“信号与系统”课程中关于信号相位谱的分析

“信号与系统”课程中关于信号相位谱的分析
“信号与系统”课程中关于信号相位谱的分析

《信号与系统》课程标准

《信号与系统》课程标准 第一部分课程概述 一、课程名称 中文名称:《信号与系统》 英文名称:《Signals and Systems》 二、学时与适用对象 课程总计90学时,均为理论课。本标准适用于四年制、五年制生物医学工程专业。 三、课程性质地位 《信号与系统》是生物医学工程专业开设的一门必修的专业基础课程。它是以数学方法研究电信号与电系统的分析与求解,在现代电子类理工科的学科发展中,起着建立数学研究方法和实际工作桥梁的重要作用。对信号与系统知识的理解和掌握,将为学员以后的实际工作打下基础。 预修课程为《高等数学》、《线性代数》、《电路原理》等,主修完本门课程后,学员将进一步学习《数字信号处理》、《医学图像处理》等后续课程。 四、课程基本理念 1.准确把握本课程在人才培养方案中的作用和地位,教学内容、方法、手段的选择必须以人才培养目标和规格为依据。 2.坚持学员为主体,教员为主导的教学理念。教学过程渗透素质教育、动手能力的培养等现代教育思想和观念。 3.在具体教学中应注意以下几个问题: (1)理论联系实际 作为一门专业基础课,理论与实际的结合尤为重要。由于这门课是利用数学工具来分析信号求解系统,所以在一开始接触时很多学员会不适应,将理论从实际中抽象出来需要一个思想转变的过程。教学活动中,教员应该有意识地找出实际学习生活中学员可能接触到的一些例子,通过对这些

实例的分析帮助学员完成这一思想转变,从而使学员开始学会使用理论工具来分析实际问题,使理论与实际通过数学这座桥梁联系到一起。在教员的启发引导和实例教学的作用下,建立用数学方法解决实际工程问题的思维模式,培养学员分析问题、解决问题的能力。 (2)重视教与学的结合 从课程的设计到评价的各个环节,在注意发挥教员教学主导作用的同时,还要特别注意学员学习的主动性,以充分发挥学员的积极性和学习潜能。提高学习的主动性,就要求教员能够在这门看起来枯燥的理论课程教学中,能够让学员发现乐趣,形成适合自己的学习方法。教学中注意把一些有利于思维方式形成的问题交给学员,引起学员的注意力,教员从解决问题的思路着手对学员进行启发,调动学员的思维方式转变;适当采取一些能够让学员参与到教学活动当中的形式,比如自学部分内容然后在课堂上模拟讲课。 (3)教学方式 对于理论基础课,现有的教学手段有板书、幻灯、动画等,充分利用这些手段丰富教学实践,增强学员对一些理论基础的理解和应用,建立起学员正确的思维模式和解决问题的方式方法。教学过程中还要注意这门理工科的主干课程与生物医学工程实际工作的结合,利用可以找到的医学工程方面的实例来丰富教学内容,增强学员的学习兴趣,进一步强化学员的知识与实践分析能力,开扩视野,培养科学的思维方式。对于学员不易理解的一些理论推导过程,结合板书推导、幻灯的演示,能够起到加深印象的效果。利用计算机辅助教学进行信号与系统分析的模拟,使学员对于抽象理论有更为直观的认识和了解,同时也培养了学员自己动手的能力。 五、课程设计思路 1、框架设计与内容安排 该课程的学习力求以统一的观点来阐明信号和系统的重要概念,培养学员以系统的观点看待信号处理过程以及电子信号检测系统,使学员在关注细节的同时注重整体,能够以全局的角度考虑问题。本课程可以概括为两类系统(连续时间系统和离散时间系统),三大变换(傅里叶变换,拉普拉斯变换和Z变换)和两类分析方法(时域分析方法和变换域分析方法)。本课程要求学员树立从不同角度(时域、频域与复频域)来观察信号的思想,尤其是频率域角度;全面掌握线性时不变系统的不同分析方法(时域法、频域法、复频域法、Z域法、状态变量法);通过习题练习与讲解以及Matlab软件进行计算机仿真等方式,加深对各种分析方法的理解与掌握。

交通信号控制理论基础

第六章交通信号控制理论基础 经过调查统计发现,将城市道路相互连接起来构成道路交通网的城市道路平面交叉口,是造成车流中断、事故增多、延误严重的问题所在,是城市交通运输的瓶颈。一般而言,交叉口的通行能力要低于路段的通行能力,因此如何利用交通信号控制保障交叉口的交通安全和充分发挥交叉口的通行效率引起了人们的高度关注。 交通信号控制是指利用交通信号灯,对道路上运行的车辆和行人进行指挥。交通信号控制也可以描述为:以交通信号控制模型为基础,通过合理控制路口信号灯的灯色变化,以达到减少交通拥挤与堵塞、保证城市道路通畅和避免发生交通事故等目的。其中,交通信号控制模型是描述交通性能指标(延误时间、停车次数等)随交通信号控制参数(信号周期、绿信比和信号相位差),交通环境(车道饱和流量等),交通流状况(交通流量、车队离散性等)等因素变化的数学关系式,它是交通信号控制理论的研究对象,也是交通工程学科赖以生存和发展的基础。 本章主要针对建立交通信号控制模型所涉及到的基本概念、基本理论与基本方法,对交通信号控制的理论基础进行较为全面深入的阐述。 6.1交通信号控制的基本概念 城市道路平面交叉口是道路的集结点、交通流的疏散点,是实施交通信号控制的主要场所。根据交叉口的分岔数平面交叉口可以分为三岔交叉口、四岔交叉口与多岔交叉口;根据交叉口的形状平面交叉口可以分为T型交叉口、Y型交叉口、十字型交叉口、X型交叉口、错位交叉口、以及环形交叉口等。 6.1.1交通信号与交通信号灯 交通信号是指在道路上向车辆和行人发出通行或停止的具有法律效力的灯色信息,主要分为指挥灯信号、车道灯信号和人行横道灯信号。交通信号灯则是指由红色、黄色、绿色的灯色按顺序排列组合而成的显示交通信号的装置。世界各国对交通信号灯各种灯色的含义都有明确规定,其规定基本相同。我国对交通信号灯的具体规定简述如下:对于指挥灯信号: 1、绿灯亮时,准许车辆、行人通行,但转弯的车辆不准妨碍直行的车辆和被放行的行人通行; 2、黄灯亮时,不准车辆、行人通行,但已越过停止线的车辆和已进入人行横道的行人,可以继续通行;

