平面向量

平面向量
平面向量

平面向量练习题

唐金福

班级 姓名 选择填空题准确率 %

一.选择题组

1、已知向量等于则MN ON OM 2

1

),1,5(),2,3(--=-=(

A .)1,8(

B .)1,8(-

C .)2

1,4(-

D .)2

1,4(- 2、已知向量),2,1(),1,3(-=-=则23--的坐标是( ) A .)1,7(

B .)1,7(--

C .)1,7(-

D .)1,7(-

3、若),12,5(),4,3(==则a 与b 的夹角的余弦值为( )

A .

6563 B .65

33 C .6533- D .6563-

4.如图,,,3AB a AC b BD DC === ,用,a b

表示AD ,则AD = ( ) A .34

a b +

B .1344a b +

C .1144a b +

D .3144a b

+

5、点)4,3(-关于点)5,6(-B 的对称点是( ) A .)5,3(-

B .)2

9

,0(

C .)6,9(-

D .)

21,3(-

6.下列命题中,正确的是( )

A.若|a|=|b|,则a =b

B.若a =b ,则a 与b 是平行向量

C.若|a|>|b|,则a >b

D.若a 与b 不相等,则向量a 与b 是不共线向量 7、设两个非零向量,不共线,且k k ++与共线,则k 的值为( ) A .1

B .1-

C .1±

D .0

8

、已知向量

(

a =

()

3,b m =

,若向量b 在a

方向上的投影为3,则

实数m =( )

(A )3 (B )3- (C (D )-9、向量)2 , 1( -=a 、)3 , 1( =b ,下列结论中正确的是( )

(A )

// b a (B ) b a ⊥ (C ))//(b a a - (D ))(b a a -⊥ 10、(揭阳市2016届高三上期末学业水平考试)已知向量

(1,2),(1,1)a b =-=- ,则()a b a -?=

(A) 8 (B)5 (C) 4 (D) 4-

11.已知向量a =,b =(3,)m ,若向量a ,b 的夹角为6π

,则实数

m =( )

A . B. 0 C . D .12.若平面向量(,1)m =a ,(2,1)=b ,且(2)-a b ∥b ,则m =( ) A .1

B .2

C .3

D .4

14、已知1=a ,(0,2)=b ,且1= a b ,则向量a 与b 夹角的大小为 . (A )6π (B )4π (C )3π (D )2π

15.已知||1,||2,()a b a b a ==⊥- ,则向量a b

与的夹角为 . (A )6π (B )4π (C )3π (D )2π

二.填空题组

16、已知b a b a b a -+==⊥λ与且23,32垂直,则λ等于 17、已知等边三角形ABC 的边长为1,则=?BC AB

18、设21e e 、是两个单位向量,它们的夹角是 60,则=+-?-)23()2(2121e e e e

19、已知=--B A 、),2,5()4,3(

20、(2016年全国I 卷)设向量a (,1)x x =+,b (1,2)=,且a ⊥b ,则x = .

21、(2016年全国II 卷)已知向量a=(m,4),b=(3,-2),且a ∥b ,则m=___________. 22.已知

()()

2,1,1,3a b ==--

,若(

)

a b b

λ+⊥ ,则λ= .

23. 已知向量,a b

的夹角为34π,且a = 2b = ,则()

2a a b ?-=

24、在△ABC 中,AB =2,AC =3,1AB BC =

,则BC =____

三.解答题

25. 已知向量→a =(cos α,sin α),→b =(cos β,sin β),|→a -→b |=2

5 5. (Ⅰ)求cos(α-β)的值;

(Ⅱ)若-π2<β<0<α<π

2,且sin β=-513,求sin α的值.

平面向量练习题答案

一.选择题组

二.填空题组

16、

23 17、2

1- 18、2

9

-

19、10 20、3

2-

21、-6 22、

2

1

23、6 24

二.解答题组

25【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45,

将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cosαcosβ+sinαsinβ)+12=45,∴cos(α-β)=-3

5. (Ⅱ)∵-π2<β<0<α<π

2,∴0<α-β<π, 由cos(α-β)=-35,得sin(α-β)=4

5, 又sinβ=-513,∴cosβ=12

13,

∴sin α=sin [(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=33

65.

