yuwei逻辑无环流直流可逆调速系统建模与仿真

yuwei逻辑无环流直流可逆调速系统建模与仿真
yuwei逻辑无环流直流可逆调速系统建模与仿真

课程设计任务书

学生姓名:余威专业班级:自动化0805班

指导教师:饶浩彬工作单位:自动化学院

题目: 逻辑无环流直流可逆调速系统建模与仿真

初始条件:

1.技术数据及技术指标:

直流电动机:P N=27KW, U N=220V , I N=136A , n N=1500r/min ,

最大允许电流I dbl=1.5I N,

三相全控整流装置:K s=40 ,

电枢回路总电阻R=0. 5Ω,

电动势系数:C e= 0.132V.min/r

系统主电路:T m=0.18s ,T l=0.03s

滤波时间常数:T oi=0.002s , T on=0.01s,

其他参数:U nm*=10V ,U im*=10V , U cm=10V

σi≤5% , σn≤10%

要求完成的主要任务:

1.技术要求:

(1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围

(D≥10),系统在工作范围内能稳定工作

(2) 系统在5%负载以上变化的运行范围内电流连续

2.设计内容:

(1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

(2) 根据双闭环直流调速系统原理图, 分析转速调节器和电流调节器的作用,

(3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB 来进行调节器的参数调节。

(4) 绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图)

(5) 整理设计数据资料,课程设计总结,撰写设计计算说明书

时间安排:

课程设计时间为一周半,共分为三个阶段:

(1)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20% (2)根据技术指标及技术要求,完成设计计算。约占总时间的40% (3)完成设计和文档整理。约占总时间的40%

指导教师签名:年月日系主任(或责任教师)签名:年月日

目录

摘要 (1)

1设计条件及任务 (2)

1.1 初始条件 (2)

2系统结构设计 (3)

2.1 方案论证 (3)

2.2系统主电路设计 (3)

2.3主电路参数设计 (4)

4调节器的设计 (6)

4.1电流调节器设计 (6)

4.1.1确定电流调节器时间常数 (6)

4.1.3校验近似条件 (7)

4.1.4计算调节器电阻和电容 (8)

4.2速度调节器设计 (8)

4.2.1确定转速调节器时间常数 (8)

4.2.2选择转速调节器结构 (9)

4.2.3校验近似条件 (9)

5系统建模与仿真 (11)

5.1建立仿真模型 (11)

5.2仿真模型运行 (13)

5.2.1空载时仿真图形 (13)

5.2.2满载时仿真波形 (14)

小结与体会 (15)

参考文献 (16)

附图 (17)

摘要

逻辑无环流直流可逆调速系统主电路由正桥及反桥反正并联组成,这种线路有能实现可逆运行、回馈制动等优点,但也会产生环流。为保证系统安全,必须消除其中的环流。所谓逻辑无环流系统就是在一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使该组晶闸管完全处于阻断状态,从根本上切断环流通路。这种系统不仅能实现逻辑无环流可逆调速,还能实现回馈制动。本课设对逻辑无环流直流可逆调速系统进行了设计并对转速调节器与电流调节器进行了建模与仿真。

关键词:逻辑无环流转速调节器电流调节器建模仿真

逻辑无环流直流可逆调速系统

建模与仿真

1设计条件及任务

1.1 初始条件

1.技术数据及技术指标:

直流电动机:P N=27KW, U N=220V , I N=136A , n N=1500r/min ,

最大允许电流I dbl=1.5I N,

三相全控整流装置:K s=40 ,

电枢回路总电阻R=0. 5Ω,

电动势系数:C e= 0.132V.min/r

系统主电路:T m=0.18s ,T l=0.03s

滤波时间常数:T oi=0.002s , T on=0.01s,

其他参数:U nm*=10V ,U im*=10V , U cm=10V

σi≤5% , σn≤10%

1.2 设计任务:

1.技术要求:

(1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D ≥10),系统在工作范围内能稳定工作

(2) 系统在5%负载以上变化的运行范围内电流连续

2.设计内容:

(1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

(2) 根据双闭环直流调速系统原理图, 分析转速调节器和电流调节器的作用,

(3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB 来进行调节器的参数调节。

(4) 绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图)

2系统结构设计

2.1 方案论证

在可逆调速系统中,电动机最基本的要素就是能改变旋转方向。而要改变电动机的旋转方向有两种办法:一种是改变电动机电枢电压的极性,第二种是改变励磁磁通的方向。对于大容量的系统,从生产角度出发,往往采用既没有直流平均环流,又没有瞬时脉动环流的无环流可逆系统,无环流可逆系统省去了环流电抗器,没有了附加的环流损耗,和有环流系统相比,因换流失败造成的事故率大为降低。因此,逻辑无环流可逆调速系统在生产中被广泛运用。

2.2系统主电路设计

逻辑无环流可逆直流调速系统的主电路如下图3所示:

图2-1 逻辑无环流可逆直流调速系统主电路

两组桥在任何时刻只有一组投入工作(另一组关断),所以在两组桥之间就不会存在环流。但当两组桥之间需要切换时,不能简单的把原来工作着的一组桥的触发脉冲立即封锁,而同时把原来封锁着的一组桥立即开通,因为已经导通的晶闸管并不能在触发脉冲取消的一瞬间立即被关断,必须待晶闸管承受反压时才能关断。如果对两组桥的触发脉冲的封锁和开放同时进行,原先导通的那组桥不能立即关断,而原先封锁着的那组

桥已经开通,出现两组桥同时导通的情况,因没有环流电抗器,将会产生很大的短路电流,把晶闸管烧毁。为此首先应是已导通的的晶闸管断流,要妥当处理主回路中的电感储存的一部分能量回馈给电网,其余部分消耗在电机上,直到储存的能量释放完,主回路电流变为零,使原晶闸管恢复阻断能力,随后再开通原来封锁着的那组桥的晶闸管,使其触发导通。

2.3主电路参数设计

U d =2.34U 2cos α

U d =U N =220V, 取α=0° U 2=V U d 0171.9434

.2220

0cos 34.2==

I dmin =(5%-10%)I N ,这里取10% 则

L=0.6932min 0.69394.0171 4.790.1136

d U mH I ??

