高中数学第二章圆锥曲线与方程2.2.2椭圆的简单几何性质第2课时直线与椭圆的位置关系高效测评新人教A版

第二章 圆锥曲线与方程 2.2.2 椭圆的简单几何性质 第2课时 直

线与椭圆的位置关系高效测评 新人教A 版选修2-1

一、选择题(每小题5分,共20分)

1.点A (a,1)在椭圆x 24+y 2

2=1的内部,则a 的取值范围是( )

A .-2

B .a <-2或a > 2

C .-2

D .-1

解析: 由点A 在椭圆内部得a 24+12

2<1,

∴-2

2.过椭圆x 2+2y 2

=4的左焦点F 作倾斜角为π3的弦AB ,则弦AB 的长为( )

A.67

B.167

C.716

D.76

解析: 椭圆可化为x 24+y 2

2=1,∴F (-2,0),

又∵直线AB 的斜率为3, ∴直线AB 为y =3x + 6. 由??

?

y =3x +6,x 2+2y 2=4

得7x 2

+122x +8=0,

∴|AB |=+k

2

x 1+x 2

2

-4x 1x 2]

=167. 答案: B

3.若点O 和点F 分别为椭圆x 24+y 2

3=1的中心和左焦点,点P 为椭圆上的任意一点,则

OP →·FP →

的最大值为( )

A .2

B .3

C .6

D .8

解析: 由椭圆方程得F (-1,0),

设P (x 0,y 0),则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 2

0.

∵P 为椭圆上一点,∴x 204+y 20

3=1.

∴OP →·FP →=x 20+x 0+3? ????1-x 2

04

=x 20

4+x 0+3=14(x 0+2)2

+2. ∵-2≤x 0≤2,

∴OP →·FP →

的最大值在x 0=2时取得,且最大值等于6. 答案: C

4.椭圆mx 2

+ny 2

=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为

22,则m

n 的值是( ) A.22 B.23

3 C.

92

2

D.

23

27

解析: 由?

??

??

mx 2

+ny 2

=1

y =1-x 消去y 得(m +n )x 2

-2nx +n -1=0,

设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=

2n m +n ,y 1+y 2=2m

m +n

, ∴MN 的中点为P ? ??

?

?n m +n ,m m +n .

由题意知,k OP =22

, ∴m n =

22

. 答案: A

二、填空题(每小题5分,共10分)

5.过椭圆x 25+y 2

4=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原

点,则△OAB 的面积为____________.

解析: 将椭圆与直线方程联立:???

?

?

4x 2

+5y 2

-20=0,y =

x -,

解得交点A (0,-2),B ? ??

??53,43,

故S △OAB =12·OF ·|y 1-y 2|=12×1×|43+2|=5

3.

答案: 5

3

6.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个公共点,则椭圆的长轴长为________.

解析: 由题意可设椭圆方程x 2a 2+y 2

a 2-4

=1,联立直线与椭圆方程,由Δ=0得a =7.

答案: 27

三、解答题(每小题10分,共20分)

7.对不同的实数值m ,讨论直线y =x +m 与椭圆x 2

4

+y 2

=1的位置关系.

解析: 联立方程组得?????

y =x +m , ①x 2

4

+y 2

=1, ②

将①代入②得x 2

4+(x +m )2

=1,

整理得5x 2

+8mx +4m 2

-4=0

Δ=(8m )2-4×5(4m 2-4)=16(5-m 2

).

当Δ>0,即-5

当Δ=0,即m =-5或m =5时,方程③有两个相等的实数根,代入①可得到一个公共点坐标,此时直线与椭圆相切;

当Δ<0,即m <-5或m >5时,方程③没有实数根,直线与椭圆相离.

8.已知椭圆x 2

2+y 2

=1,求过点P ? ??

??12,12且被P 平分的弦所在的直线方程.

解析: 方法一:设过P 的直线与椭圆交点A (x 1,y 1),B (x 2,y 2),设所求直线的斜率为k ,当k 不存在时,y 1+y 2=0≠1,故k 存在.则直线方程为y -12=k ? ??

??

x -12.

代入椭圆方程,并整理得(1+2k 2)x 2-(2k 2

-2k )x +12k 2-k -32=0.