平面向量基础知识

b a B A O a -b 平面向量基础知识 1.向量的概念 (1)向量的定义:既有大小又有方向的量叫做向量.向量可用字母a ,b ,c ,…等表示,也可用表示向量的有向线段的起点和终点的字母表示(起点写在前面,终点写在后面,上面划箭头)如AB 表示由起点A 到终点B 方向的向量. (2)向量的模:向量AB 的大小(即向量AB 的长度)叫做向量AB 的模,记作|AB |.又如向量a 的模记作|a |. 注意:向量的模是一个非负实数,是只有大小而没有方向的标量. (3)零向量、单位向量、平行向量、共线向量的概念. ①零向量:长度(模)为0的向量叫做零向量,记作0.零向量的方向可看作任意方向. ②单位向量:长度(模)为1个单位的向量叫做单位向量. ③平行向量:方向相同或相反的非零向量叫做平行向量,向量a 与b 平行可记作:a //b .因为平行向量都可移到同一条直线上,所以平行向量又叫做共线向量.我们规定0与任一向量平行. ④相等向量:长度相等且方向相同的向量叫做相等向量.向量a 与b 相等,记作a =b .相等向量一定共线,反之则不一定成立. 2.向量运算 (1)加法运算 ①定义:求两个向量和的运算叫做向量的加法,如已知向量a ,b , 作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a +b ,即a +b =AB +BC =AC . 这种根据向量加法的定义求向量和的方法,叫做向量加法的 三角形法则. 由图可知,以同一点A 为起点的两个已知向量a ,b 为邻边作 平行四边形ABCD ,则以A 为起点C 为终点的对角线AC 就是a 与b 的和,我们把这种作两个向量和的方法叫做向量加法的平行 四边形法则. ②运算性质: a + b =b +a (交换律); (a +b )+ c =a +(b +c )(结合律); a +0=0+a =a . (2)减法运算 ①相反向量:与向量a 长度相等,方向相反的向量叫做a 的相反向量. 记作a .零向量的相反向量仍是零向量;-(-a )=a ;a +(-a )=0 (即互为相反的两个向量的和是零向量.) ②减法定义:向量a 加上b 的相反向量叫做a 与b 的差,即a b =a +(-b ). 求两个向量的减法可转化为加法进行.若向量是用两个大写字母,则只需把减向量起点字母与终点字母交换顺序,就可将减法变为加法,如AB -BC =AB +CB 如图,已知,在平面内任取一点O ,作OA =a ,OB =b ,则BA =a -b .即a -b 可以表示为从向量b 的终点指向a 的终点的向量.此法则叫做两向量减 法的三角形法则. (3)实数与向量的积: ①定义:λa ,其中λ>0,λa 与a 同向,|λa |=|λ|?|a |; λ<0时,λa 与a 反方向,|λa |=|λ|?|a |;λ=0时,λa =0,当a =0,λa =0. ②运算律: B A C a +b a b B A C a +b a b D a b

高中数学必修四平面向量知识归纳典型题型(经典)