==? r V r V n U N nm min 0067.0min

150010?===*α

100.0491.5136

im dbl U V A I β*===?

晶闸管参数计算:

对于三相桥式整流电路,晶闸管电流的有效值为:

d d VT I I I I 577.03

1

2==

= 则晶闸管的额定电流为:

()0.3680.36813650.0481.57

VT

VT AV d I I I A =

==?= 取1.5~2倍的安全裕量,()90VT AV I A =

由于电流连续,因此晶闸管最大正反向峰值电压均为变压器二次线电压峰值,即:

22.45 2.4594.0171230.34FM RM U U U V ===?=

取2~3倍的安全裕量,V U VT 600=

3调节器作用分析

3.1调节器结构

逻辑无环流可逆直流调速系统的原理框图如下图3-1所示:

图3-1逻辑无环流可逆直流调速系统原理框图

3.2转速调节器的作用

根据双闭环直流调速系统的原理图分析,转速调节器在双闭环直流调速系统中的作用可归纳如下:

1)转速调节器是调速系统的主导调剂器,它使转速n 很快地跟随给定电压变化,稳态时可减小转速误差,如果采用PI调节器,则可实现无静差。

2)对负载变化起抗扰作用。

3)其输出限幅值决定电动机允许的最大电流。

3.3电流调节器的作用

1 )作为内环的调节器,在转速外环的调解过程中,它的作用是使电流紧紧跟随其给定电压(即外环调节器的输出量)变化。

2 )对电网电压的波动起及时抗扰的作用。

3 )在转速动态过程中,保证获得电动机允许的最大电流,从而加快动态过程。

4 )当电动机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。这个作用对系统的可靠运行来说是十分重要的。

4调节器的设计

4.1电流调节器设计

4.1.1确定电流调节器时间常数

(1)、整流装置滞后时间常数Ts : 三相桥式电路平均失控时间Ts = 0.0017s 。 (2)、电流滤波时间常数Toi :

三相桥式电路每个波头的时间是3.33ms ,为了基本滤平波头应有(1~2)Toi = 3.33s 。则Toi=0.002s

(3)、电流小时间常数i T ∑:

按小时间常数近似处理:s T T T oi s i 0037.0=+=∑

4.1.2选择电流调节器结构

采用含给定滤波和反馈滤波的模拟式PI 型电流调节器,其原理图如图4-1所示。图中*i U 为电流给定电压,d I β-为电流负反馈电压,调节器的输出就是电力电子变换器的控制电压c U 。

图4-1 PI 型电流调速器

根据设计要求%5≤i σ,并保证稳态电流无差,可按典型Ⅰ型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI 型电流调节器,其传递函数为:

s

s K s W i i i ACR ττ)

1()(+=

检查对电源电压的抗扰性能:

0.038.110.0037

l i T T ∑== 电流调节器超前时间常数:0.03i l T s τ==

取电流反馈系数:10

0.0491.5136im dbl U V A I β*===?

电流环开环增益:取5.0=∑i I T K ,因此

114.1350037.05

.05.0-∑===

s s

T K i I 于是,ACR 的比例系数为:

135.140.030.5

1.034400.049

I i i s K R K K τβ??=

==? 4.1.3校验近似条件

电流环截止频率:114.135-==s K I ci ω 晶闸管整流装置传递函数的近似条件:

ci s s s

T ω>=?=-11.1960017.031

31,满足近似条件 忽略反电动势变化对电流环动态影响的条件:

1113

340.820.180.03ci m l s T T s s

ω-==

ci oi s s s

s T T ω>=?=-18.180002.00017.01

31131,满足近似条件

4.1.4计算调节器电阻和电容

按所用运算放大器取Ω=k R 400,各电阻和电容值为:

0 1.0344041.36i i R K R k k ==?Ω=Ω,取42k Ω

6

3

0.030.71100.714210

i

i i

C F F F R τμ-=

=

=?=?,取0.71F μ F F F R T C oi oi μ2.0102.010

40002.0446

30=?=??==

-,取F μ2.0 4.2速度调节器设计

4.2.1确定转速调节器时间常数

电流环等效时间常数:

s s T K i I

0074.00037.0221

=?==∑ 转速滤波时间常数:0.01on T s =

转速环小时间常数:按小时间常数近似处理,取

1

0.00740.010.0174n on I

T T s s s K ∑=

+=+= 电压反馈系数:r V r V

n U N nm min 0067.0min

150010?===*α

4.2.2选择转速调节器结构

采用含给定滤波和反馈滤波的模拟式PI 型转速调节器,其原理图如图4-2所示。图

中*

n U 为转速给定电压,n α-为转速负反馈电压,调节器的输出是电流调节器的给定电

压*i U

图4-2 PI 型转速调节器

按设计要求,选用PI 调节器,其传递函数为:

s

s K s W n n n ASR ττ)

1()(+=

按跟随和抗扰性能都较好的原则,取h=5,则ASR 的超前时间常数为:

s hT n n 087.00174.05=?==∑τ

转速开环增益为:

22222

16

396.42250.0174

N n h K s h T -∑+=

==?? 于是,ASR 的比例系数为:

(1)60.0490.1320.18

11.982250.00670.50.0174

e m n n h C T K h RT βα∑+???=

==????

