系统调峰、大型应急电源、可再生能源并入等大规模、大容量的应用场合。 目前最成熟的大规模储能方式是抽水蓄能,它需要配建上、下游两个水库。在负荷低谷时段抽水蓄能设备处于电动机工作状态,将下游水库的水抽到上游水库保存,在负荷高峰时设备处于发电机工作状态,利用储存在上游水库中的水发电。其能量转换效率在70%到75%左右。但由于受建站选址要求高、建设周期长和动态调节响应速度慢

等因素的影响,抽水储能技术的大规模推广应用受到一定程度的限制。目前全球抽水储能电站总装机容量9000万千瓦,约占全球发电装机容量的3%。 压缩空气储能是另一种能实现大规模工业应用的储能方式。利用这种储能方式,在电网负荷低谷期将富余电能用于驱动空气压缩机,将空气高压密封在山洞、报废矿井和过期油气井中;在电网负荷高峰期释放压缩空气推动燃汽轮机发电。由于具有效率高、寿命长、响应速度快等特点,且能源转化效率较高(约为75%左右),因而压缩空气储能是具有发展潜力的储能技术之一。 机械储能包括:抽水储能、压缩空气储能、飞轮储能。 1、抽水储能 抽水储能是在电力负荷低谷期将水从下池水库抽到上池水库,将电能转化成重力势能储存起来,在电网负荷高峰期释放上池水库中的水发电。抽水储能的释放时间可以从几个小时到几天,综合效率在70%~85%之间,主要用于电力系统的调峰填谷、调频、调相、紧急事故备用等。抽水蓄能电站的建设受地形制约,当电站距离用电区域较远时输电损耗较大。 2、压缩空气储能

混合储能系统控制方法研究

混合储能系统控制方法研究 摘要:针对在脉动负载的场合中,蓄电池由于长时间的过放而导致的寿命缩短问题,提出了超级电容器和蓄电池并联供电的混合储能系统。对系统进行了小信号模型分析,提出了一种单极点单零点补偿电路。 关键词:脉动负载;混合储能;蓄电池;超级电容器;单极点单零点 引言 随着化石燃料的短缺和环境的恶化,人们越来越重视新能源的开发和利用。光伏系统以其分布范围广、无污染等优点而受到广泛关注。然而在实际运行中,光照强度多变,光伏出力并不稳定,为了平滑接入电网或供给负载,需要配置储能系统。 蓄电池由于技术成熟,大量地运用在光伏系统中。但由于其常处于充放电小循环中,影响了使用寿命,且为了满足脉冲负载的要求需要配置更多的容量。超级电容器跟蓄电池性能互补,它功率密度大而能量密度小。将二者结合起来发挥各自的优势,能显著提高混合储能系统的效益。 文献[1-2]理论上论述了混合储能系统的优势,能够优化蓄电池的充放电过程,延长使用寿命。文献[3]对混合储能系统在分布式发电系统中的应用进行了研究,表明了混合储能系统的有效性。本文对蓄电池和超级电容器通过Boost电路并联的系统进行小信号建模,通过设计合理的补偿网络,使蓄电池恒流放电,而以超级电容器补偿负载的脉动,延长了蓄电池的使用寿命。 1.混合储能系统结构设计 蓄电池和超级电容器的连接方式有多种[3],包括直接并联,通过电抗器并联,通过电力电子变换器并联等。直接并联和通过电抗器并联要求蓄电池和超级电容器电压相等。而通过电抗器并联则不必要求电压匹配。 本文利用Boost电路将蓄电池和超级电容器并联,可以灵活地配置蓄电池和超级电容器的电压等级。 控制系统的目标是在负载脉动时,使蓄电池恒流放电,承担负载的固定部分,而以超级电容器作为平衡能量缺失值的设备。控制结构图如图2所示。 3.结论 本文针对蓄电池和超级电容器经过Boost变换器并联的混合储能结构,进行了控制方案的设计,得到以下结论:

储能技术研究进展

储能技术研究进展 能源短缺和环境恶化是全球性问题,开发可再生能源,实现能源优化配置,发展低碳经济,是世界各国的共同选择。但是,可再生能源受天气及时间段的影响较大,具有明显的不稳定、不连续和不可控性。需要开发配套的电能储存装置,来保证发电、供电的连续性和稳定性。国外有关研究表明,如果风电装机占装机总量的比例在10%以内,依靠传统电网技术以及增加水电、燃气机组等手段基本可以保证电网安全。但如果所占比例达到20%甚至更高,电网的调峰能力和安全运行将面临巨大挑战。储能技术在很大程度上解决了新能源发电的随机性、波动性问题,可以实现新能源发电的平滑输出,能有效调节新能源发电引起的电网电压、频率及相位的变化,使大规模风电及太阳能发电方便可靠地并人常规电网。 现有的储能技术主要包括物理储能、电化学储能、电磁储能、氢储能、相变储能和热化学储能等类型。其中,物理储能、电化学储能、电磁储能和氢储能主要储存电能,物理储能包括抽水储能、压缩空气储能级飞轮储能等;电化学储能包括铅酸、锂离子、镍镉、液流和钠硫等电池储能;电磁储能包括超导储能和超级电容储能;为了实现氢储能完整的转换链,就要从氢气的制取、储存、发电等方面整体规划,在关键技术上进一步突破。而相变储能和热化学储能主要储存热能或由电能转化的热能,相变储能按材料的组成成分可分为无机类、有机类(包括高分子类)以及复合类储能材料;热化学储能基于热化学反应,而热化学反应体系主要包括金属氢化物体系、氧化还原体系、有机体系、无机氢氧化物体系以及氨分解体系。 1. 物理储能 物理储能一般用于大规模储能领域,主要包括抽水储能、压缩空气储能、飞轮储能等,其中抽水储能是主要的储能方式。物理储能是利用天然的资源来实现的一种储能方式,因此更加环保、绿色,而且具有规模大、循环奉命长和运行费用低等优点。缺点是建设局限性较大,其储能实施的地理条件和场地有特殊要求。而且因为其一次性投资较高,一般不适用于小规模且较小功率的离网发电系统。 1.1 抽水储能 目前在电力系统中应用最广泛的一种物理储能技术,即为抽水储能。它是一种间接的储能方式,用来解决电网高峰与低谷之间的供需矛盾。水库中的水被下半夜过剩的电力驱动水从下水库抽到上水库储存起来,然后在第二天白天和前半夜将水闸打开,放出的水用来发电,并流入到下水库。即使在转化间会有一部分能量因此而流失,但在低谷时压荷、停机等情况下,使用抽水储能电站仍然比增建煤电发电设备来满足高峰用电而来得便宜,具有更佳的效果。除此以外,抽水

混合储能供电系统案例分享

混合储能供电系统案例分享 项目背景 液压作为传统而有效的传动方式,一直以来获得广泛使用。但随着应用深入,部分场景对重量、体积和响应速度提出了更高要求。 随着电能动力系统的发展成熟,其优势逐步体现,包括重量轻、体积小、响应速度快,部分长期采用液压动力的装置开始尝试采用电能替代。而电能的来源问题,成为重要的基础保障。 本系统涉及潜在非电网环境下的电能供给,采用储能在离网时为系统提供支撑,考虑到电机为冲击负荷,采用锂电池与超级电容混合配置来应对负荷的不同工况要求。 项目简介 本项目所涉及的子系统主要目标是在离网状态为电动负荷提供电能,供电对象为用户自有伺服电机拖动系统。在用户指定的场景下,通过锂电池和超级电容混合储能系统配合双向逆变器为电机拖动系统提供稳定、快速响应的可回馈电源。出于实验目的,在锂电池储能系统电量较低时,也可将双向逆变器接至电网为储能系统充电。 针对用户需求,设计采用共直流母线架构为负荷供电: 1、直流母线下: 锂电池储能(能量型)+双向DCDC 超级电容储能(功率型)+双向DCDC 双向逆变器 变频器+电机负荷(用户提供) 2、数据总线 所有设备通过通讯协议与监控系统实现数据交换