一,向量重要结论 (1)、向量的数量积定义:||||cos a b a b θ?= 规定00a ?=, 22||a a a a ?== (2)、向量夹角公式:a 与b 的夹角为θ,则cos |||| a b a b θ?= (3)、向量共线的充要条件:b 与非零向量a 共线?存在惟一的R λ∈,使b a λ=。 (4)、两向量平行的充要条件:向量11(,)a x y =,22(,)b x y =平行?12210x y x y -= (5)、两向量垂直的充要条件:向量a b ⊥0a b ??=?12120x x y y += (6)、向量不等式:||||||a b a b +≥+,||||||a b a b ≥? (7)、向量的坐标运算:向量11(,)a x y =,22(,)b x y =,则a b ?=1212x x y y + (8)、向量的投影:︱b ︱cos θ=||a b a ?∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 (9)、向量:既有大小又有方向的量。 向量不能比较大小,但向量的模可以比较大小。相等 向量:长度相等且方向相同的向量。 (10)、零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a = 0 ?|a |=0 由于0的方向是任意的, 且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) (11)、单位向量:模为1个单位长度的向量 向量0a 为单位向量?| 0a |=1 (12)、平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b (即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 注:解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k u ,1= 或()n m u ,= ,要会求出直线的斜率; (2)给出+与AB 相交,等于已知+过AB 的中点; (3)给出0 =+,等于已知P 是MN 的中点; (4)给出()+=+λ,等于已知Q P ,与AB 的中点三点共线; (5)给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,O C O A O B αβαβαβ+==+且使,等于已知C B A ,,三点共线. (6) 给出λλ++=1OP ,等于已知P 是AB 的定比分点,λ为定比,即λ= (7) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已知AMB ∠是钝角, 给出0>=?m ,等于已知 AMB ∠是锐角。 ( 8)给出=??λ,等于已知MP 是AMB ∠的平分线/ (9)在平行四边形ABCD 中,给出0)()(=-?+,等于已知ABCD 是菱形;

(整理)5平面向量基础知识.

平面向量基础知识 第一课时:向量的概念 向量的定义(两要素) 向量与矢量、数量、标量的区别 作用点、实际意义(单位)、可比性 向量是矢量的抽象、数量是标量的抽象 向量的表示 几何表示 (几何中用点表示位置、用射线表示方向 起点到终点) 用有向线段表示向量使向量具有几何直观性 有向线段(三要素)与向量的区别 (人的身高不随位置改变而改变) 向量只与其起点和终点的相对位置有关,与起点和终点的绝对位置无关 符号表示 有向线段的起点与终点符号(大写)(具体) 小写符号(抽象) 手写必须带箭头 (“帽子”) 用符号表示向量使向量具有代数的属性 坐标表示 用坐标表示向量使向量具有算术的属性 向量的模及其表示 写法与读法 (“外套”) 模特殊的向量 零向量 定义、表示0、方向 单位向量 定义 方向的惟一性 与已知非零向量共线的单位向量常用表示符号e 、i 、j 、k 位置特殊的向量 位置向量 起点为坐标原点的向量 方向关系特殊的向量与表示 平行向量(共线向量 “平行向量”与“共线向量”是等意词) 垂直向量 相等向量 平移变换用之 相反向量 反向变换用之 零向量的规定:零向量与任一向量共线,零向量的相反向量是零向量 判断: 1、若两向量相等,则它们的起点与终点相同 2、AB BA =- 3、若a ∥b ,b ∥c ,则a ∥c 4、若AB CD =,则AB CD 5、若a 与b 不共线,则a ≠0,b ≠0 6、若AB ∥CD ,则A 、B 、C 、D 四点共线 7、若AB ∥AC ,则A 、B 、C 三点共线 8、若AB=CD ,则AB CD = ∥ =