信号与系统课程设计报告材料

课程设计报告 课程名称信号与系统课程设计指导教师 设计起止日期 学院信息与通信工程 专业电子信息工程 学生 班级/学号 成绩 指导老师签字

目录 1、课程设计目的 (1) 2、课程设计要求 (1) 3、课程设计任务 (1) 4、课程设计容 (1) 5、总结 (11) 参考文献 (12) 附录 (12)

1、课程设计目的 “信号与系统”是一门重要的专业基础课,MATLAB作为信号处理强有力的计算和分析工具是电子信息工程技术人员常用的重要工具之一。本课程设计基于MATLAB完成信号与系统综合设计实验,以提高学生的综合应用知识能力为目标,是“信号与系统”课程在实践教学环节上的必要补充。通过课设综合设计实验,激发学生理论课程学习兴趣,提高分析问题和解决问题的能力。 2、课程设计要求 (1)运用MATLAB编程得到简单信号、简单信号运算、复杂信号的频域响应图; (2)通过对线性时不变系统的输入、输出信号的时域和频域的分析,了解线性时不变系统的特性,同时加深对信号频谱的理解。 3、课程设计任务 (1)根据设计题目的要求,熟悉相关容的理论基础,理清程序设计的措施和步骤; (2)根据设计题目的要求,提出各目标的实施思路、方法和步骤; (3)根据相关步骤完成MATLAB程序设计,所编程序应能完整实现设计题目的要求; (4)调试程序,分析相关理论; (5)编写设计报告。 4、课程设计容 (一)基本部分 (1)信号的时频分析 任意给定单频周期信号的振幅、频率和初相,要求准确计算出其幅度谱,并准确画出时域和频域波形,正确显示时间和频率。 设计思路: 首先给出横坐标,即时间,根据设定的信号的振幅、频率和初相,写出时域波形的表达式;然后对时域波形信号进行傅里叶变化,得到频域波形;最后使用plot函数绘制各个响应图。 源程序: clc; clear; close all; Fs =128; % 采样频率 T = 1/Fs; % 采样周期 N = 600; % 采样点数 t = (0:N-1)*T; % 时间,单位:S x=2*cos(5*2*pi*t);

(完整word版)《信号与系统》教学大纲

《信号与系统》教学大纲 通信工程教研室 电子信息科学与技术教研室 课内学时:54学时 学分:3 课程性质:学科平台课程 开课学期:3 课程代码:181205 考核方式:闭卷 适用专业:通信工程,电子信息工程,电子信息科学与技术,电子科学与技术,物联网工程开课单位:通信工程专业教研室,电子信息科学与技术专业教研室 一、课程概述 《信号与系统》是电子信息类各专业的学科平台课程,该课程的基本任务在于学习信号与系统理论的基本概念和基本分析方法。主要包括信号的属性、描述、频谱、带宽等概念以及信号的基本运算方法;包括系统的属性、分类、幅频特性、相频特性等概念以及系统的时域分析、傅里叶分析和复频域分析的方法;包括频域分析在采样定理、调制解调、时分复用、频分复用等方面的应用等。使学生掌握从事信号及信息处理与系统分析工作所必备的基础理论知识,为后续课程的学习打下坚实的基础。 二、课程基本要求 1、要求对信号的属性、描述、分类、变换、取样、调制等内容有深刻的理解,重点掌握冲击信号、阶跃信号的定义、性质及和其它信号的运算规则;重点掌握信号的频谱、带宽等概念。 2、掌握信号的基本运算方法,重点掌握卷积运算、正交分解、傅里叶级数展开方法、傅里叶变换及逆变换的运算、拉普拉斯变换及逆变换的运算等。 3、对系统的属性、分类、描述等概念有深刻的理解,重点掌握线性非时变系统的性质,系统的电路、微分方程、框图、流图等描述方法;重点掌握系统的冲击响应、系统函数、幅频特性以及相频特性等概念。 4、对系统的各种分析方法有深刻的理解,重点掌握系统的频域分析方法;重点掌握频域分析方法在采样定理、调制解调、时分复用、频分复用、电路分析、滤波器设计、系统稳定性判定等实际方面的应用。 5、了解信号与系统方面的新技术、新方法及新进展,尤其是时频分析、窗口傅里叶变换以及小波变换的基本概念,适应这一领域日新月异发展的需要。 三、课程知识点与考核目标 1.信号与系统的基本概念 1)要点: (1)信号的定义及属性; (2)信号的描述方法; (3)信号的基本分类方法; (4)几种重要的典型信号的特性; (5)信号的基本运算、分解和变换方法; (6)系统的描述、性质、及分类 (7)线性非时变系统的概念及性质。 2)考核目标: 熟悉信号与系统的基本概念,熟悉信号与系统的基本描述及分类方法,掌握冲击信号及线性