由根与系数关系得,x 1+x 2=2k 2

-2k

1+2k 2.

∵P 是弦中点,

∴x 1+x 2=1.即2k 2

-2k

1+2k

=1,

故得k =-1

2

.

所以所求直线方程为2x +4y -3=0.

方法二:设过P ? ??

??12,12的直线与椭圆交于A (x 1,y 1),B (x 2,y 2),则由题意 得?????

x 21

2+y 2

1=1, ①

x

222+y 2

2=1, ②

x 1

+x 2

=1, ③y 1

+y 2

=1. ④

①-②得

x 21-x 2

2

2

+y 21-y 2

2=0. ⑤

将③、④代入⑤得

y 1-y 2x 1-x 2=-1

2

, 即直线的斜率为-1

2

.

所求直线方程为2x +4y -3=

0.

9.(10分)设椭圆C :x 2a 2+y 2

b 2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于

A ,

B 两点,直线l 的倾斜角为60°,AF →=2FB →

.

(1)求椭圆C 的离心率;

(2)如果|AB |=15

4

,求椭圆C 的方程.

解析: 设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0. (1)直线l 的方程为y =3(x -c ),其中c =a 2

-b 2

.

联立?????

y =3x -c x 2a 2+y 2

b

2=1,

得(3a 2

+b 2

)y 2

+23b 2

cy -3b 4

=0.

解得y 1=-3b 2

c +2a 3a 2+b 2,y 2=-3b 2

c -2a 3a 2+b 2

. 因为AF →=2FB →

,所以-y 1=2y 2.

即3b 2c +2a 3a 2+b 2=2·-3b 2

c -2a 3a 2+b

2

. 得离心率e =c a =23

.

(2)因为|AB |=

1+1

3

|y 2-y 1|, 所以2

3·43ab 2

3a 2+b

2=15

4.

由c a =23得b =53a ,所以54a =15

4

, 得a =3,b = 5. 椭圆C 的方程为x 29+y 2

5

=1.

高中数学空间几何体考试题

第一章空间几何体 1.1 空间几何体的结构 一、选择题 1、下列各组几何体中是多面体的一组是() A 三棱柱四棱台球圆锥 B 三棱柱四棱台正方体圆台 C 三棱柱四棱台正方体六棱锥 D 圆锥圆台球半球 2、下列说法正确的是() A 有一个面是多边形,其余各面是三角形的多面体是棱锥 B 有两个面互相平行,其余各面均为梯形的多面体是棱台 C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱 D 棱柱的两个底面互相平行,侧面均为平行四边形 3、下面多面体是五面体的是() A 三棱锥 B 三棱柱 C 四棱柱 D 五棱锥 4、下列说法错误的是() A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成 B 一个圆台可以由两个圆台拼合而成 C 一个圆锥可以由两个圆锥拼合而成 D 一个四棱台可以由两个四棱台拼合而成 5、下面多面体中有12条棱的是() A 四棱柱 B 四棱锥 C 五棱锥 D 五棱柱 6、在三棱锥的四个面中,直角三角形最多可有几个() A 1 个 B 2 个 C 3个 D 4个 二、填空题 7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点, 有—————————个棱。 8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为———————————— 9、把等腰三角形绕底边上的高旋转1800,所得的几何体是—————— 10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。 图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面,“程”表示下面。 则“祝”“你”“前”分别表示正方体的————— 祝 你前程 似锦

高中数学《椭圆》教案设计

教案设计高中数学 《椭圆》 一、椭圆的定义 1、平面内与两定点F1,F2的距离的和等于常数2a(2a>|F1F2|)的点的轨迹叫做椭圆。 定点F1, F2叫做椭圆的焦点,|F1F2|叫做椭圆的焦距。 2、点集P=﹛M | |MF1| + |MF2|=2a,2a2a>|F1F2|﹜,其中两定点F1,F2叫做椭圆的焦点,两 焦点的距离叫做椭圆的焦距。 二、椭圆的标准方程 1、焦点在x轴上,焦点坐标(±c,0),焦距为2c。 2、焦点在y轴上,焦点坐标(0,±c),焦距为2c。 三、一般方程式 1、Ax2+By2=C 2、Ax2+By2=1 四、椭圆标准方程的求解方法 1、定义法 2、待定系数法 五、几种题型的讲解 1、共焦点 2、焦点三角形 3、与椭圆有关的的轨迹方程的求解 4、直线与椭圆关系 5、中点弦问题及点差法 例题1:过已知圆内的一个定点作圆C与已知圆相切,则圆心C的轨迹是()。 A.圆 B.椭圆 C.圆或椭圆 D.线段 例题2:如图,Rt△ABC中,|AB|=|AC|=1,以点C为一个焦点的椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A,B两点,则这个椭圆的焦距长为。