系统拓扑 项目功能 离网环境通过混合储能系统为电机负荷供能 能量型储能与功率型储能各自发挥优势,组合供能,应对不同工况当电机工作在第二、四象限时向储能系统充电 通过控制整流器和双向DCDC实现电池和超级电容充放电

项目配置 总结 混合储能充分发挥了能量型储能的持久性和功率型储能的快速性,能够同时应对常规负荷与冲击型负荷,具有较宽的应用场景和发展潜力。优化系统配置与多种储能的协调将提升Hess的功能,值得学术界与工业界进一步探讨。

用于风电功率平抑的混合储能系统及其控制系统设计

第31卷第17期中国电机工程学报V ol.31 No.17 Jun.15, 2011 2011年6月15日Proceedings of the CSEE ?2011 Chin.Soc.for Elec.Eng. 127 文章编号:0258-8013 (2011)17-0127-07 中图分类号:TM 614 文献标志码:A 学科分类号:470?40 用于风电功率平抑的 混合储能系统及其控制系统设计 于芃1,周玮1,孙辉1,郭磊2,孙福寿2,隋永正2 (1.大连理工大学电气工程学院,辽宁省大连市 116024; 2.吉林省电力公司调度通讯部,吉林省长春市 130021) Hybrid Energy Storage System and Control System Design for Wind Power Balancing YU Peng1, ZHOU Wei1, SUN Hui1, GUO Lei2, SUN Fushou2, SUI Yongzheng2 (1. Department of Electronic Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, China; 2. Dispatching and Communication Department in Jilin Electric Power Company, Changchun 130021, Jilin Province, China) ABSTRACT: Energy storage technique is one of the most effective technique means for the regulation of wind power. Aiming at meeting the requirement of balancing the fluctuating wind power, this paper proposed a hybrid energy storage system, which was composed of battery and superc-apacitor. By the reasonable design on charge-discharge controller, the precise management on the whole charge-discharge course and the extension of cycle life of the energy storage element were achieved. Meanwhile, the system could supply the constant dc output voltage. With respect to the control system design for the energy storage system, this paper developed a double-layer control model. Also, an expert information base was established. Based on the information of real-time wind power and state of charge (SOC) of the energy storage element, the corresponding control algorithm for the charge-discharge controller can be obtained by searching the expert information base in sequence under that double-layer control model. As a result, the control logic under various fluctuating conditions of wind power was simplified and the time cost for control was shortened. Through simulation analysis, it can be indicated that the configuration of the hybrid energy storage system and the control system design are feasible. This system can be widely used in wind farm, undertaking the task of balancing the fluctuating wind power. KEY WORDS: wind power generation; fluctuating power; hybrid energy storage; supercapacitor; battery; charge- discharge control 基金项目:吉林省电力有限公司科技攻关项目(2009.2-24)。 Project Supported by Key Scientific and Technological Project of Jilin Electric Power Company(2009.2-24). 摘要:储能技术是进行风电功率调控的有效技术手段之一,针对平抑风电波动功率的需求,提出一种基于蓄电池和超级电容器的新型混合储能系统。通过充放电控制器的合理设计,实现了储能元件充放电全过程的精确管理,延长了使用寿命;同时能够提供稳定的直流输出电压。针对该系统的控制系统设计,提出一种双层控制模型,并建立专家信息库。根据实时风电功率及储能元件的荷电状态,在双层控制模型下依次检索预置的专家信息库,可得到充放电控制器相应的控制算法,简化了风电功率多种波动状态下的控制逻辑,缩短了控制时间。仿真分析表明,所提出的混合储能系统结构及其控制系统是切实可行的,可广泛应用于风电场,承担风电功率平抑的任务。 关键词:风力发电;波动功率;混合储能;超级电容器;蓄电池;充放电控制 0 引言 风力发电是实现我国能源和电力可持续发展战略的重要组成之一。由于风电输出功率具有很强的波动性、随机性,且风速预测存在一定的误差[1],因此大规模的风电并网会给电力系统的安全稳定运行带来一系列技术难题[2-4]。为提高风电场并网运行能力,越来越多的研究人员采用储能技术对风机机组输出功率进行调控[5-8],使风电场效益最大化[9-10]。对风电功率进行“削峰填谷”的平抑时,在综合考虑系统成本、体积、重量基础上,需储能系统兼具有高功率密度、高能量密度、高循环寿命的特点。 受储能机理影响,蓄电池能量密度高,功率密度、循环使用寿命低[11-12];超级电容器功率密度、循环寿命高,但能量密度低[13-14],对此很多专家学