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不

交通信号灯控制详细操作说明

交通信号灯控制详细操作说明一、操作面板示意图: 三、修改多时段程序的步骤:

在基本步骤6中按下“功能1”,根据你的需要重复“修改程序的基本步骤”2-5;设定时钟的应从早上到晚上,共有十个时段可以设定。 四、修改程序中的特定数字: 1、设定左转时间[ 0 2·0 2 ]是转入二相位的特定数字 2、设定直行时间[ 0 3·0 3 ]是转入黄闪的特定数字; 3、设定时钟时间[ 2·3 5 9 ]是退出修改的特定数字; 五、手动: 在正常工作状态下按“功能2”键即进入手动工作状态,按相应键即对干线左转、支线左转、干线直行、支线直行的手动控制,再按“功能2”键返回正常工作状态。 六、恢复出厂设置及24小时连续工作设置: 如遇到不明原因的控制器故障请恢复出厂设置复位,按住“功能2”键再开电源,听毕“啼”音后即恢复出厂设置。 自动1(自动2)设置如下:

详细产品功能及参数 JD-400LED交通信号灯 一.技术参数: 1.外壳防护等级IP44,显示器的光学、色度和安全性能指标均 达到GB14887的要求。 2.亮度:≥350cd,可视距离:≥400M,可视角:≥60°。 3.色度:红色 630nm,黄色590nm,绿色505nm。 4.控制方式:与控制器同步,工作方式:连续。 输入电压:交流220V±10%,消耗功率峰值:<15W。 二. 产品特点: 1.使用寿命长达5万小时,维修工作量小。 2.本产品发光亮度高,是普通灯泡亮度的4倍以上,可视距离在 400以外。 3.节约能源,灯盘使用低压安全电源

DJS-3通用型双色真绿倒计时显示器 一.技术参数: 1、外壳防护等级IP44,外形尺寸:830×630×230mm。 2、显示器的光学、色度和安全性能指标均达到GB14887的要求 3、可视距离:≥400m,视角:>30°,亮度:≥250cd 最大显示数字:99。 4、色度:红色 630nm,绿色505nm。 5、控制方式:定周期自动跟踪,工作方式:连续。 6、输入电压:交流220V±10%,消耗功率峰值:<10W 。 7、适用于两相位、多相位控制,内部自动转换。 一.产品特点: 1、不须更换原有设备可直接接入原信号灯的红灯线及绿灯线即可 工作。 本产品显示亮度高,显示色度绿色为真绿色,非常醒目

信号与系统课时安排

信号与系统课时安排 绪论 第1章信号与系统6学时 1.0 引言 1.1 连续时间和离散时间信号 1.1.1 举例与数学表示 1.1.2 信号能量与功率 1.2 自变数的变换 1.2.1 自变数变换举例 1.2.2 周期信号 1.2.3 偶信号与奇信号 1.3 指数信号与正弦信号 1.3.1 连续时间复指数信号与正弦信号 1.3.2 离散时间复指数信号与正弦信号 1.3.3 离散时间复指数序列的周期性质 1.4 单位冲激与单位阶跃函数 1.4.1 离散时间单位脉冲和单位阶跃序列 1.4.2 连续时间单位阶跃和单位冲激函数 1.5 连续时间和离散时间系统 1.5.1 简单系统举例 1.5.2 系统的互联 1.6 基本系统性质 1.6.1 记忆系统与无记忆系统 1.6.2 可逆性与可逆系统 1.6.3 因果性 1.6.4 稳定性 1.6.5 时不变性 1.6.6 线性 1.7 小结 习题 第2章线性时不变系统6学时 2.0 引言 2.1 离散时间LTI系统:卷积和 2.1.1 用脉冲表示离散时间信号 2.1.2 离散时间LTI系统的单位脉冲响应及卷积和表示2.2 连续时间LTI系统:卷积积分 2.2.1 用冲激表示连续时间信号 2.2.2 连续时间LTI系统的单位冲激响应及卷积积分表示2.3 线性时不变系统的性质 2.3.1 交换律性质 2.3.2 分配律性质 2.3.3 结合律性质 2.3.4 有记忆和无记忆LTI系统 2.3.5 LTL系统的可逆性

2.3.6 LTI系统的因果性 2.3.7 LTI系统的稳定性 2.3.8 LTI系统的单位阶跃响应 2.4 用微分和差分方程描述的因果LTI系统 2.4.1 线性常系数微分方程 2.4.2 线性常系数差分方程 2.4.3 用微分和差分方程描述的一阶系统的方框图表示 2.5 奇异函数 2.5.1 作为理想化短脉冲的单位冲激 2.5.2 通过卷积定义单位冲激 2.5.3 单位冲激偶和其它的奇异函数 2.6 小结 习题 第3章周期信号的傅里叶级数表示4学时 3.0 引言 3.1 历史回顾 3.2 LTI系统对复指数信号的响应 3.3 连续时间周期信号的傅里叶级数表示 3.3.1 成谐波关系的复指数信号的线性组合 3.3.2 连续时间周期信号傅里叶级数表示的确定 3.4 傅里叶级数的收敛 3.6 离散时间周期信号的傅里叶级数表示 3.6.1 成谐波关系的复指数信号的线性组合 3.6.2 周期信号傅里叶级数表示的确定 3.7 离散时间傅里叶级数性质 3.7.1 相乘 3.7.2 一阶差分 3.7.3 离散时间周期信号的帕斯瓦尔定理 3.7.4 举例 3.9 滤波 3.9.1 频率成形滤波器 3.9.2 频率选择性滤波器 3.10 用微分方程描述的连续时间滤波器举例 3.10.1 简单RC低通滤波器 3.10.2 简单RC高通滤波器 3.11 用差分方程描述的离散时间滤波器举例 3.11.1 一阶递归离散时间滤波器 3.11.2 非递归离散时间滤波器 3.12 小结 习题 第4章连续时间傅里叶变换10学时4.0 引言 4.1 非周期信号的表示:连续时间傅里叶变换 4.1.1 非周期信号傅里叶变换表示的导出