例题3:求适合下列条件的椭圆的标准方程。 (1)、两个焦点的坐标分别是(-4,0),(0,-4),椭圆上任意一点p 到两焦点距离之和等于10; (2)、两个焦点的坐标分别为(0,-2),(0,2),并且椭圆经过 (23 -,25) (3)、焦点在y 轴上,且经过两个点(0,2),(1,0); (4)、经过点P(-23,1),Q(3,-2). 共焦点问题: 例题4:过点(-3,2)且与92x +142 =y 有相同焦点的椭圆的方程为 。 焦点三角形问题: 例题5:已知P 为椭圆174252 2=+y x 上的一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,求△F 1PF 2的面积。 与椭圆有关的的轨迹方程的求解问题: 例题6:已知圆922=+y x ,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且 求点M 的轨迹。 直线与椭圆关系问题 例题7:已知椭圆的中心在原点,焦点在x 轴上,直线y=x+1与该椭圆交于点P 、Q ,且 0·=→ → OQ OP ,|PQ|=210 ,求椭圆的方程。 ' =→→MP PM 2

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

高中数学椭圆经典例题(学生+老 师)

(教师版)椭圆标准方程典型例题 例1已知椭圆的一个焦点为(0,2)求的值. 分析:把椭圆的方程化为标准方程,由,根据关系可求出的值. 解:方程变形为.因为焦点在轴上,所以,解得. 又,所以,适合.故. 例2已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设 条件,运用待定系数法, 求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为. 由椭圆过点,知.又,代入得,,故椭圆的方程为. 当焦点在轴上时,设其方程为. 由椭圆过点,知.又,联立解得,,故椭圆的方程为. 例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹. 分析:(1)由已知可得,再利用椭圆定义求解. (2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程. 解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,, 有, 故其方程为. (2)设,,则.① 由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点). 例4已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方 程. 解:设两焦点为、,且,.从椭圆定义知.即. 从知垂直焦点所在的对称轴,所以在中,, 可求出,,从而. ∴所求椭圆方程为或.

例5已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示). 分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设在第一象限. 由余弦定理知:·.① 由椭圆定义知:②,则得. 故. 例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 分析:关键是根据题意,列出点P满足的关系式. 解:如图所示,设动圆和定圆内切于点.动点到两定点, 即定点和定圆圆心距离之和恰好等于定圆半径, 即.∴点的轨迹是以,为两焦点, 半长轴为4,半短轴长为的椭圆的方程:. 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标

高中数学空间几何体的内切球与外接球问题

空间几何体的内切球与外接球问题 1.[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.32 3 π C .8π D .4π [解析]A 因为正方体的体积为8,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球的表面积为4π·(3)2=12π. 2.[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC - A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π 3 [解析]B 当球与三侧面相切时,设球的半径为r 1,∵AB ⊥BC ,AB =6,BC =8,∴8-r 1+6-r 1=10,解得r 1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为r 2, 则2r 2=3,即r 2=32.∴球的最大半径为32,故V 的最大值为43π×????323=92 π. 3.[2016·郑州模拟] 在平行四边形ABCD 中,∠CBA =120°,AD =4,对角线BD =23,将其沿对角线BD 折起,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一球面上,则该球的体积为________. 答案:2053 π;解析:因为∠CBA =120°,所以∠DAB =60°,在三角形ABD 中,由余弦 定理得(23)2=42+AB 2-2×4·AB ·cos 60°,解得AB =2,所以AB ⊥BD .折起后平面ABD ⊥平面BCD ,即有AB ⊥平面BCD ,如图所示,可知A ,B ,C ,D 可看作一个长方体中的四个顶点,长方体的体对角线AC 就是四面体ABCD 外接球的直径,易知AC =22+42=25, 所以球的体积为205 3 π. 4.[2016·山西右玉一中模拟] 球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S-ABC 的体积的最大 值为( ) A . 3 3 B . 3 C .2 3 D .4 选A ;[解析] (1)由于平面SAB ⊥平面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球的对称性可知,当S 在“最高点”,即H 为AB 的中点时,SH 最大,此时棱锥S -ABC 的体积最大. 因为△ABC 是边长为2的正三角形,所以球的半径r =OC =23CH =23×32×2=23 3 . 在Rt △SHO 中,OH =12OC =3 3 ,