超导材料在能源上的应用

超导材料在电力系统和热核聚变上的应用姓名:成双良班级:复材1402 学号:1105140212 摘要:超导技术是21世纪具有重大经济和战略意义的高新技术,在国民经济诸多领域具有广阔的应用前景,在能源方面尤其是电力系统以及热核聚变实验之中尤为突出。实用化超导材料是超导技术发展的基础。目前,国际上发现的实用化超导材料主要有有低温超导线材、铋系高温超导带材、YBCO涂层导体。文章首先介绍了超导材料的发展基础,重点综述了上述几种实用化超导材料制备及加工、性能和应用方面的最新研究进展,并对相关领域存在的问题及今后的发展作出展望。 关键词:超导材料,电力系统,热核聚变,NbTi,Nb3Sn,铋系高温超导带材,YBCO涂层导体 Application of Superconducting Materials in Power System and Thermonuclear Fusion Abstract:Superconducting technology is a high-tech with significant economic and strategic significance in the 21st century. It has wide application prospect in many fields of national economy, especially in energy, especially power system and thermonuclear fusion experiment. Performance improvementin practical superconducting materials is the foundation of application development. The overall picture of superconductors is diverse and developing rapidly. Currently, practical superconducting materials comprise mainly Nb-based low-temperature wires, bismuth-strontium-calcium copper oxide high-temperature superconducting tapes and yttrium barium copper oxide coated conductors. A review is presented here of the fabrication issues, key properties and recentdevelopments of these materials, with an assessment of the challenges and prospects for fixture applications. Keywords: superconducting Materials, power system, thermonuclear fusion, NbTi,Nb3Sn, BSCCO tapes, YBCO coated conductors

史上最全储能系统大盘点

史上最全储能系统大盘点 2015-05-04 10:30:10来源:无所不能作者:严同 导读:谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。 谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research 的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。 全球现有的储能系统 1、机械储能 机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。 (1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。 不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。 (2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞穴,当系统发电量不足时,将压缩空气经换热器与油或天然气混合燃烧,导入燃气轮机作功发电。国外研究较多,技术成熟,我国开始稍晚,好像卢强院士对这方面研究比较多,什么冷电联产之类的。 压缩空气储也有调峰功能,适合用于大规模风场,因为风能产生的机械功可以直接驱动压缩机旋转,减少了中间转换成电的环节,从而提高效率。