信号与系统课程总结

信号与系统课程总结 The final edition was revised on December 14th, 2020.

信号与系统总结 一信号与系统的基本概念 1信号的概念 信号是物质运动的表现形式;在通信系统中,信号是传送各种消息的工具。 2信号的分类 ①确定信号与随机信号 取决于该信号是否能够由确定的数学函数表达 ②周期信号与非周期信号 取决于该信号是否按某一固定周期重复出现 ③连续信号与离散信号 取决于该信号是否在所有连续的时间值上都有定义 ④因果信号与非因果信号 取决于该信号是否为有始信号(即当时间t小于0时,信号f(t)为零,大于0时,才有定义) 3系统的概念 即由若干相互联系,相互作用的单元组成的具有一定功能的有机整体 4系统的分类 无记忆系统:即输出只与同时刻的激励有关 记忆系统:输出不仅与同时刻的激励有关,而且与它过去的工作状态有关 5信号与系统的关系 相互依存,缺一不可 二连续系统的时域分析 1零输入响应与零状态响应 零输入响应:仅有该时刻系统本身具有的起始状态引起的响应 零状态响应:在起始状态为0的条件下,系统由外加激励信号引起的响应 注:系统的全响应等于系统的零输入响应加上零状态响应 2冲激响应与阶跃响应 单位冲激响应:LTI系统在零状态条件下,由单位冲激响应信号所引起的响应

单位阶跃响应:LTI系统在零状态条件下,由单位阶跃响应信号所引起的响应 三傅里叶变换的性质与应用 1线性性质 2脉冲展缩与频带变化 时域压缩,则频域扩展 时域扩展,则频域压缩 3信号的延时与相位移动 当信号通过系统后仅有时间延迟而波形保持不变,则系统将使信号的所有频率分量相位滞后 四拉普拉斯变换 1傅里叶变换存在的条件:满足绝对可积条件 注:增长的信号不存在傅里叶变换,例如指数函数 2卷积定理 表明:两个时域函数卷积对应的拉氏变换为相应两象函数的乘积 五系统函数与零、极点分析 1系统稳定性相关结论 ①稳定:若H(s)的全部极点位于s的左半平面,则系统是稳定的; ②临界稳定:若H(s)在虚轴上有s=0的单极点或有一对共轭单极点,其余极点全在s的左半平面,则系统是临界稳定的; ③不稳定:H(s)只要有一个极点位于s的右半平面,或者虚轴上有二阶或者二阶以上的重极点,则系统是不稳定的。 六离散系统的时域分析 1常用的离散信号 ①单位序列②单位阶跃序列③矩阵序列④正弦序列⑤指数序列 七离散系统的Z域分析 1典型Z变换 ①单位序列②阶跃序列③指数序列④单边正弦和余弦序列 2Z变化的主要性质 ①线性性质②移位性质③尺度变换④卷和定理 八连续和离散系统的状态变量分析 1状态方程

第二章交通信号控制的基本理论

2交通信号控制的基本理论 本章首先给出了交通信号控制的基本概念,包括:信号相位,周期时长,绿信比,相位差,绿灯间隔时间,有效绿灯时间等,然后介绍了常用的交叉口性能指标以及计算方法,最后给出了常用交叉口的信号配时方法。这些研究为后面的信号配时模型及优化方法的研究奠定了理论基础。 2.1交通控制的基本概念 交叉路口信号配时参数优化,首先必须准确把握和理解交通控制中的一些基本概念。下面对信号配时设计中部分参数作一介绍。 (l)信号相位:在一个信号周期内,具有相同的信号灯色显示的一股或几股交通流的信号状态序列称作一个信号相位。信号相位是按车流获得信号显示的时序来划分的,有多少种不同的时序排列,就有多少个信号相位。每一个控制状态,对应显示一组不同的灯色组合,称为一个相位。简而言之,一个相位也被称作一个控制状态。以四相位为例如图所示: 相位1 相位2 相位3 相位4 图1 四相位信号相序控制示意图 (2)周期时长:信号灯发生变化,信号运行一个循环所需的时间,等于绿、黄、红灯时间之和;也等于全部相位所需的绿灯时间和黄灯时间(一般是固定的)的总和。周期过长时,等待的人容易产生急躁情绪,因此通常以180秒为最高界限。