完整word版,人教版高中数学选修2-1《椭圆及其标准方程》教案

人教版高中数学选修2-1《椭圆及其标准方程》教案 一、课型 新授课 二、教学内容 1、椭圆的定义; 2、椭圆的两类标准方程; 3、根据椭圆的定义及标准方程的知识解决一些简单的问题。 三、教学目标 1、知识与技能:理解并掌握椭圆的定义;明确焦点、焦距的概念;掌握椭圆标 准方程的两种形式及其推导过程;掌握a、b、c三个量的几何意义及它们之间的关系。能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程; 2、过程与方法:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力; 通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力。让学生感知数学知识与实际生活的普遍联系; 3、情感态度与价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学 习数学的积极性,培养学生的学习兴趣和创新意识。培养学生的探索能力和进取精神,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。通过椭圆的形成过程培养学生的数学美感,同时培养团队协作的能力。 四、教学重点、难点 重点:椭圆的定义及椭圆的标准方程; 难点:椭圆标准方程的推导过程。 五、教学方法 教师引导为主、学生自主探究为辅。 六、教学媒体

幻灯片、黑板。 七、教学过程 (一)创设情境,导入新课 用多媒体演示神舟飞船绕地球旋转的模型,它运行的轨迹又是什么图形呢?可以看出,它的运行轨迹是椭圆。此时老师指出:在实际生活中,椭圆随处可见,很多学科也涉及到椭圆的应用,所以学习椭圆的相关知识是十分必要的。这就是我们这节课所要学习的内容——椭圆及其标准方程。 (二)问题探究 老师提问:我们从直观上认识了椭圆,那么椭圆它是如何形成的呢?椭圆满足什么样的条件呢?它的定义又是如何? 1、椭圆的形成 下面请各小组拿出老师之前让大家准备的工具:一段固定长的细绳、两颗钉子、一块长3分米,宽3分米的硬纸板。然后将钉子系在细绳的两头,将钉子固定在图板上,使得两个钉子之间的距离小于细绳的长度(请同学们考虑一下,为什么两顶子之间的距离要小于细绳的长度?),我们用笔尖将细绳拉紧,让笔尖在图板上慢慢移动,请同学们观察笔尖运动的轨迹是什么图形呢? 如果我们将两个钉子之间的距离变大,使得两个钉子之间的距离恰好等于细绳的长度,同样用笔尖将细绳拉紧,让笔尖在图板上慢慢移动。我们发现笔尖只能在两个钉子之间来回运动,这时笔尖运动的轨迹是两个钉子之间的线段。 将两个钉子之间的距离再增大,此时就可以发现,细绳的长度比两个钉子之间的距离小,笔尖没有轨迹。 再用课件给学生进行演示: 通过演示可以发现,绳长大于图钉间的距离是画出椭圆的关键。 请同学们根据作图的过程和老师刚才的演示,思考:在作图过程中,有哪些物体的位置没变化?有哪些量没有变化?如何来归纳椭圆的定义呢? 2、椭圆的定义 平面内到两定点F 1、F 2 的距离之和等于常数(大于|F 1 F 2 |)的点的轨迹叫做 椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。通常常数