9、若AB=CD ,则||||AB CD = (既戴帽子,又穿外套) 两个向量平行,这两个向量可以在一条直线上,这与平面几何中的“平行”的含义不同;两个向量共线,这两个向量不一定在一条直线上,这与平面几何中的“共线”的含义也不同.而规定零向量与任一向量平行,使几何中的“平行公理”对于向量平行不再成立.(在几何中,“平行”和“共线、重合”绝不相同,而在向量中,“平行”和“共线”绝对一样) 向量的类型:自由向量、滑动向量、固定向量 第二课时:向量的加法 向量加法的定义 向量加法处理方法:三角形法则、平行四边形法则 (当两个向量共线时,平行四边形法则不适用,只适用三角形法则;当两个向量不共线时,平行四边形法则和三角形法则是一致的) 向量加法的特征:尾首相接,首尾相连(与接点的位置无关) 向量的和拆分 封闭折线的和向量 △ABC 中,G 是重心?GA +GB +GC =0 求和向量时需要把向量具体化、几何化 向量加法的运算律:交换律、结合律 向量加法的性质 1、两个向量的和为一个向量 2、若两个向量平行,则它们的和向量与它们也平行 3、若两个向量不平行,则它们的和向量与它们也不平行 4、||a |-|b ||≤|a +b |≤|a |+|b |, 当且仅当a 与b 同向,或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 反向或其中至少一个是零向量时,前一等号成立. 第三课时:向量的减法 向量减法的定义 向量减法是向量加法的逆运算 向量减法处理方法:三角形法则、平行四边形法则 向量减法的特征:首首相聚,被减被指(与起点的位置无关) 向量的差拆分 向量减法是向量加法的逆运算,即减去一个向量等于加上该向量的相反向量 求差向量时需要把向量具体化、几何化 向量减法的性质 1、两个向量的差为一个向量 2、若两个向量平行,则它们的差向量与它们也平行 3、若两个向量不平行,则它们的差向量与它们也不平行 4、||a |-|b ||≤|a -b |≤|a |+|b |, 当且仅当a 与b 反向或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 同向或其中至少一个是零向量时,前一等号成立.

平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理 突破点(一)平面向量的有关概念 知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量 考点 平面向量的有关概念 [典例]⑴设a , b 都是非零向量,下列四个条件中,使 向=而成立的充分条件是( ) A . a =- b B . a // b C . a = 2b D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是( ) A . o B . 1 C . 2 D . 3 [解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与 |a| |b| |a| |b| 向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b ,故a = 2b 是耳=g 成立的充分条件. |a| |2b| |b| |a| |b| (2)向量是既有大小又有方向的量, a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o 平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上 所述,假命题的个数是 3. [答案](1)C (2)D _ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小 […(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上. 突破点(二)平面向量的线性运算 1. 向量的线性运算: 加法、减法、数乘 2. 平面向量共线定理: 向量b 与a(a ^ o )共线的充 要条件是有且只有一个实数 人使得b = 1 [答案](1)D ⑵1 —…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「 i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解. ⑵含图形的情况:将它们转化到 ] 三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解. 2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________ 考点二 平面向量共线定理的应用 [例2Lu 设两个非零向J a 和b 不共鈿 平面向量的线性运算 …uuur …"uLu r 考点一 ~~uuur ----- u uur [例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC 12 5 2 A.3b + 3C B.gC — 3b 2 1 2 1 C.gb — 3c D.gb + 3C uuuu 1 uuur ⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ . uuur umr [解析](1)由题可知BC = AC - uuur + BD = c + 2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur (2)如图,因为AN = 2 NC ,所以 uuur 2 uuuu m AB + 3 AN ?因为B ,P ,N 三点共线, ―uuur ,贝U AD =( ) UULT uuur 2 uuur 若 AP = m AB + 9 AC ,则实 2 uuir 2 uuir uur uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC = 1 m = 3.

平面向量基础知识复习+练习(含答案)

平面向量 1. 基本概念: 向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2. 加法与减法的代数运算: (1)A] A2 A2A3 A n i A n A1A n . ⑵若a= ( X i, y i) ,b= ( X2, y2 )则 a b= ( X i x?, y i y ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 以向量AB = a、AD = b为邻边作平行四边形ABCD ,则两条对角线的向量 AC = a + b, BD=b —a,DB = a —b 且有丨a I —I b I <| a b I <| a I + I b I . 向量加法有如下规律: a + b = b + a (交换律);a+(b+c)=(a+ b)+c (结合律);—F- —F —k —V- a + 0= a a + (—a )=0. 3 .实数与向量的积:实数与向量a的积是一个向量。 (1) I a I = I I?I a I ; (2) 当 >0时,a与a的方向相同;当v 0时,a与a的方向相反;当=0时, —t a = 0. (3) 若a= ( X i, y i),则a= ( X i, y i). 两个向量共线的充要条件: (1) 向量b与非零向量a共线的充要条件是有且仅有一个实数,使得b= a . ―b- —te- (2) 若a= ( X i, y i) ,b= ( X2, y2 )则a // b x』2 x? y i 0 . 平面向量基本定理: 若e i、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有 —*■ 一对实数i, 2,使得a = i e i+ 2 e2.