4.2.3校验近似条件

转速环截止频率为:

11

396.40.08734.5N

cn N n K K s ωτω-=

==?=

电流环传递函数简化条件为:

cn i I s s T K ω>==--∑11

7.630037

.014.1353131,满足近似条件 转速环小时间常数近似处理条件为:

1

111135.1438.75330.01

I cn on K s s T ω--==>,满足近似条件 4.2.4计算调节器的电阻和电容值

按所用运算放大器取Ω=k R 400,则

011.9840479.2n n R K R k k ==?Ω=Ω,取480k Ω

3

0.087

0.181348010

n

n n

C F F R τμ=

=

=?,取F μ2.0 6

30440.0111014010

on on T C F F F R μ-?=

==?=?,取F μ1 4.2.5校核转速超调量

理想空载启动时设z=0,已知数据:5.1=λ,R=0.5Ω,IN=136A ,nN=1500r/min,

Ce=0.132V.min/r,Tm=0.18s,T ∑n=0.0174s 。当h=5时,

b

max

C C ?=81.2%。按退饱和超调量的计算方法计算调速系统空载启动到额定转速时的转速超调量:

n σ=2×81.2%×1.5×(136×0.5/0.132)/1500×(0.0174/0.18)=8.0%≤10%

满足设计要求。

5系统建模与仿真

5.1建立仿真模型

(1)打开模型编辑窗口:通过单击SIMULINK工具栏中新模型的图标或选择File ——New——Modle菜单项实现。

(2)复制相关模块:双击所需子模块库图标,则可以打开它,以选中所需的子模块,拖入模型编辑窗口。

(3)修改模块参数:双击模块图案,则出现关于该图案的对话框,通过修改对话框内容来设定模块的参数。

(4)模块连接:以鼠标左键单击起点模块输出端,拖动鼠标至终点模块输入端,则在两模块间产生→线。当一个信号要分送到不同模块的多个输入端时,需要绘制分支线,通常可把鼠标移到期望的分支线的起点处,按下鼠标的右键,看到光标变为十字后,拖动鼠标直至分支线的终点处,释放鼠标按钮,就完成了分支线的绘制。

如图5-1所示为仿真模型:

图5-1转速环仿真模型

5.2仿真模型运行

5.2.1空载时仿真图形

(1)设置负载电流为0;

(2)启动仿真:点击按钮,仿真启动,双击示波器就可以发现仿真结果如下图

5-2所示:

图5-2 转速环空载高速起动波形图

(3)观察波形可发现ASR调节器经过了不饱和,饱和,退饱和三个阶段,最终稳定与给定转速。电流最终稳定为0A。

5.2.2满载时仿真波形

(1)把负载电流设置为136A,满载启动

(2)按照前面步骤启动模型,波形得到如图5-3所示:

图5-3 满载时波形图

(3)根据图形发现启动时间延长了,退饱和超调量减小了。起动过程的三个阶段都能很清楚的看到。电流最后稳定在额定值。

小结与体会

通过本次课程设计,我对逻辑无环流直流可逆调速系统有了更深入的理解。其中主要包括转速-电流双闭环的设计、逻辑控制器的设计及对转速与电流的建模与仿真,涉及到了电力电子,电力拖动等多学科。

转速-电流双闭环的核心是电流调节器和速度调节器,在确定两个调节器的类型和结构时采用常用的工程设计方法,电流调节器采用典型Ⅰ型系统,计算其基本参数后,校验近似条件,能够满足系统的要求,若不能满足则要重新设计调节器的类型和结构。转速调节器采用典型Ⅱ型系统,和电流调节器一样,计算其基本参数,校验近似条件,能满足系统的要求。通过这个环节设计,我对调节器的参数计算掌握的更牢固。

完成本设计用到了很多电力拖动以外的知识,单用电力拖动书本上的知识是设计不出来的,现在的系统设计都会涉及到多方面的知识,因此学好书本上的基本知识点以后还要做相应的拓展学习,将其他的与之相关的内容联系起来,对开阔我们的知识面有很大的帮助。

通过这次课程设计,我深刻体会到了学好运动控制系统的重要性,在此过程运用到了许多书本知识,有很多不懂的地方,都是通过查阅书本,上网查询或和同学探讨解决的,如果能够深刻体会到课本知识的精髓就会节约大量的时间。

总之,本次课程设计体会颇多,不仅是自己在对所涉及到的知识有了更深的认识外,对自己在动手能力,动脑能力也是有很大的提高。最后感谢学校,感谢指导老师给了我这个锻炼自己的机会!