高中数学精讲教案-椭圆及其性质

高中数学-圆锥曲线与方程 第1讲椭圆及其性质 考点一椭圆的标准方程 知识点 1椭圆的定义 (1)定义:在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. (2)集合语言:P={M||MF1|+|MF2|=2a,且2a>|F1F2|},|F1F2|=2c,其中a>c>0,且a,c为常数. 2椭圆的焦点三角形 椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形. 如图所示,设∠F1PF2=θ. (1)当P为短轴端点时,θ最大. (2)S△PF 1F 2 = 1 2|PF1||PF2|·sinθ=b 2· sinθ 1+cosθ =b2tan θ 2=c|y0|,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值,为 bc. (3)焦点三角形的周长为2(a+c). 3椭圆的标准方程 椭圆的标准方程是根据椭圆的定义,通过建立适当的坐标系得出的.其形式有两种: (1)当椭圆的焦点在x轴上时,椭圆的标准方程为x2 a2+ y2 b2=1(a>b>0). (2)当椭圆的焦点在y轴上时,椭圆的标准方程为y2 a2+ x2 b2=1(a>b>0). 4特殊的椭圆系方程 (1)与椭圆x2 m2+y2 n2=1共焦点的椭圆可设为 x2 m2+k + y2 n2+k =1(k>-m2,k>-n2). (2)与椭圆x2 a2+y2 b2=1(a>b>0)有相同离心率的椭圆可设为 x2 a2+ y2 b2=k1(k1>0,焦点在x轴上)或 y2 a2+ x2 b2=k2(k2>0,焦 点在y轴上).

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

高中数学椭圆的几何性质

一. 教学内容: 椭圆的几何性质 二. 教学目标: 通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用. 通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力. 使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等. 三. 重点、难点: 重点:椭圆的几何性质及初步运用. 难点:椭圆离心率的概念的理解. 四. 知识梳理 1、几何性质 (1)范围,即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里.注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.(2)对称性 把x换成-x,或把y换成-y,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称 (3)顶点 在中,须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b). ①线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b; ②a、b的几何意义:a是长半轴的长,b是短半轴的长; (4)离心率 教师直接给出椭圆的离心率的定义: 椭圆的焦距与长轴的比 椭圆的离心率e的取值范围:∵a>c>0,∴0<e<1. 当e接近1时,c越接近a,从而b越接近0,因此椭圆越扁; 当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;

2018年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 ?选择题(共9小题) 1 ?如图,在下列四个正方体中,A, B为正方体的两个顶点,M , N, Q为所在 棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() 2. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, 则该圆柱的体积为() A. n B. C. D. 3. 在正方体ABCD- A i B i CD i中,E为棱CD的中点,贝U( ) A. A i E± DC i B. A i E丄BD C A i E丄BG D. A i E丄AC 4. 某三棱锥的三视图如图所示,则该三棱锥的体积为( A. 60 B. 30 C. 20 D . i0 侧〔左)视圄 C

5?某几何体的三视图如图所示(单位:cm ), 则该几何体的体积(单位:cm 2) 是( ) 6?如图,已知正四面体 D -ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为 AB 、BC CA 上的点,AP=PB ==2,分别记二面角 D- PR- Q , D- PQ- R, D - A .产 aV B B. aV 产 B C ? a< Y D. p< 产 a 7. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图, 该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A . 90 n B. 63 n C. 42 n D . 36 n 1 .某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三 D . +3 +1

4 角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中 有若干个是梯形,这些梯形的面积之和为( ) A . 10 B. 12 C. 14 D . 16 2. 已知直三棱柱 ABC- A 1B 1C 1中,/ ABC=120, AB=2, BC=CC=1,则异面直线 AB 1与BG 所成角的余弦值为( ) A . B. C. D. 二.填空题(共5小题) 8. 已知三棱锥S-ABC 的所有顶点都在球0的球面上,SC 是球0的直径.若平 面SCAL 平面SCB SA=AC SB=BC 三棱锥S-ABC 的体积为9,则球0的表面 积为 _______ . 9. 长方体的长、宽、高分别为3, 2,1,其顶点都在球0的球面上,则球0的 表面积为 _______ . 10. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18, 则这个球的体积为 ________ . 11. 由一个长方体和两个亍圆柱体构成的几何体的三视图如图,则该几何体的

高中数学椭圆练习题

椭圆标准方程典型例题 例1 已知椭圆0632 2=-+m y mx 的一个焦点为(0,2)求m 的值. 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 例5 已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内 切,求动圆圆心P 的轨迹方程 例7 已知椭圆1222=+y x ,(1)求过点?? ? ??2121,P 且被P 平分的弦所在直线的方程;

(2)求斜率为2的平行弦的中点轨迹方程; (3)过()12, A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=?OQ OP k k , 求线段PQ 中点M 的轨迹方程. 例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 102,求直线的方程. 例9 以椭圆13 122 2=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程. 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范 例10 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.