储能技术

储能技术 储能技术主要分为储电与储热。 储能技术主要分为物理储能(如抽水储能、压缩空气储能、飞轮储能等)、化学储能(如铅酸电池、氧化还原液流电池、钠硫电池、锂离子电池)和电磁储能(如超导电磁储能、超级电容器储能等)三大类。根据各种储能技术的特点,飞轮储能、超导电磁储能和超级电容器储能适合于需要提供短时较大的脉冲功率场合,如应对电压暂降和瞬时停电、提高用户的用电质量,抑制电力系统低频振荡、提高系统稳定性等;而抽水储能、压缩空气储能和电化学电池储能适合于系统调峰、大型应急电源、可再生能源并入等大规模、大容量的应用场合。 目前最成熟的大规模储能方式是抽水蓄能,它需要配建上、下游两个水库。在负荷低谷时段抽水蓄能设备处于电动机工作状态,将下游水库的水抽到上游水库保存,在负荷高峰时设备处于发电机工作状态,利用储存在上游水库中的水发电。其能量转换效率在70%到75%左右。但由于受建站选址要求高、建设周期长和动态调节响应速度慢等因素的影响,抽水储能技术的大规模推广应用受到一定程度的限制。目前全球抽水储能电站总装机容量9000万千瓦,约占全球发电装机容量的3%。 压缩空气储能是另一种能实现大规模工业应用的储能方式。利用这种储能方式,在电网负荷低谷期将富余电能用于驱动空气压缩机,将空气高压密封在山洞、报废矿井和过期油气井中;在电网负荷高峰期释放压缩空气推动燃汽轮机发电。由于具有效率高、寿命长、响应速度快等特点,且能源转化效率较高(约为75%左右),因而压缩空气储能是具有发展潜力的储能技术之一。 目前储能方式主要分为三类:机械储能、电磁储能、电化学储能。 一、机械储能 机械储能包括:抽水储能、压缩空气储能、飞轮储能。 1、抽水储能 抽水储能是在电力负荷低谷期将水从下池水库抽到上池水库,将电能转化成重力势能储存起来,在电网负荷高峰期释放上池水库中的水发电。抽水储能的释放时间可以从几个小时到几天,综合效率在70%~85%之间,主要用于电力系统的调峰填谷、调频、调相、紧急事故备用等。抽水蓄能电站的建设受地形制约,当电站距离用电区域较远时输电损耗较大。 2、压缩空气储能 压缩空气技术在电网负荷低谷期将电能用于压缩空气,将空气高压密封在报废矿井、沉降的海底储气罐、山洞、过期油气井或新建储气井中,在电网负荷高峰期释放压缩的空气推

超导磁储能系统的发展与展望

龙源期刊网 https://www.360docs.net/doc/b616791198.html, 超导磁储能系统的发展与展望 作者:苏放 来源:《中国科技博览》2015年第27期 [摘要]超导磁储能装置(SMES)是将超导磁体的无损高效储能特性与电力电子的快速电能转换技术相结合的一种新型功率调节和能量转换装置,也是目前实用化程度最高的一种超导电力装置。本文阐述了SMES的特点、基本结构以及在电力系统的具体应用,综述了国内外相关研究成果与发展现状,并讨论了其未来的前景与发展趋势。 [关键词]超导磁储能系统电力系统高温超导 中图分类号:TM917 文献标识码:A 文章编号:1009-914X(2015)27-0150-03 0 引言 自德国物理学家昂尼斯(K.Onnes)1911年研究汞在低温下的电阻随温度变化发现了超导现象之后,科学界的目光开始投向了这样一个新生的科学分支,人们希望能将其应用于实际当中。随着一个世纪超导技术的不断发展,超导应用也越来越受到各国的重视。尤其在80年代以铋系(Bi2Sr2CaCu2O8)和钇系(YBa2Cu3O7、YBa2Cu4O8)等为代表的高温超导材料的 研究取得了突破性进展后[1],超导在电力系统的应用也倍受看好。目前人们正在研究的超导 电力装置包括储能装置,电机,电线,限流器等。其中超导储能装置是一种能把电能存储在由循环电流产生的磁场中的设备。它利用超导磁体的低损耗和快速响应来储存能量的能力,通过现代电力电子型变流器与电力系统接口,组成既能储存电能(整流方式)又能释放电能(逆变方式)的快速响应器件,从而达到大容量储存电能改善供电质量提高系统容量和稳定性等诸多目的[2,3]。下文将详细介绍SMES的特点结构及在电力系统的应用,总结国内外相关研究成果与发展现状,讨论其未来的前景与发展趋势。 1 SMES概述 超导磁储能是利用超导体的零电阻特性以磁的形式存储能量,相比其他储能方式其有许多优势,如表所示,因此以超导线圈构建的超导磁储能系统在电力系统中具有广泛的应用前景[4]。(表1) 1.1SMES的特点 具体的说超导磁储能系统主要具有以下特点[5,6]: (1)响应迅速、控制方便。SMES通过变换器与交流系统相连,响应时间能达到毫秒级。改变电力电子器件的触发角即可改变装置输出功率,容易实现远方控制。SMES从最大充电功率到最大放电功率的转换只需几十毫秒。

相关文档
最新文档