参考文献

[1]. 陈伯时主编.电力拖动自动控制系统.北京:机械工业出版社,2003

[2]. 杨荫福.电力电子装置及系统.北京:清华大学出版社,2006

[3]. 王兆安.电力电子技术.北京:机械工业出版社,2007

[4]. 漆汉宏. PLC电气控制技术.北京:机械工业出版社,2006

[5]. 康华光.电子技术基础.北京:高等教育出版社,2006

[6]. 马莉. MATLAB数学实验与建模.北京:清华大学出版社,2010

附图

附图电气原理总图

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

直流电动机可逆调速系统设计 (1)要点

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

逻辑无环流可逆直流调速系统设计与研究

逻辑无环流可逆直流调速系统设计与研究 ——主电路设计 1 绪论 1.1电力拖动简介 随着科学技术的发展,人力劳动被大多数生产机械所代替。电力拖动及其自动化得到不断的发展。随着生产的发展,生产工艺对电力拖动系统的要求越来越高,尤其在其准确性、快速性、经济性、先进性等方面的要求,与日俱增。因此,需要不断地改进和完善电气控制设备,使电力拖动自动化可以跟得上技术要求。 电力拖动系统由电动机及其供电电源、传动机构、执行机构、电气控制装置等四部分组成。电动机及其供电电源是把电能转换成机械能;传动机构的作用是把机械能进行传递与分配;执行机构是使机械能完成所需的转变;电气控制装置是控制系统按着生产工艺的要求来动作,并对系统起保护作用。 随着生产的要求不断提高,技术不断更新,拖动系统也随之更新。同时,新型电机、大功率半导体器件、大规模集成电路、电子计算机及现代控制理论发展的发展使电力拖动自动化发生了巨大的变革。 1.2直流调速系统 直流电机由于其良好的起、制动性能和调速性能,在电力拖动调速系统中占有主导地位,虽然近年来交流电动机的调速控制技术发展很快,但是交流电动机传动控制的基础仍是直流电动机的传动技术。直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。 直流电机容易实现各种控制系统,也容易实现对控制目标的“最佳化”,直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度看,它又是交流拖动控制系统的基础。因此,掌握直流拖动控制系统可以更好的研究交流拖动系统。从生产机械要求控制的物理量来看,电力拖动控制系统有调速系统、位置

说明书逻辑无环流

实验五逻辑无环流可逆直流调速系统实验 一、实验目的 (1)了解、熟悉逻辑无环流可逆直流调速系统的原理和组成。 (2)掌握各控制单元的原理、作用及调试方法。 (3)掌握逻辑无环流可逆直流调速系统的调试步骤和方法。 (4)了解逻辑无环流可逆直流调速系统的静态特性和动态特性。 二、实验所需挂件及附件 序号型号备注 1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。 2 DJK02 晶闸管主电路 3 DJK02-1三相晶闸管触发 电路该挂件包含“触发电路”、“正反桥功放”等几个模块。 4 DJK04 电机调速控制实验 I 该挂件包含“给定”、“调节器I”、“调节器II”、“转速变换”、“反号器”、“电流反馈与过流保护”等几个模块。 5 DJK04-1电机调速控制实 验II 该挂件包含“转矩极性检测”、“零电平检测”和“逻辑控制”等几个模块。 6 DJK08可调电阻、电容箱7 DD03-3电机导轨、光码盘 测速系统及数显转速表 8 DJ13-1 直流发电机

9 DJ15 直流并励电动机 10 D42 三相可调电阻 11 慢扫描示波器自备 12 万用表自备 三、实验线路及原理 在此之前的晶闸管直流调速系统实验,由于晶闸管的单向导电性,用一组晶闸管对电动机供电,只适用于不可逆运行。而在某些场合中,既要求电动机能正转,同时也能反转,并要求在减速时产生制动转矩,加快制动时间。 要改变电动机的转向有以下方法,一是改变电动机电枢电流的方向,二是改变励磁电流的方向。由于电枢回路的电感量比励磁回路的要小,使得电枢回路有较小的时间常数。可满足某些设备对频繁起动,快速制动的要求。 本实验的主回路由正桥及反桥反向并联组成,并通过逻辑控制来控制正桥和反桥的工作与关闭,并保证在同一时刻只有一组桥路工作,另一组桥路不工作,这样就没有环流产生。由于没有环流,主回路不需要再设置平衡电抗器,但为了限制整流电压幅值的脉动和尽量使整流电流连续,仍然保留了平波电抗器。 该控制系统主要由“速度调节器”、“电流调节器”、“反号器”、“转矩极性鉴别”、“零电平检测”、“逻辑控制”、“转速变换”等环节组成。其系统原理框图如图5-10所示。 正向启动时,给定电压U g为正电压,“逻辑控制”的输出端U l f为“0”态,U l r 为“1”态,即正桥触发脉冲开通,反桥触发脉冲封锁,主回路“正桥三相全控整流”工作,电机正向运转。

α_=_β__配合控制的直流可逆调速系统的工作原理

目录 1α= β配合控制的直流可逆调速系统的工作原理 2 α =β配合控制的有环流直流可逆调速 系统的仿真模型及参数 3 仿真结果及分析 4 心得体会 5 参考文献

摘要: 针对面向系统传递函数结构图仿真方法的不足,提出了一种基于MATLAB的Simulink和 Power System工具箱、面向系统电气原理结构图的仿真新方法,实现了转速与电流双闭环α= β 配合控制的直流可逆调速系统的建模与仿真。分别介绍了同步脉冲触发器、移相器控制器和PI调节器的建模,给出了直流可逆调速系统的仿真模型和仿真结果,仿真结果表明了仿真算法可信度较高。 关键词: α= β 配合控制;直流电机;MATLAB仿真;移项控制器 Abstract: Anovelmethod ofconstruction& simulation was put forward forthe modelofα =βmoderating controlDC SR system basedon Matlab Simulink &Power SystemBlockset,beca use it was shortagefor facing system transferfunction construction drawingto simulate.Themodel of synchronized6-pulsegenerator, shifter and PI controller were introduced, andthe simulationresults&models for theα= βmoderating cont rol DC SRsystem were provided. Simulation results show that simulation methodis correct withhighcredibility. Key words:α =β moderating control; DC motor; MATLAB simulation;shifter 引言 晶闸管反并联的电枢可逆线路是可逆调速系统的典型线路之一。这种线路有能实现可逆运行、回馈制动等优点,同时正转制动和反转启动完全衔接起来,没有间断或死区,这是有环流调速系统的优点,特别是用于要求快速正反转的中小容量的系统。为保证系统安全,必须增加环流电抗器以消除其中的环流[1-2]。本文采用MATLAB的Simulink和PowerS ystem工具箱,介绍如何实现α=β配合控制的直流可逆调速系统的建模与仿真。 α= β配合控制的直流可逆调速系统的建模 控制系统传统的计算机仿真是用传递函数方法来完成的,各环节的传递函数是将实际模型经过一定的简化而得到的,很多重要细节会被忽略[3]。PowerSystem 工具箱提供了利用物理模型仿真的可能,其仿真建模方法与构建实际电路相似,仿真结果非常接近于实际。 1 α =β 配合控制的直流可逆调速系统的工作原理 α=β配合控制的有环流直流可逆调速系统的电气原理图如图1所示。图中,主电路由两组三相桥式晶闸管全控型整流器反并联组成,并共用同一路三相电惊。由于采用α= 卢配合控制方式,在两组整流器之间没有直流环流,但还存在脉动环流,为了限制脉动环流的大小,在主电路中串入了四个均衡电抗器Lc1-Lc4,用于限制脉动环流。平波电抗器L d 用于减小电动机电枢电流的脉动,减小电枢电流的断续区,改善电动机的机械特性。系统的控制部分采用F 转速和电流的双闭环控制。由于可逆调速电流的反馈信号不仅要反映电枢电流的大小还需要反映电枢电流的方向,因此电流反馈一般用直流电流互感器或霍尔电流检测器,在电枢端取电流信号。为了确保两组整流器的工作状态相反,电流调节器的输出分两路,一路经正组桥触发器GTF 控制正组桥 整流器,另一路经倒相器AR 、反组桥触发器GTR 控制反组桥整流器。