高中数学椭圆的教学设计

选修1-1《2.1.1 椭圆及其标准方程》教学设计 一、指导思想与理论依据 1. 新课程标准理念——高中数学新课程标准指出:“强调本质,注意适度形式化。高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。”在“椭圆及其标准方程”的引入与推导中,遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生学习知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。 2. 建构主义理论——建构主义认为:知识不是通过教师讲授得到的,而是学习者在一定的情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的帮助,充分利用各种学习资源(包括文字教材、音像资料、多媒体课件、软件工具以及从Internet上获取的各种教学信息等等),通过意义建构而获得。由于学习是在一定的情境下借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程,因此建构主义学习理论认为“情境创设”、“协作学习”、“会话交流”是学习环境的基本要素。 二、教学背景分析 1. 教材分析 解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。 在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形。在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。本章所研究的三种圆锥曲线都是重要的曲线,因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种圆锥曲线的学习的重点放在了椭圆上,通过求椭圆的标准方程,是学生掌握推导出这一类轨迹方程的一般规律和化简的常用方法。因此,“椭圆及其标准方程”起到了承上启下的重要作用。 2. 学情分析 知识方面 (1)在必修2第二章里学生已经学习了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础; (2)根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战; (3)在初中阶段没有涉及过含两个字母、两个根式的方程化简问题; 自身特征方面 (1)我所教授的班级是文科班,他们普遍对数学有一定的畏难情绪,但是他们思维比较活跃,对新鲜事物有一定的好奇心和探索欲望,对老师的讲授敢于质疑,有自己的想法和主见,愿意自己去探索是什么和为什么。并且具备了初步的探索能力;

高中数学椭圆经典试题练习

椭圆练习题 一、选择题 1.椭圆2x m +2 4 y =1的焦距为2,则m 的值为( ) A .5 B .3 C .5或3 D .8 2.设椭圆)0( 122 22>>=+b a b y a x 的离心率为e=12,右焦点为F (c ,0),方程ax 2+bx -c =0的两 个实根分别为x 1和x 2,则点P (x 1,x 2)( ) A .必在圆x 2+y 2=2内 B .必在圆x 2+y 2=2上 C .必在圆x 2+y 2=2外 D .以上三种情形都有可能 3.在椭圆)0( 122 22>>=+b a b y a x 上取三点,其横坐标满足1322x x x +=,三点与某一焦 点的连线段长分别为123,,r r r ,则123,,r r r 满足( ) A .123,,r r r 成等差数列 B . 123 112 r r r += C .123,,r r r 成等比数列 D .以上结论全不对 4.椭圆22 1 4x y m +=的离心率e 满足方程2 2520x x -+=,则m 的所有可能值的积为 ( ) A .3 B . 316 C .16 D .-16 5.已知c 是椭圆)0(12222>>=+b a b y a x 的半焦距,则a c b +的取值范围是 ( ) A (1, +∞) B ),2(∞+ C )2, 1( D ]2,1( 6. 过椭圆左焦点F 且倾斜角为 60的直线交椭圆于A 、B 两点,若FB FA 2=,则椭圆的离心率为 ( ) A . 32 B. 22 C. 21 D. 3 2 7.过原点的直线l 与曲线C:13 22 =+y x 相交,若直线l 被曲线C 所截得的线段长不大于6,则直线l 的倾斜角α的取值范围是 ( ) A 656παπ≤≤ B 326παπ<< C 323παπ≤≤ D. 434παπ≤≤ 8.椭圆)10(,2 222<<=+a a y x a 上离顶点A(0,a )最远点为(0,)a -成立的充要条件为 ( )