(完整版)平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB u u u r =3a, CD u u u r =-5a ,且||||AD BC =u u u r u u u r ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =13CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB u u u r =a +2b ,BC u u u r = -5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、 D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD u u u r =x AB u u u r ,AE u u u r =y AC u u u r ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB u u u r =2AC u u u r ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB u u u r =(sin α,cos β), α,β∈(-2π,2 π),则α+β= *11.已知 a =(1,2) , b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

平面向量的基本概念

平面向量得实际背景及基本概念 1、向量得概念:我们把既有大小又有方向得量叫向量。 2、数量得概念:只有大小没有方向得量叫做数量。 数量与向量得区别: 数量只有大小,就就是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小、 3.有向线段:带有方向得线段叫做有向线段。 4.有向线段得三要素:起点,大小,方向 5、有向线段与向量得区别; (1)相同点:都有大小与方向 (2)不同点:①有向线段有起点,方向与长度,只要起点不同就就就是不同得有向线段 比如:上面两个有向线段就就是不同得有向线段。 ②向量只有大小与方向,并且就就是可以平移得,比如:在①中得两个有向线 段表示相同(等)得向量。 ③向量就就是用有向线段来表示得,可以认为向量就就是由多个有向线段连接而成 6、向量得表示方法: ①用有向线段表示; ②用字母a 、b (黑体,印刷用)等表示; ③用有向线段得起点与终点字母:; 7、向量得模:向量得大小(长度)称为向量得模,记作||、 8、零向量、单位向量概念: 长度为零得向量称为零向量,记为:0。长度为1得向量称为单位向量。 9、平行向量定义: ①方向相同或相反得非零向量叫平行向量;②我们规定0与任一向量平行、即:0 ∥a 。 说明:(1)综合①、②才就就是平行向量得完整定义; (2)向量a、b、c 平行,记作a∥b ∥c 、 10、相等向量 长度相等且方向相同得向量叫相等向量、 说明:(1)向量a与b相等,记作a =b ;(2)零向量与零向量相等; (3)任意两个相等得非零向量,都可用同一条有向线段来表示,并且与有.. A(起点) B (终点) a

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

平面向量公式

平面向量公式 1.向量三要素:起点,方向,长度 2.向量的长度=向量的模 3.零向量:? ??方向任意长度为 .20.1 4.相等向量:?? ?长度相等 方向相同 .2.1 5.向量的表示:AB ()始点指向终点 6.向量的线性加减运算法则: ()()???? ?=-=+终点指向始点 始点指向终点, CB AC AB AC BC AB ,21 7.实数与向量的积: ()()a a λμμλ=.1 ()a a a μλμλ+=+.2 ()b a b a λλλ+=+.3 4.()y x a λλλ,=? 5.a b b a ?=? 6.()()b a b a ??=?λλ 7.()c b c a c b a ?+?=?+ 注;()()c b a c b a ≠? 8.定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数 λ,使得: a b λ= 9.平面向量基本定理:如果e 1 ,e 2是同一平面内的两个不共线向量,那么对于这一平面 : e e a 2211λλ+= 10.坐标的运算: ()1?? ? ? ?+ =y x a ?y x a 22 +=