图1 第一、三配时表 (3)绿信比:是指在一个周期内(对一指定相位),有效绿灯时间与信号周期长度之比。 (4)相位差(又叫绿时差或绿灯起步时距):相位差是针对两个信号交叉口而言,是指两个相邻交叉口它们同一相位绿灯(或红灯)开始时间之差。 它分为绝对相位差和相对相位差。相对相位差是指在各路口的周期时间均相同的联动信号系统中,相邻两个交叉路口协调相位的绿灯起始时间之差。绝对相位差是指在联动信号系统中选定一标准路口,规定该路口的相位差为零,其他路口相对于标准路口的相位差叫绝对相位差。 (5)绿灯间隔时间:是指从失去通行权的相位的绿灯结束,到下一个得到通行权的相位绿灯开始所用的时间。绿灯间隔时间的长短主要取决于交叉口的几何尺寸,因此,要确定该时间的长度就必须首先考虑停止线和潜在冲突点之间的相关距离,以及车行驶这段距离所需的时间。 (6)有效绿灯时间:是指被有效利用的实际车辆通行时间。它等于绿灯时间与黄灯时间之和减去损失时间。损失时间包括两部分,一是绿灯信号开启时,车辆启动时的时间;还有绿灯关闭、黄灯开启时,只有越过停止线的车辆才能继续通行,所以也有一部分损失时间,即为绿灯时间减去启动时间加上结束滞后时间。结束滞后时间是黄灯时间中有效利用的那部分。每一相位的损失时间为启动延迟时间和结束滞后时间之差。 在实际工作中,损失时间的精确计算是非常困难的,也没有必要。通常取绿灯时间代替有效绿灯时间 2.2交通信号控制类型简述 2.2.1定时控制 (l)定义 依据交通量历史数据进行配时,交通信号按照配时方案运行,一天只按一个配时方案的配时方法。定时控制是单个交叉路口最基本的控制方法。 (2)适用条件及优点

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会 2011211204 刘梦颉2011210960 信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。下面我将从实验总结、心得体会、意见与建议等三方面作以总结。 一.实验总结 本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。 1.信号的分类与观察 主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。 2.非正弦信号的频谱分析 主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。主要内

容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。 3.信号的抽样与恢复 主要目的是:验证抽样定理,观察了解PAM信号的形成过程。主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。 4.模拟滤波器实验 主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。 通过对信号与实验课程的学习,我掌握了一些基本仪器的使用方法,DDS 信号源、实验箱、示波器、频谱仪等四种实验仪器。初步了解了对信号的测试与分析方法对以前在书本上看到的常见信号有了更加具体的认识,使得书本上的知识不再那么抽象。 DDS信号源,也就是函数发生器,可以产生固定波形,如正弦波、方波或三角波,频率和幅度可以调节。实验箱是很多个信号实验装置的集合,可谓集多种功能于一身,其中包括函数发生器、模拟滤波器、函数信号的产生与测量、信号的抽样与恢复等模块。示波器能把抽象的电信号转换成具体的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同的信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、

《城市轨道交通通信与信号》课程标准82474

《城市轨道交通通信与信号》课程标准 一、课程性质与任务 《城市轨道交通通信与信号》是城市轨道交通运营管理专业学生的一门必修专业课。主要内容包括:信号基础设备与通信系统的安全,信号基础设备,轨道电路,车站联锁,区间闭塞,列车自动控制(ATC)系统,ATO与ATS系统,城市轨道交通CBTC系统,城市轨道交通通信系统。本课程主要是为了适应我国城市现代建设与城市轨道交通发展的需求,尤其是为了满足城市轨道交通发展中对人才培养的迫切而设置的。 二、课程目标。 1.了解信号与通信系统的基本内容,掌握故障安全原理的基本内容了解信号安全技术原则。 2.了解信号机的分类及结构,熟悉信号机设置的原则,了解道岔的种类和转辙机的种类及特点。 3.掌握轨道电路的工作原理,了解轨道电路的主要参数,熟悉轨道电路的分类及特点,熟悉常用轨道电路,掌握计轴器的工作原理及结构。 4.掌握联锁的基本概念了解联锁图表编制方法,掌握6502电气集中联锁的基本操作方式,掌握计算机联锁的基本结构和操作方式 5.了解列车定位技术的分类,掌握固定闭塞、准移动闭塞和移动闭塞的原理,掌握无线移动通信、查询应答器定位,掌握移动闭塞与固定闭塞的区别。 6.掌握ATC系统的组成和功能和模式转换条件,了解不同制式ATC 系统的特点,掌握ATP的基本概念和ATP设备的组成及功能,熟悉ATP

的基本工作原理。 7.了解CBTC系统结构,熟悉CBTC系统子系统和组成设备,掌握CBTC系统运行模式,掌握CBTC系统功能。 8.了解城市轨道交通通信系统的组成及作用,掌握城市轨道交通电话子系统构成及功能,掌握城市轨道交通广播子系统的结构和功能,掌握城市轨道交通闭路电视子系统的结构和功能,了解城市轨道交通UPS电源和接地系统。 9. 锻炼学生的团结合作精神和认真严谨的学习态度。鼓励他们热爱本专业技术工作,具有创新意识,具有一定的沟通知识和技巧。