h桥可逆直流调速系统课设

燕山大学 课程研究项目报告 项目名称: H桥可逆直流调速系统设计与实验学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 日期: 2014年6月3日

目录 第一章摘要 (1) 第二章前言 (2) 第三章报告研究正文 (3) 3.1 调速控制系统设计 (3) 3.2 电源及操作系统设计 (7) 3.3 双闭环调节器电路设计 (11) 3.4 参数计算与计算机仿真 (12) 3.5 实物制作 (17) 3.6 性能测试 (19) 第四章结论 (20) 参考文献 (21)

本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理,利用MOSFET、二极管等器件设计了一个转速、电流双闭环直流晶闸管调速系统,并利用MATLAB对其进行仿真。该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。 关键词:双闭环控制系统 MATLAB 电流调节器转速调节器

目前,转速﹑电流双闭环控制直流调速系统是性能很好﹑应用最广泛的直流调速系统。我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。故需要引入转速﹑电流双闭环控制直流调速系统,本文着重阐明其控制规律﹑性能特点和设计方法,是各种交﹑直流电力拖动自动控制系统的重要基础。首先介绍转速﹑电流双闭环调速系统的组成及其静特性,接着说明该系统的动态数学模型,并从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用。在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点。长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。在现代化的工业生产中,几乎无处不使用电力拖动装置。轧钢机、电铲、提升机、运输机等各类生产机械都要采用电动机来传动。随着对生产工艺,产品质量的要求不断提高和产量的增长,越来越多的生产机械能实现自动调速。从20世纪60年代以来,现代工业电力拖动系统达到了全新的发展阶段。这种发展是以采用电力电子技术为基础的,在世界各国的工业部门中,直流电力拖动至今仍广泛的应用着。直流拖动的突出优点在于:容易控制,能在很宽的范围内平滑而精确的调速,以及快速响应等。在一定时期以内,直流拖动仍将具有强大的生命力。

逻辑无环流V-M可逆直流调速系统

逻辑无环流V-M可逆直流调速系统设计 摘要 两组晶闸管装置反并联的电枢可逆线路是可逆调速系统的典型线路之一,这种线路有能实现可逆运行、回馈制动等优点,但也会产生环流。为保证系统安全,必须消除其中的环流。所谓逻辑无环流系统就是在一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使该组晶闸管完全处于阻断状态,从根本上切断环流通路。这种系统不仅能实现逻辑无环流可逆调速,还能实现回馈制动。本文对逻辑无环流直流可逆调速系统进行了设计,并且计算了电流和转速调节器的参数。 本文介绍了逻辑无环流可逆直流调速系统的基本原理及其构成,并对其控制电路进行了计算和设计。运用了一种基于Matlab的Simulink进行仿真并对仿真结果进行分析。 关键词: 直流电机;环流;逻辑无环流可逆调速;Matlab仿真

目录 摘要................................................................... (1) 第一章设计任务及要求 (4) 1.1设计任务 (4) 1.2设计要求 (5) 第二章逻辑无环流V-M可逆直流调速系统结构及原理 2.1逻辑无环流调速系统简介 (5) 2.2逻辑无环流调速系统的结构与原理 (6) 第三章系统主电路设计 (7) 3.1主电路原理及说明 (7) 3.2主回路参数设计 (7) 3.2.1整流变压器的选择 3.2.2晶闸管参数的计算 3.3保护电路设计 (9) 3.3.1过电压保护 3.3.2过点流保护 3.4触发回路设计 (13) 3.5励磁回路设计 (15) 第四章调节器的设计 (15) 4.1电流调节器的设计 (15) 4.2速度调节器的设计 (17) 第五章控制回路的设计 (19) 5.1逻辑控制器的组成 (19) 5.2逻辑控制器的设计 (19) 5.2.1零电平检测 5.2.2转矩极性检测 5.2.3逻辑判断的电路 5.2.4延时电路 5.2.5连锁与保护 5.3反相器 (23)

H桥可逆直流调速系统设计与实验

CDIO课程项目研究报告 项目名称:H桥可逆直流调速系统设计与实验 姓名; 指导老师: 日期:

摘要 本设计的题目是基于SG3525的双闭环直流电机调速系统的设计。SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。所以双闭环直流调速是性能很好、应用最广的直流调速系统。本设计选用了转速、电流双闭环调速控制电路,本课题内容重点包括调速控制器的原理,并且根据原理对转速调节器和电流调节器进行了详细地设计。概括了整个电路的动静态性能,最后将整个控制器的电路图设计完成,并且进行仿真。 关键词:双闭环直流可逆调速系统、H桥驱动电路、SG3525信号产生电路、PI调节器、MATLAB仿真