()2已知;A ()y x 11+,B () y x 22+?() ( )() ?? ???+=--=--y y x x y y x x AB AB 1212.2,.12 2 1212 ()3已知;()y x a 11,= ,()y x b 22,= () ()?? ???+?=?±±=±?和它们对应坐标的乘积的两个向量的数量积等于y y x x y y x x b a b a 21212 121.2,.1 ()4已知;()y x a 11,=//()y x b 22,=01 2 2 1 =?-?y x y x (横纵交错乘积之差为0) ()5已知;已知;()y x a 11,=⊥ ()y x b 2 2 ,= 02 1 2 1 =?+??y y x x (对应坐标乘积之和为0) 10.数量积b a ?等于a 的长度a 与b 在a 的方向上的投影θcos ?b 的乘积: θcos ??=?b a b a ()的夹角与为b a θ 变形?b a b a ?= θcos 11.线段的定比分点: 设()x x p 211, ,()y x p 222, ,P ()y x ,是不同于直线p 2 1,上 的任意两点;即有: p p p p 21λ=?? ? ???外在点内 在点p p p p p p 212 100λλ (其中p 为定比分点;λ为定比。) (1).线段的定比分点“定比”λ=p p p p 2 1 (终点 分点分点 始点→→)

平面向量

回扣验收特训(三) 平面向量 1.如图所示,在△ABC 中,设AB ―→=a ,AC ―→ =b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP ―→ =( ) A.12a +1 2b B.13a +2 3b C.27a +47 b D.47a +27 b 解析:选C 连接BP ,则AP ―→=AC ―→+CP ―→=b +PR ―→ , ① AP ―→=AB ―→+BP ―→=a +RP ―→-RB ―→. ② 由①+②,得2AP ―→=a +b -RB ―→ . ③ 又RB ―→=12QB ―→=12(AB ―→-AQ ―→)=1 2????a -12 AP ―→ , ④ 将④代入③,得2AP ―→ =a +b -12????a -12 AP ―→ , 解得AP ―→=27a +4 7 b . 2.已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=( ) A .0 B .1 C .2 D. 5 解析:选D 因为|a -b |2=a 2-2a ·b +b 2=1-0+22=5,所以|a -b |=5,故选D. 3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( ) A .(3,-6) B .(-3,6) C .(6,-3) D .(-6,3) 解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以 λ=-3,b =(3,-6). 4.已知平面向量a ,b 满足|a +b |=1,|a -b |=x ,a ·b =-38x ,则x =( ) A. 3 B .2 C. 5 D .3 解析:选B |a +b |2=a 2+2a ·b +b 2=1,|a -b |2=a 2-2a ·b +b 2=x 2,两式相减得4a ·b =1-x 2.又a ·b =-38x ,所以1-x 2=-32x ,解得x =2或x =-12 (舍去).故选B.

平面向量的基本性质

平面向量的基本定理及其坐标表示 第一部分 知识梳理 一、平面向量的基本定理:如果21,e 是同一平面内两个不共线的向量,那么对于这一平面内的任意向量a ,有且只有一对实数21,λλ,使得2211e e λλ+=。我们把不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底。 对于两个非零向量a 与b ,通过平移使他们的起点重合,比如a oA =,b oB =,则 () 1800≤≤=∠θθAOB 叫做向量与的夹角。 二、 平面向量的正交分解及坐标表示 (1)向量的分解:一个平面向量用一组基底21,e 表示成2211e e λλ+=,(R ∈21,λλ)的形式,我们称之为向量的分解 (2)向量的正交分解:把一个向量分解成两个互相垂直的向量,叫做把向量正交分解,这两个互相垂直的向量称为正交基底。 (3) 平面向量的坐标表示:在平面直角坐标系中,分别去与x 轴,y 轴方向相同的两个单位向量,作为基底,对于平面捏的任一向量a ,由平面向量基本定理可以知,有且只有一对实数y x ,,使得j y i x a +=,这样,平面内的任一向量都可以由y x ,唯一确定,我们把有序的实数对()y x ,叫做向量的坐标,记作),(y x a =,其中x 叫做在x 轴上的坐标,y 叫做在y 轴上的坐标,),(y x =叫做向量的坐标表示。 三、平面向量的坐标运算: (1) 两个向量和、差的坐标运算。已知),(),,(2211y x y x ==则 ),(2121y y x x ++=+,),(2121y y x x --=- (2) 平面向量数乘的坐标运算。已知()R y x a ∈=λ,,,则()y x a λλλ,= (3) 已知A 、B 的坐标,求的坐标。设),(),,(2211y x B y x A ,则()1212,y y x x --= 四、平面向量共线的坐标表示: 已知()11,y x =,() 0),(22≠=y x ,与共线?01221=-y x y x 五、线段定比分点坐标: 若点()111,y x P ,P2( x2),(222y x P ,()y x P ,,λ为实数,且P 21PP P P λ=,则点P 的坐标y x ,满足:()y x P ,