信号与系统课程大纲

《信号与系统》课程教学大纲 英文名称:Signal and System 课程号:13202002 一、课程基本情况 1.学分:3.5 2.学时:56(其中:理论学时:56 实验学时:0上机学时:0 ) 3.课程类别:大类平台必修课 4.适用专业:电子信息类 5.先修课程:高等数学 6.后续课程:数字信号处理、通信原理等 7.开课单位:通信工程 二、课程介绍 《信号与系统》是与通信工程、电子信息工程等专业有关的一门基础学科。 它的主要任务是: 1.在时间域及频率域下研究时间函数f(t)及离散序列x(n)的各种表示方式; 2.在时间域及频率域下研究系统特性的各种描述方式; 3.在时间域及频率域下研究激励信号通过系统时所获得的响应。 信号与系统课程研究信号与系统理论的基本概念和基本分析方法。初步认识如何建立信号与系统的数学模型,经适当的数学分析求解,对所得结果给以物理解释、赋予物理意义。课程的主要内容包括连续系统的时域分析、傅里叶变换、拉普拉斯变换、连续时间系统的s域分析、离散时间系统的时域分析、Z变换、离散时间系统的Z域分析等。要求学生掌握基本概念和基本分析方法。 学习本课程使学生掌握信号与系统的基本理论和基本分析方法,培养学生灵活运用理论知识分析和解决实际问题的能力。 三、课程的主要内容及基本要求 第一章信号与系统概述(共10学时) (一)教学内容: 第一节信号与系统概述 知识要点:信号与系统分析的研究内容与方法,信号与系统理论的应用,信号的定义。 第二节信号的描述和分类 知识要点:信号的描述,信号的分类。

第三节典型基本连续信号 知识要点:正弦信号,指数信号,复指数信号,抽样信号,单位阶跃信号,单位冲激信号。 第四节信号的基本运算 知识要点:信号的微分、积分运算;移位运算,反褶运算,尺度变换运算,以及组合。 第五节冲激信号及其性质 知识要点:冲激信号及其性质,相关计算题。 第六节冲激偶信号及其性质 知识要点:冲激偶信号及其性质,相关计算题。可以作为选讲部分。 第七节信号的分解 知识要点:信号的直流与交流分解,信号的偶、奇分解,信号的实部与虚部分解,信号的脉冲分量分解,信号的正交函数分解。 第八节系统的描述和分类 知识要点:系统的描述,系统的分类,系统的联结。 第九节线性时不变系统 知识要点:连续时间线性时不变系统,离散时间线性时不变系统。 教学重点:信号的分类、典型基本连续信号、冲激信号及其性质、系统的描述,系统的分类。 教学难点:建立信号的概念、建立系统的概念、信号的周期、能量等运算。 (二)教学基本要求: 1.基本知识、基本理论:信号与系统概念,信号与系统的分类,线性时不变系统的特点及分析方法;周期和非周期信号、能量信号和功率信号;基本连续信号的表达方式及其波形;冲激信号及其性质;冲激偶信号及其性质;信号波形相加、相乘、求导、积分的运算;信号波形平移、反转、压缩、扩展的变换;任意连续信号的冲激函数表示;信号的分解;系统的分类,系统的性质;线性时不变系统的性质。 2.能力、技能培养:理解信号的概念,了解不同类型信号的时域表现形式,掌握不同类型信号及系统的识别方法;熟练掌握信号周期的求解方法;掌握典型信号及性质,能够做到给出信号表达式会画信号波形图,给出信号波形图能写出信号表达式;能够用阶跃信号表示分段函数;掌握与冲激信号、冲激偶信号相关的乘积、微分、积分等运算。掌握对多个信号进行相加、相乘,对于不同频率的正弦信号要注意相加、相乘之后的规律;掌握对信号波形进行平移、反转、压缩、扩展的变换;了解系统的概念,了解系统的分类,了解系统的性质;掌握系统的稳定性、因果性、线性时不变性等;掌握线性时不变系统的积分、微分、频率保持、分解等性质。 (三)实践与练习 根据学生学习情况,针对不同层次的学生留作业,作业可以是书后习题,可以由任课教师自选。 (四)考核要求 理解信号与系统的概念及分类,掌握线性时不变系统的特点及分析方法;会判断周期和非周期信号、能量和功率信号,计算信号的功率;会判断是信号否为周期信号,会计算周期信号的周期,

一般交通信号灯技术参数

一般交通信号灯的技术参数 信号机和信号灯技术规格及要求 一、信号机技术指标和功能 1、信号机技术指标 1.1信号机为协调控制式信号机 1.2信号机主电源额定电压:交流(220±20%)V、50Hz±2Hz;功耗:≤40VA(不包括信号灯及外围设备功耗);信号机内部电气装置及部件的布局应合理,使操作人员在安装、使用、维修时安全、方便,所有机架安装设备的布置要做到在拆除时不会影响其它邻近设备。地面安装室外机内部的任何电气部件距机柜底部的距离应不小于200mm。 1.3绝缘耐压:在电源电极或与之相连的其它导电电路和机柜、安装机箱等易触及部件(不包括避雷器)之间施加1500VAC/50Hz 1分钟无击穿,绝缘等级不低于10MΩ(不包含避雷器); 1.4工作环境条件:环境温度﹣20~﹢70℃,相对湿度20~95%,大气压力86~106kpa; 1.5信号机的操作面板或手持式终端应用清晰、符合规范的文字、图形、标志等来表明其功能作用。在参数设置时,操作面板或手持式终端应能显示信号机的工作方式、工作状态、信号控制参数的设置情况,应有提示、引导各种控制参数的输入项目及内容。 1.6开关、按键及指示灯上或其就近处均应用清晰、符合规范的文字、图形等来表明其功能、作用、接通/断开状态。在使用熔断器处应清晰地标出熔断器的额定电流值。 1.7应对输出灯信号接线端子组上的每个端子依据信号类别或信号灯色,用文字或代码、编号进