高中数学必修二__空间几何体知识点汇总

空间几何体 一、空间几何体结构 1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。 2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。(图如下) 底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱柱。 侧面:棱柱中除底面的各个面. 侧棱:相邻侧面的公共边叫做棱柱的侧棱。 顶点:侧面与底面的公共顶点叫做棱柱的顶点。 棱柱的表示:用表示底面的各顶点的字母表示。如:六棱柱表示为ABCDEF-A’B’C’D’E’F’ 3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥. (图如下) 底面:棱锥中的多边形面叫做棱锥的底面或底。 侧面:有公共顶点的各个三角形面叫做棱锥的侧面 顶点:各个侧面的公共顶点叫做棱锥的顶点。 侧棱:相邻侧面的公共边叫做棱锥的侧棱。 棱锥可以表示为:棱锥S-ABCD 底面是三角形,四边形,五边形----的棱锥分别叫三棱锥,四棱锥,五棱锥--- 4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱的轴:旋转轴叫做圆柱的轴。 圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。 圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。 圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱用表示它的轴的字母表示.如:圆柱O’O 注:棱柱与圆柱统称为柱体 5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。 轴:作为旋转轴的直角边叫做圆锥的轴。 底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。 侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。 顶点:作为旋转轴的直角边与斜边的交点 母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。 圆锥可以用它的轴来表示。如:圆锥SO 注:棱锥与圆锥统称为锥体 6.棱台和圆台的结构特征 (1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台. 下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。 侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。 顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

椭圆的标准方程教案

河北阜城中学--高二数学组 组题人:高泽宁 审核人:沈志华 日期:2019年 月 日 …………○…………内…………○…………装…………○…………订…………○ 学校: 姓名:___________ 班级:___________ 考号:___________ …………○…………内…………○…………装…………○…………订…………○ 第 1 页 共 3 页 学习目标: 1:熟练掌握椭圆的定义。 2:熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆并确定椭圆的标准方程。 学习重点:椭圆的定义及标准方程。 学习难点:椭圆的定义及标准方程的推导。 教学过程: 一:椭圆概念的引入: 1:动画演示:(1)天体行星和卫星运行的轨道。 (2)立体几何中作圆的一种直观图。 2:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的F 1,F 2两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。 分析:在这个运动过程中,什么是不变的? 答:两个定点,绳长。 即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 3:由此总结椭圆定义: 平面内与两个定点F 1,F 2的距离之和等于常熟(大于)的点的轨迹叫作椭圆, 这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。 说明 注意椭圆定义中容易遗漏的两处地方: (1)两个定点------两点间距离确定。 (2) 绳长------轨迹上任意点到两定点距离和确定。 思考: 改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 绳长能小于两图钉之间的距离吗? 二:根据定义推导椭圆标准方程: 1:复习求轨迹方程的基本步骤: 2:推导:取过焦点21F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴。 设P (x,y )为椭圆上的任意一点,椭圆的焦距是2c ( c>0). 则:)0,()0,(21c F c F -,又设M 与F 1,F 2距离之和等于2a (常数) {}a PF PF P P 221=+=∴ 221)(y c x PF ++= 又, a y c x y c x 2)()(2222=+-+++∴,化简,得: )()(22222222c a a y a x c a -=+-,由定义c a 22> 022>-∴c a 令222b c a =-∴代入,得: 222222b a y a x b =+,两边同除22b a 得: 选修2-1 第一章 2.2.2 椭圆的标准方程 教案 试卷类型 学案 ※ 数学是一切知识的最高形式----柏拉图 条件 结论 2a>|F1F2| 动点的轨迹是椭圆 2a =|F1F2| 动点的轨迹是线段F1F2 2a<|F1F2| 动点不存在,因此轨迹不存在