平面向量基础知识点总结 (1)

平面向量知识点总结 基本知识回顾: 1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向. 2.向量的表示方法: ①用有向线段表示-----AB u u u r (几何表示法); ②用字母a r 、b r 等表示(字母表示法); ③平面向量的坐标表示(坐标表示法): 分别取与x 轴、y 轴方向相同的两个单位向量i r 、j r 作为基底。任作一个向量a ,由平 面向量基本定理知,有且只有一对实数x 、y ,使得a xi yj r r ,),(y x 叫做向量a 的(直 角)坐标,记作(,)a x y r ,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,i r (1,0) ,j r (0,1) ,0(0,0) r 。a r ),(11y x A ,),(22y x B , 则 1212,y y x x ,AB 3.零向量、单位向量: ①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,叫单位向量.| |a 就是单位向量) 4.平行向量: ①方向相同或相反的非零向量叫平行向量; ②我们规定0r 与任一向量平行.向量a r 、b r 、c r 平行,记作a r ∥b r ∥c r .共线向量与平行向量 关系:平行向量就是共线向量. 性质://(0)(a b b a b r u r r r r r 是唯一)||b a b a a b u r r u r r r r 0,与同向方向---0,与反向长度--- 1221//(0)0a b b x y x y r u r r r (其中 1122(,),(,)a x y b x y r u r ) 5.相等向量和垂直向量: ①相等向量:长度相等且方向相同的向量叫相等向量. ②垂直向量——两向量的夹角为2 性质:0a b a b r u r r r g

平面向量基本定理03913

2.3.1平面向量基本定理 学习目标: 1. 了解基底的含义,理解平面向量基本定理,会用基底表示平面内任一向量. 2. 掌握两个向量夹角的定义以及两向量垂直的定义. 3. 两个向量的夹角与两条直线所成的角. 学习重点:平面向量基本定理 学习难点:两个向量的夹角与两条直线所成的角. 课上导学: [基础初探] 教材整理1平面向量基本定理 阅读教材P93至P94第六行以上内容,完成下列问题. 1. ____________ 定理:如果e i, e是同一平面内的两个向量,那么对于这一平面内的____________ 向量a, ______________ 实数入,入2,使a= _________________________ 2. ____________ 基底:___________________________ 的向量e1, e2叫做表示这一平面内______________________________ 向量的一

组基底. 判断(正确的打“,错误的打“X” ) (1) 一个平面内只有一对不共线的向量可作为表示该平面内所 有向量的基底.() (2) 若e i, e是同一平面内两个不共线向量,则入& + 说 k, 入2为实数)可以表示该平面内所有向量.() (3) 若ae i + be2=ce i + de2(a, b, c, d€ R),则a = c, b = d.( ) 教材整理2两向量的夹角与垂直 阅读教材P94第六行以下至例1内容,完成下列问题. 1. __________________ 夹角:已知两个_________________ a 和b,作OA= a, OB= b,则__ = B叫做向量a与b的夹角.