行标识。代码、编号的详细含义应在用户手册中说明,以便接线。信号交流零线、保护接地及信号公共接地均应用规范的符号或文字标出。对正常使用信号机时操作人员容易触及的超过安全特低电压(交流峰值不超过42.4V、直流电压不超过60V)的带电部件,在其显著位置应设置“触电危险”标志并采取有效防护措施。 1.8信号机应有铭牌。铭牌上应标出制造厂厂名、注册商标或识别标记、产品中文名称、规格型号、种类、制造地、可识别的唯一性编号、制造日期等内容。还应标出电源额定电压范围、额定频率范围等主要电气参数。 1.9 信号机应安装具备过载、短路保护功能的电源总开关;应有独立的、具备过载、短路保护功能的灯具驱动输出回路开关;应提供单独的备用主电源接入端子,备用主电源通过转换开关接入电源总开关;以上开关的额定电压、额定电流应符合AC380V、20A的最低容量要求。 1.10 信号机的电源输入端及灯控信号输出端应安装避雷装置及元件,或采取其它避雷措施。 1.11输出信号的灯控器件应采用光电耦合器、固态继电器或其它器件,使输出的灯控强电信号与内部电路有效隔离。在灯具驱动输出的每一回路中应安装熔断器,在短路时保护灯控器件。 1.12 检验合格证。每台信号机必须要有产品检验合格证,检验合格证应有如下内容:产品名称、型号、种类;制造单位名称;执行的产品标准编号;出厂检验结论、检验日期;检验员签名或检验代号。 1.13 信号机必须经过国家公安部交通安全产品质量监督检测中心检测合格,且在有效期内。 2、基本功能要求 2.1 要同时具有无线、光纤、网络联网功能,中心联网控制方式,网络中心管理平台。 2.2 日期、时钟设置:在0℃~40℃条件下,误差不超过±20s/10d,可任意调校,停电自动走时,可保持十年; 2.3启动时序。当信号机通电开始运行时信号机应先进行自检,然后按如下时序启动:a) 相位应先进入黄闪信号,持续时间至少 10s; b) 黄闪信号结束后应进入全红状态,持续时间至少 5s; c) 启动时序结束后,信号机按预设置的方式运行。

《城市轨道交通通信与信号》课程标准

《城市轨道交通通信与信号》课程标准 1.课程定位与设计思路 1.1课程定位 《城市轨道交通通信与信号》课程是城市轨道交通控制专业一门专业核心课程。本课程与前修课程《城市轨道交通概论》相衔接,使学生进一步对城市轨道交通通信信号系统基础设备基础知识了解与掌握,与后续课程《车站信号计算机连锁》、《区间信号自动控制》等相衔接,为后续课程的学习奠定坚实的基础。 1.2设计思路 本课程所面向的职业岗位为城市轨道交通通信信号设备操作员、施工工艺员、检修员、维护员等,主要从事城轨交通通信信号施工、设备检修、维护、实验调试等工作。根据职业岗位分析,确定本课程的建设思路是:遵循系统化原则,将教学内容分为城轨信号系统与城轨通信系统两大部分。通过本课程的学习,使学生掌握城轨通信信号系统基础设备的组成和作用,并具有一定的操作检修能力,为学生走向工作岗位打下坚实的基础。 2.课程目标 2.1能力目标 (1)能够熟练观察城轨通信信号设备正常工作状态及正常工作指标。 (2)能使用常见电工、电子仪表对进行城轨通信信号设备的特性测试。 (3)能够熟练完成信号机、轨道电路、转辙机的日常维护检修。 (4)能够熟练完成列车自动控制ATC设备的运行维护。 (5)能了解无限集中调度系统的应用。 (6)能够完成城轨电话系统、闭路电视系统的日常维护。 (7)能够完成时钟系统的调整维护。 2.2知识目标 (1)了解城轨交通通信信号设备的概况及特点。 (2)掌握城轨交通信号基础设备相关知识。 (3)掌握车辆段及正线连锁设备基本结构与操作方式相关知识。

(4)掌握列车自动控制ATC设备的构成、功能和维护等相关知识。 (5)掌握城轨交通通信系统的组成及功能相关知识。 (6)掌握城轨交通电话系统、无线调度系统、闭路电视系统、广播系统及时钟系统相关知识。 (7)掌握城轨交通通信信号设备的技术指标和正常工作参数,使学生具有城轨通信信号设备使用、检测和维护等基本技能。 2.3素质目标 (1)培养学生共享知识的能力,即团队合作能力。 (2)培养学生发现知识的能力,即创新能力和创造能力。 (3)培养学生知识传播能力,即交流沟通能力。 (4)培养学生获取、领会和理解外界信息的能力。 (5)培养学生诚实守信、敬业爱岗的良好职业道德素养。 (6)培养学生的语言表达能力和对事物分析判断的能力。 (7)培养学生勇于创新、与时俱进的工作作风。 3.教学内容 依据城市轨道交通控制专业人才培养目标要求,本课程教学内容为通信与信号两大部分,由继电器、轨道电路、信号机、转辙机、车辆段连锁设备、正线连锁设备、ATC 系统、列车自动防护系统、列车自动驾驶系统、列车自动监控系统、无线集中调度系统、闭路电视系统、广播系统和时钟系统等十六个项目组成,其内容涵盖城轨交通通信信号系统各个组成部分的基础知识,具体内容如下: 表1 教学内容描述