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流无静差调速系统,其稳态性能指标实现要求如下:电流超调量S≤5%调速范围 D=20;其动态性能指标:转速超调量δn=10%;调整时间时间ts=2s;电流超调量δi≤5% 。

直流PWMM可逆调速系统的设计与仿真

基础课程设计(论文) 直流PWM-M可逆调速系统的设计与仿真 专业:电气工程及其自动化 指导教师:刘雨楠 小组成员:陈慧婷(20114073166) 石文强(20114073113) 刘志鹏(20114073134) 张华国(20114073151) 信息技术学院电气工程系 2014年10月20日

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:直流可逆调速数字触发PWM 数字控制器

逻辑无环流可逆直流调速系统课程设计

CHENGNAN COLLEGE OF CUST 课程设计(论文)题目:逻辑无环流可逆直流调速系统设计 学生姓名:吴艳兰 学号:201197250104 班级: 1101班 专业:D自动化(工业自动化) 指导教师:李益华吴军 2014年7月

逻辑无环流可逆直流调速系统设计 学生姓名:吴艳兰 学号:201197250104 班级:1101班 所在院(系): 电气与信息工程系 指导教师:李益华吴军 完成日期: 2014年7月11日

逻辑无环流可逆直流调速系统设计 摘要 直流电动机具有良好的起制动性能,易于广泛范围内平滑调速,在需要高性能可控电力拖动的领域中得到广泛的应用。直流拖动控制系统在理论上和实践上都比较成熟,而且从反馈闭环控制角度来看,它又是交流拖动控制系统的基础,所以首先应该掌握好直流系统。 在许多生产机械中,常要求电动机既能正反转,又能快速制动,需要四象限运行的特性,此时必须采用可调速系统。本文着重介绍“逻辑无环流可逆直流调速系统”。逻辑无环流可逆直流调速系统省去了环流电抗器,没有了附加的环流损耗,节省变压器和晶闸管装置的附加设备容量。和有环流系统相比,因换流失败造成的事故率大为降低。 关键词:无环流;可逆直流调速系统;逻辑控制器

目录 1 绪论 (4) 1.1设计的目的和意义 (4) 1.2设计要求 (4) 2 系统结构方案的选择 (5) 3 主回路的选择 (6) 3.1 主电路形式的选择与论证 (6) 3.2 交流电源的选择(单相或三相) (7) 3.3 晶闸管元件的计算与选择 (7) 3.4 晶闸管保护措施的电路设计与计算 (7) 3.5 平波电抗器的计算与选择 (8) 3.6 测速机的选择与可变电位器的选择与计算 (10) 3.7 电机励磁回路设计 (10) 4 触发器的设计和同步相位的配合 (11) 4.1 触发电路的设计与选择 (11) 4.2 同步相位的配合 (12) 5 辅助电路设计 (13) 5.1 高精度给定电源的设计 (13) 5.2 其他辅助电路设计 (13) 5.2.1 转矩极性鉴别(DPT) (13) 5.2.2 零电平检测(DPZ) (14) 5.2.3 逻辑控制(DLC) (14) 5.2.4 电流反馈与过流保护(FBC+FA) (16) 5.2.5 转速变换(FBS) (17) 5.2.6 反号器(AR) (17) 6 电流环设计 (19) 6.1 调节器参数计算 (19)

逻辑无环流可逆直流调速系统的文献综述

摘要 摘要:本文主要论述了逻辑无环流可逆直流调速系统的基本原和构成,并对其控制电路进行计算和设计,运用MATLAB仿真对电气结构原理图进行仿真并对仿真结果进行动静态性能分析,采用优化设计方法改善系统性能,实现了转速电流双闭环逻辑无环流可逆直流调速系统的建模和仿真。 关键词:逻辑无环流;可逆直流;MATLAB仿真 引言 随着电力传动装置在现代化工业生产中的广泛应用,以及对其生产工艺、产品质量要求的不断提高,需要越来越多的生产机械能够实现正反向可逆运行。有环流可逆系统虽然具有反向快、过渡平滑等优点,但还必须设置几个环流电抗器,因此当工艺过程对系统正反转的平滑过渡特性要求不是很高时,特别是对于大容量的系统,常采用既没有直流平均环流又没有瞬时脉动环流的逻辑无环流控制可逆系统,当一组晶闸管工作时,用逻辑电路或逻辑算法去封锁另一组晶闸管的触发脉冲,使它完全处于阻断状态,以确保两组晶闸管不同时工作,从根本上切断环流的通路,这就是逻辑控制的无环流可逆系统。本文介绍了逻辑无环流可逆直流调速系统的发展历史、工作原理,系统主电路、控制电路、触发电路和保护电路。根据系统的动、静态性能指标采用工程设计方法设计转速、电流调节器参数,并运用Matlab的Simulink工具箱和电力系统工具箱,实现逻辑无环流可逆直流调速系统的建模与仿真。 1逻辑无环流可逆直流的发展历史直流电动机是将直流电能转换为机械能的电动机。因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、它励和自励三类,其中自励又分为并励、串励和复励三种 1840~1955年为探索实验时期: 从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。自从Wheatsone提出和试制了直线电机以后,最早明确地提到直线电机文章的是1890年美国匹兹堡市的市长,在他所写的一篇文章中,首先明确地提到了直线电机以及它的专利。然而,由于当时的制造技术、工程材料以及控制技术的水平,在经过断断续续20多年的顽强努力后,最终却未能获得成功。 至1905年,曾有两人分别建议将直线电动机作为火车的推进机构,一种建议是将初级放在轨道上,另一种建议是将初级放在车辆底部。这些建议无疑是给当时直线电机研究领域的科研人员的一剂兴奋剂,以致许多国家的科研人员都投入了这些研究工作。1917年出现了第一台圆筒形直线电动机,事实上那是一种具有换接初级线圈的直流磁阻电动机,人们试图把它作为导弹发射装置,但其发展并没有超出模型阶段。 至此,从1930~1940年期间,直线电机进入了实验研究阶段,在这个阶段中,科研人员获驭了大量的实验数据,从而对已有理论有了更深一层的认识,奠定了直线电机在今后的应用基础。 从1940~1955年期间世界一些发达国家科研人员,在实验的基础上,又进行了一些实验应用工作。1945年,美国西屋电气公司首先研制成功的电力牵引飞机弹射器,它以7400kW