椭圆及其性质

第十章 圆锥曲线 本章知识结构图 第一节 椭圆及其性质 考纲解读 1. 了解圆锥曲线的实际背景及其在刻画现实世界和解决实际问题中的作用. 2. 掌握椭圆的定义,标准方程,几何图形及其简单性质 3. 了解椭圆的简单应用 4. 理解数形结合的思想 命题趋势研究 椭圆是圆锥曲线的重要内容,高考主要考查椭圆的基本性质,椭圆方程的求法,椭圆定义的运用和椭圆中各个量的计算,尤其是对离心率的求解,更是高考的热点问题,在各种题型中均有题型 预测2019年高考对本节考查内容为: (1) 利用标准方程研究几何性质,尤其是离心率的求值及取值范围问题. (2) 利用已知条件求出椭圆的方程,特别是与向量结合求方程更是重点.椭圆的定义,标 准方程和几何性质及直线相交问题的考查以中档题目为主,每年高考分值大多保持在5分. 知识点精讲 曲线与方程 轨迹方程的求法:直接法、定义法、相关点法 圆锥曲线 椭圆 双曲线 抛物线 定义及标准方程 性质 范围、对称性、顶点、焦点、长轴(实轴)、短轴(虚轴)、渐近线(双曲线)、准线(只要求抛物线) 离心率 对称性问题 中心对称 轴对称 点(x 1,y 1) ───────→关于点(a ,b )对称点(2a -x 1,2b -y 1 ) 曲线f (x ,y ) ───────→ 关于点(a ,b )对称曲线f (2a -x ,2b -y ) ? ????A ·x 1+x 22+B ·y 1+y 2 2+C =0y 2-y 1x 2-x 1·(-A B )=-1 特殊对称轴 x ±y +C =0 直接代入法 点(x 1,y 1)与点(x 2,y 2)关于 直线Ax +By +C =0对称

高中数学-椭圆经典练习题-配答案

椭圆练习题 一.选择题: 1.已知椭圆 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D ) A .2 B .3 C .5 D .7 2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C ) A. B. C. D. 3.与椭圆9x 2 +4y 2 =36有相同焦点,且短轴长为4的椭圆方程是( B ) A 4.椭圆的一个焦点是,那么等于( A ) A. B. C. D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A. B. C. D. 6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B ) A. B . C . D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2| 的等差中项,则该椭圆方程是( C )。 A +=1 B +=1 C +=1 D +=1 8.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C ) (A)450 (B)600 (C)900 (D)120 9.椭圆 上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D . 116 252 2=+y x 22143x y +=22134x y +=2214x y +=22 14 y x +=5185 8014520125201 20 252222222 2=+=+=+=+y x D y x C y x B y x 2 2 55x ky -=(0,2)k 1-1512 21(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=22 1254 x y +=16x 29y 216x 212y 24x 23y 23x 24 y 222 1259 x y +=2 3

高中数学空间几何体知识点总结

高中数学必修2知识点总结01 空间几何体几何学是研究现实世界中物体的形状、大小与位置关系的数学学科,而空间几何体是几何学的重要组成部分,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用。教材要求:从空间几何体的整体观察入手,研究空间几何体的结构特征、三视图和直观图,了解简单几何体的表面积与体积的计算方法。 一、空间几何体的结构特征 课标要求: 1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构; 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧法画出它们的直观图; 3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式; 要点精讲: 1.柱、锥、台、球的结构特征 由若干个平面多边形围成的几何体称之为多面体。围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。 (1)柱 棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱…… 注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:

椭圆经典例题(带答案-适用于基础性巩固)

椭圆标准方程典型例题(参考答案) 例1 已知椭圆0632 2 =-+m y mx 的一个焦点为(0,2)求m 的值. 解:方程变形为 1262 2=+m y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2 262=-m ,5=m 适合.故5=m . 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()0122 22>>=+b a b y a x . 由椭圆过点()03, P ,知10922=+b a .又b a 3=,代入得12=b ,92 =a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()0122 22>>=+b a b x a y . 由椭圆过点()03, P ,知10922=+b a .又 b a 3=,联立解得812=a ,92 =b ,故椭圆的方程为198122=+x y . 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b , 故其方程为 ()0136 1002 2≠=+y y x . (2)设()y x A ,,()y x G '',,则 ()0136 1002 2≠'='+'y y x . ① 由题意有??? ????='='33 y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点). 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 5 2,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541= PF ,3 5 22=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PF Rt ?中,2 1 sin 12 21==∠PF PF F PF ,

相关文档
最新文档