信号与系统课程教学大纲

《信号与线性系统》课程教学大纲 课程编号:28121008 课程类别:学科基础课程 授课对象:信息工程、电子信息工程、通信工程等专业 开课学期:第4学期 学 分:3学分 主讲教师:王加俊、孙兵、胡丹峰 指定教材:管致中,《信号与线性系统》(第4版),高等教育出版社,2004年 教学目的: 《信号与线性系统》课程讨论确定信号经过线性时不变系统传输与处理的基本理论和基本分析方法。掌握连续时间信号分析,连续时间系统的时域、频域、复频域的分析方法,通过连续时间系统的系统函数,描述系统的频率特性及对系统稳定性的判定;连续时间信号转换到离散时间信号的采样理论及转换不失真的条件。 第一章 绪论 课时:1周,共4课时 第一节 引言 一、信号的概念 二、系统的概念 思考题: 1、什么是信号?举例说明。 2、什么是系统?举例说明。 第二节 信号的概念 一、信号的分类 周期信号与非周期信号、连续时间信号与离散时间信号、能量信号与功率信号。 二、典型信号 指数信号、复指数信号、三角信号、抽样信号。 思考题: 1、复合信号的周期是如何判定的?若复合信号是周期信号,其周期如何计算? 2、如何判定一个信号是能量信号还是功率信号,或者两者都不是? 第三节 信号的简单处理 一、信号的运算 信号的相加、相乘、时移、尺度变换等。 二、信号的分解 一个信号可以分解成奇分量与偶分量之和。 思考题: 1、 若信号由)(t f 转换至)(0t at f ±,说明转换的分步次序。 2、 若信号由)(0t at f ±转换至)(t f ,说明转换的分步次序。 3、说明信号的奇偶分解的方法。 第四节 系统的概念 一、系统的分类 线性系统和非线性系统、时不变系统和时变系统、连续时间系统和离散时间系统、因果系统和非因果系统。 二、系统的性质 1. 线性:满足齐次性与叠加性 2. 时不变:系统的性质不随时间而改变 思考题:

信号与系统课程设计报告 信号与系统课程设计题目

信号与系统课程设计报告信号与系统课程设计题目 信号与系统课程设计报告 ——频分复用通信系统的仿真设计 指导老师:XXX 小组成员: 摘要: 通过对信号与系统这门课程第八章通信系统学习,我们对频分复用(FDMA )技术产生了浓厚的兴趣,于是决定自己利用MATLAB 强大的仿真功能来对频分复用系统进行仿真。本文首先录制三段不同的语音信号。然后通过推导,确定合适的载波信号的频率,对信号进行调制,调制后整合到一个复用信号上。再在复用信号上加一个随机的高斯白噪声得到在信道中传输的信号。之后根据通过对复用信号的频谱分析,得出切比雪夫滤波器的各项参数,通过设计好的滤波器进行信号分离后分别根据载波信号进行解调,再通过一个低通滤波器,得到原始信号。通过此次对FDMA 的仿真,我们更清楚了解了频分复用的工作原理,以及AM 调制解调方法,和滤波器的设计方法。频分复用技术对与通信系统节省资源有着重要的意义。

关键词: 频分复用 MATLAB 高斯白噪声 引言: 在电话通信系统中,语音信号频谱在300—3400Hz 内,而一条干线的通信资源往往远大于传送一路语音信号所需的带宽。这时,如果用一条干线只传一路语音信号会使资源大大的浪费,所以常用的方法是“复用”,使一条干线上同时传输几路电话信号,提高资源利用率。 本文是基于MATLAB 的简单应用,首先录制三段不同的语音信号。然后选择合适的高频载波,对信号进行调制,调制后整合到一个复用信号上。确定合适的信噪比,在复用信号上加一个随机的高斯白噪声得到在信道中传输的信号。之后根据载波信号设计合适的带通滤波器将三种信号进行分离,信号分离后分别进行同步解调,再通过一个低通滤波器,得到通过频分复用系统传输后得到的各个信号,将得到的信号与原信号对比,要保证信号与原信号吻合较好。 正文:

《信号与系统》课程教学大纲

《信号与系统》课程教学大纲 课程编码:A0303051 总学时:64 理论学时:64 实验学时:0 学分:4 适用专业:通信工程 先修课程:电路,高等数学,复变函数与积分变换,线性代数 一、课程的性质与任务 《信号与系统》是电类专业的一门重要的专业课程。它的任务是研究信号和线性非时变系统的基本理论和基本分析方法,要求掌握最基本的信号变换理论,并掌握线性非时变系统的分析方法,为学习后续课程,以及从事相关领域的工程技术和科学研究工作奠定坚实的理论基础。通过本课程的学习,学生将理解信号的函数表示与系统分析方法,掌握连续时间系统和离散时间系统的时域分析和频域分析,连续时间系统的S域分析和离散时间系统的Z域分析,以及状态方程与状态变量分析法等相关内容。通过实验,使学生掌握利用计算机进行信号与系统分析的基本方法,加深对信号与线性非时变系统的基本理论的理解,训练学生的实验技能和科学实验方法,提高分析和解决实际问题的能力。

二、课程学时分配 教学章节理论实践 第一章:信号与系统导论6 第二章:连续系统的时域分析8 第三章:信号与系统的频域分析18 第四章:连续系统的复频域分析10 第五章:系统函数的零、极点分析8 第六章:离散系统的时域分析6 第七章:离散系统的Z域分析8 总计64 三、课程的基本教学内容及要求 第一章信号与系统导论(6学时) 1.教学内容 (1)历史的回顾,应用领域,信号的概念 (2)系统的概念,常用的基本信号 (3)信号的简单处理,单位冲激函数 2.重点及难点 教学重点:信号的描述、阶跃信号与冲激信号;信号的运算;线性时不变系统判据;系统定义 教学难点:信号及其分类,信号分析与处理,系统分析 3.课程教学要求

相关文档
最新文档