逻辑无环流控制可逆直流调速系统

实验二逻辑无环流可逆直流调速系统 一.实验目的 1.了解并熟悉逻辑无环流可逆直流调速系统的原理和组成。 2.掌握各控制单元的原理,作用及调试方法。 3.掌握逻辑无环流可逆调速系统的调试步骤和方法。 4.了解逻辑无环流可逆调速系统的静特性和动态特性。 二.实验内容 1.控制单元调试。 2.系统调试。 3.正反转机械特性n=f(I d)的测定。 4.正反转闭环控制特性n=f(U g)的测定。 5.系统的动态特性的观察。 三.实验系统的组成及工作原理 逻辑无环流系统的主电路由二组反并联的三相全控整流桥组成,由于没有环流,两组可控整流桥之间可省去限制环流的均衡电抗器,电枢回路仅串接一个平波电抗器。 控制系统主要由速度调节器ASR,电流调节器ACR,反号器AR,转矩极性鉴别器DPT,零电流检测器DPZ,无环流逻辑控制器DLC,触发器,电流变换器FBC,速度变换器FBS 等组成。其系统原理图如图1所示。 正向起动时,给定电压U g为正电压,无环流逻辑控制器的输出端U blf为“0”态,U blr 为“1”态,即正桥触发脉冲开通,反桥触发脉冲封锁,主电路正组可控整流桥工作,电机正向运转。 减小给定时,U g

课程设计:直流PWM-M可逆调速系统的设计与仿真

直流PWM-M可逆调速系统的设计与仿真 摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。 微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM 调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。 论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:PWM调速、直流电动机、双闭环调速

目录 前言 (1) 第1章直流PWM-M调速系统 (2) 第2章UPE环节的电路波形分析 (4) 第3章电流调节器的设计 (6) 3.1 电流环结构框图的化简 (6) 3.2 电流调节器参数计算 (7) 3.3 参数校验 (8) 3.3.1 检查对电源电压的抗扰性能: (8) 3.3.2 晶闸管整流装置传递函数的近似条件 (9) 3.3.3 忽略反电动势变化对电流环动态影响的条件 (9) 3.3.4 电流环小时间常数近似处理条件 (9) 3.4 计算调节器电阻和电容 (9) 第4章转速调节器的设计 (11) 4.1 电流环的等效闭环传递函数 (11) 4.2 转速环结构的化简和转速调节器结构的选择 (11) 4.3 转速调节器的参数的计算 (14) 4.4 参数校验 (14) 4.4.1 电流环传递函数化简条件 (15) 4.4.2 转速环小时间常数近似处理条件 (15) 4.5 计算调节器电阻和电容 (15) 4.6 调速范围静差率的计算 (16) 第5章系统仿真 (17) 5.1 仿真软件Simulink介绍 (17) 5.2 Simulink仿真步骤 (17) 5.3 双闭环仿真模型 (17) 5.4 双闭环系统仿真波形图 (18) 结论 (19) 参考文献 (20)

V-M双闭环直流可逆调速系统建模与仿真1

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: V-M双闭环直流可逆调速系统建模与仿真1 初始条件: 1.技术数据及技术指标: 直流电动机:P N=60KW , U N=220V , I N=308A , n N=1000r/min , 最大允许电流I dbl=1.5I N, 三相全控整流装置:K s=35 , 电枢回路总电阻R=0.18Ω, 电动势系数:C e=0.196V.min/r 系统主电路:T m=0.17s,T l=0.012s 滤波时间常数:T oi=0.0025s , T on=0.015s, 其他参数:U nm*=8V , U im*=8V , U cm=8V σi≤5% , σn≤10% 要求完成的主要任务: 1.技术要求: (1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作 (2) 系统在5%负载以上变化的运行范围内电流连续 2.设计内容: (1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图 (2) 根据双闭环直流调速系统原理图, 分析转速调节器和电流调节器的作用, (3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB来进行调节器的参数调节。 (4) 绘制V-M双闭环直流可逆调速系统的电气原理总图(要求计算机绘图) (5) 整理设计数据资料,课程设计总结,撰写设计计算说明书

时间安排: 课程设计时间为一周半,共分为三个阶段: (1)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20% (2)根据技术指标及技术要求,完成设计计算。约占总时间的40% (3)完成设计和文档整理。约占总时间的40% 指导教师签名:年月日系主任(或责任教师)签名:年月日

逻辑无环流可逆直流调速系统设计与研究——DLC

摘要 在可逆调速系统中,电动机最基本的要素就是能改变旋转方向。而要改变电动机的旋转方 向有两种办法:一种是改变电动机电枢电压的极性,第二种是改变励磁磁通的方向。所谓逻辑无环流系统就是在一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使该组晶闸管完全处于阻断状态,从根本上切断环流通路。这种系统不仅能实现逻辑无环流可逆调速,还能实现回馈制动。对于大容量的系统,从生产角度出发,往往采用既没有直流平均环流,又没 有瞬时脉动环流的无环流可逆系统,无环流可逆系统省去了环流电抗器,没有了附加的环流损耗,和有环流系统相比,因换流失败造成的事故率大为降低。因此,逻辑无环流可逆调速系统在 生产中被广泛运用。 关键词:逻辑无环流;可逆直流调速系统;DLC;保护电路;触发电路。