平面向量基础练习题

平面向量基础练习 1)在四边形ABCD 中,若AC AB AD =+ ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 3)AB BC AD +-= ( ) A 、A D B 、CD C 、 D B D 、DC 4)已知正方形ABCD 的边长为 1,A B = a ,BC = b ,AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 5)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b = C 、(2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 6)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不 可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(m A )0(≠m , 按向量a 平移后的对应点的坐标是 ) 0,(m ,则向量a 是( ) A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 8)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、045 B 、0 60 C 、0 135 D 、0 120 9)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 10)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影为 . 11)已知3a = ,4b = ,a 与b 的夹角为4 3π , (3)(2)a b a b -?+ =__________. 12)已知3=a ,4=b ,且向量a ,b 不共线,若向量+a k b 与向量-a k b 互相垂直,则 实数k 的值为 . 平面向量基础练习 1)在四边形ABCD 中,若AC AB AD =+ ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 3)AB BC AD +-= ( ) A 、A D B 、CD C 、 D B D 、DC 4)已知正方形ABCD 的边长为 1,A B = a ,BC = b ,AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 5)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b = C 、(2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 6)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不 可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(m A )0(≠m , 按向量a 平移后的对应点的坐标是 ) 0,(m ,则向量a 是( ) A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 8)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、045 B 、0 60 C 、0 135 D 、0 120 9)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 10)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影为 . 11)已知3a = ,4b = ,a 与b 的夹角为4 3π , (3)(2)a b a b -?+ =__________. 12)已知3=a ,4=b ,且向量a ,b 不共线,若向量+a k b 与向量-a k b 互相垂直,则 实数k 的值为 .

必修四平面向量基本定理

平面向量基本定理 [学习目标] 1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点一 平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 思考 如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG → , a . 答案 通过观察,可得: AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF → =4e 1-4e 2, GH → =-2e 1+5e 2,HG → =2e 1-5e 2,a =-2e 1. 知识点二 两向量的夹角与垂直 (1)夹角:已知两个非零向量a 和b ,如图,作OA →=a ,OB → =b ,则∠AOB =θ (0°≤θ≤180°),叫做向量a 与b 的夹角. ①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a⊥b .

思考 在等边三角形ABC 中,试写出下面向量的夹角. ①AB →、AC →;②AB →、CA →;③BA →、CA →;④AB →、BA →. 答案 ①AB →与AC → 的夹角为60°; ②AB →与CA → 的夹角为120°; ③BA →与CA → 的夹角为60°; ④AB →与BA → 的夹角为180°. 题型一 对向量的基底认识 例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________. ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量; ②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2= λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. 答案 ②③ 解析 由平面向量基本定理可知,①④是正确的. 对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的. 对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个. 跟踪训练1 设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)

平面向量基础练习题

平面向量基础练习 1)两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a 和b ,那么下列命题中错误的一个是 A 、a 与b 为平行向量 B 、a 与b 为模相等的向量 C 、a 与b 为共线向量 D 、a 与b 为相等的向量 2)在四边形A B C D 中,若AC AB AD =+ ,则四边形A B C D 的形状一 定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 3)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22 ≠a b (D) =a b 4)AB BC AD +-= A 、AD B 、CD C 、DB D 、D C 5)已知正方形A B C D 的边长为 1,AB = a ,BC = b , AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 6)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14) b = C 、 (2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 7)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4), 则第4个顶点的坐标不可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)

8)点),0(m A )0(≠m ,按向量a 平移后的对应点的坐标是)0,(m ,则 向量a 是 A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 9)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、0 45 B 、0 60 C 、0 135 D 、0 120 10)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 11)设O 是平行四边形ABCD 的两条对角线的交点,下列向量组:(1)AD 与AB ;(2)DA 与BC ;(3)C A 与D C ;(4)O D 与OB ,其中可作为这个平行四边形所在平面表示它的所有向量的基底的向量组可以是________________。 12)已知向量a (1,5)=,b (3,2) =-,则向量a 在b 方向上的投影 为 . 13)已知)8,7(A ,)5,3(B ,则向量AB 方向上的单位向量坐标是 ________。 14)已知 3 a = , 4 b = , a 与 b 的夹角为 4 3π, (3)(2)a b a b -?+ =__________. 15)已知3=a ,4=b ,且向量a ,b 不共线,若向量+ a k b 与向量- a k b 互相垂直,则实数k 的值为 .

相关文档
最新文档