目录 1绪论 (1) 1.1无环流调速系统简介 (1) 1.2系统设计 (3) 2系统主电路设计 (4) 3调节器的设计 (5) 3.1电流调节器的设计 (5) 3.2速度调节器的设计 (6) 4 DLC 设计 (7) 4.1逻辑控制器的原理 (7) 4.2速度给定环节设计 (9) 4.3无环流控制系统各种运行状态 (10) 4.3.1 正向起动到稳定运转 (10) 4.3.2 正向减速过程 (10) 4.3.3 正转制动 (11) 4.4.4 停车状态 (13) 5触发电路设计 (14) 6保护电路设计 (15) 6.1过电流保护 (15) 6.2过电压保护 (16) 17总结 .............................................................................................................................................. 18参考文献 ...................................................................................................................................... 19附录一 .......................................................................................................................................... 24附录二 ..........................................................................................................................................

H桥可逆直流调速系统设计与实验(1)

燕山大学 CDIO课程项目研究报告 项目名称: H桥可逆直流调速系统设计与实验 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 日期: 2014年6月3日

目录 前言 (1) 摘要 (2) 第一章调速系统总体方案设计 (3) 1.1 转速、电流双闭环调速系统的组成 (3) 1.2.稳态结构图和静特 (4) 1.2.1各变量的稳态工作点和稳态参数计算 (6) 1.3双闭环脉宽调速系统的动态性能 (7) 1.3.1动态数学模型 (7) 1.3.2起动过程分析 (7) 1.3.3 动态性能和两个调节器的作用 (8) 第二章 H桥可逆直流调速电源及保护系统设计 (11) 第三章调节器的选型及参数设计 (13) 3.1电流环的设计 (13) 3.2速度环的设计 (15) 第四章Matlab/Simulink仿真 (17) 第五章实物制作 (20) 第六章性能测试 (22) 6.1 SG3525性能测试 (22) 6.2 开环系统调试 (23) 总结 (26) 参考文献 (26)

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%;过渡过程时间小于等于0.1s的无静差调速系统。 项目分工:参数计算: 仿真: 电路设计: 电路焊接: PPT答辩: 摘要

可逆直流调速系统

摘要:根据整流装置的不同,直流可逆调速系统可分为V-M可逆调速系统和PWM 可逆调速系统。讨论了晶闸管直流调速系统可逆运行方案,介绍了有环流控制的可逆V-M系统和无环流控制的可逆V-M系统。除了由晶闸管组成的相控直流电源外,直流电机还可以采用全控器件(IGBT,MOSFET,GTR等)组成的PWM变换器提供直流电源,其特点是开关频率明显高于可控硅,因而由PWM组成的直流调速系统有较高的动态性能和较宽的调速范围。PWM变换器把恒定的直流电源变为大小和极性均可调直流电源,从而可以方便的实现直流电机的平滑调速,以及正反转运行。由全控器件构成的PWM变换器,由于开关特性,因此其电枢的电压和电流都是脉动的,其转速和转矩必然也是脉动的。 关键词:可逆直流调速,PWM变换器,环流。

目录 1.晶闸管直流调速系统可逆运行 (3) 1.1可逆直流调速系统分类 (4) 1.2晶闸管-电动机系统的回馈制动 (6) 2.有环流的可逆调速系统 (8)

2.1可逆系统中的环流 (8) 2.2直流平均环流与配合控制 (9) 2.3瞬时脉动环流及其抑制 (10) 2.4直流可调速系统的制动过程分析 (11) 2.5可控环流可逆调速系统 (13) 3.无环流可逆调速系统 (13) 3.1逻辑控制无环流调速系统 (14) 4.可逆直流脉宽调速系统(PWM可逆系统) (15) 4.1可逆PWM变换器的工作原理 (15) 5.总结 (17) 1.晶闸管直流调速系统可逆运行 有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起

动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆的调速系统。改变电枢电压的极性,或者改变励磁磁通的方向,都能够改变直流电机的旋转方向,这本来是很简单的事。然而当电机采用电力电子装置供电时,由于电力电子器件的单向导电性,问题就变得复杂起来了,需要专用的可逆电力电子装置和自动控制系统。中、小功率的可逆直流调速系统多采用由电力电子功率开关器件组成的桥式可逆PWM 变换器。功率较大的直流调速系统多采用V-M 电源,由于晶闸管的不可控关断特性,其可逆调速系统相对较为复杂。 1.1 可逆直流调速系统分类 在没有外力作用下,要改变直流电机的旋转方向,根据直流电机转矩表达式Te =CMΦIa可知,改变励磁磁通Φ或改变电枢电流Ia均可改变电机转矩方向,从而达到改变转向的目的。与此相应得直流电机可逆调速实现方式有:1、改变电枢电流,通过改变电枢电流的方向,也可改变电磁转矩的方向。2、改变励磁电流,通过改变励磁电流方向,从而改变电磁转矩的方向。 图1-1两组晶闸管装置反并联可逆线路 改变电枢电流可逆线路:电枢反接的可逆线路形式是多种多样的,不同的生产机械可以根据各自的要求去选择。图1.1 是一种最简单的桥式晶闸管可逆线路,该线路中,需要一组晶闸管整流装置,还需要四个晶闸管组成的桥式电路,

相关文档
最新文档