白车身模态分析试验方法研究 毕业设计

白车身模态分析试验方法研究  毕业设计
白车身模态分析试验方法研究  毕业设计

目录

中文摘要 (1)

英文摘要 (2)

1 绪论 (3)

2 试验模态分析 (5)

2.1模态试验理论 (5)

2.2试验测试系统组成 (6)

3 模态参数识别方法 (7)

3.1模态参数识别主要方法 (7)

3.2最小二乘复频域法 (9)

3.2.1最小二乘复频域法简介 (9)

3.2.2系统模型的确定 (9)

4 白车身模态试验 (10)

4.1白车身参数 (10)

4.2试验结构的支撑方式 (10)

4.3传感器的选择及布置原则 (12)

4.4激励系统 (13)

4.4.1激励方式 (13)

4.4.2振动激励源的选择和比较 (14)

4.4.3设备传感器 (15)

4.5试验测试系统检验 (16)

5 试验测试结果及分析 (21)

5.1稳态图 (21)

5.2模态频率与阻尼比 (23)

5.3模态振型 (24)

5.4模态试验的有效性 (26)

6 有限元分析结果与试验结果对比 (30)

结论 (33)

谢辞 (34)

参考文献 (35)

白车身模态试验方法研究

摘要:本文的目的在于研究模态分析参数识别不同方法之间的优缺点,重点是PolyMAX法和时域分析法之间的对比,以研究通过何种方法才能获得精

确地实验数据。为此本文分别采用多参考最小二乘复频域(PolyMAX)

法和时域分析法对结构模态参数进行识别,得到白车身各阶的模态图、

模态频率和振型并采用模态置信判据法(MAC)验证试验结果,比较二者

之间的优缺点,从而发现PolyMAX能提供比时域法法更多的稳定极点

并且有一个清晰地图标,确保一个用户独立和简洁明了的解释,大量简

化了鉴别过程。为进一步验证PolyMAX法的准确性,将PolyMAX分析

结果与有限元分析相对比,发现两者具有相当高的一致性。因此,本文

认为在白车身模态试验中PolyMAX法是最佳的试验模态分析方法。

关键词:白车身模态试验分析方法MIMO PolyMAX

1

Abstract:In this paper ,by comparing the advantages and disadvantages of the main modal analysis methods as frequency domain method ,time domain

method ,SISO and MIMO law ,choose the MIMO method to measure

the modal of Body-in-white. A 3D geometrical Model is built for testing

and based on this the MIMO method (multi-input and multi-output) is

applied to measure the modal of Body-in-White in “free-free” boun dary

conditions. And the modal parameters are estimated with the Least

Square Complex Frequency (PolyMAX) method and the domain

method. Every modal have been obtained by experiment and the testing

result is verified by using Modal Assurance Criteria. The frequency and

mode of every modal have been obtained by experiment and the testing

result is verified by using Modal Assurance Criteria. Contrasting the

experimental results and the finite element analysis results of the

body-in-white indicate that at 60Hz or less, the result of modal testing

and analysis are generally consistent. It exposed that both in the

low-frequency stage exposed the problem that somewhere in back-up

cavity have a bigger vibration amplitude, it need to strengthen the

local stiffness.

Keywords: Body-in-white ,Modal analysis ,Analysis,MIMO, PolyMAX

2

1 绪论

随着社会经济水平的不断发展,汽车已经不仅仅是一种代步工具,消费者对汽车的各种性能要求越来越高,特别是轿车的乘坐舒适性。为了满足消费者的要求,汽车厂家加强了对汽车乘坐舒适性的重视,而与乘坐舒适性密切相关的就是汽车NVH性能,而这又与白车身紧密相关。因此,研究白车身的模态分析便愈加重要了。

模态分析与参数识别是振动工程中一个活跃的分支,是结构动态设计、减振消振、振动控制以及利用振动信号的状态监测和故障诊断的基础。模态分析与参数辨识和古典的振动学相比,它的特点是以解决工程实际问题为总目标,理论、计算技术和试验技术机密结合,各尽其能,互相补充、互相验证。

模态分析和参数辨识是结构动力学中的一种“逆问题”分析方法,它与传统的“正问题”分析方法不同,是建立在试验的基础上,采用试验与理论相结合的方法来处理工程中的振动问题。这一技术从60年代后期兴起至今,已在各工程领域中广泛应用,并以发展成为解决工程中振动问题的重要手段。

模态分析的经典定义是:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。模态分析可以在时域中进行,也可在频域中进行。其最终目标是识别出系统的模态参数,为结构系统的振动特性分析,振动故障诊断及预报以及结构动力特性的优化设计提供依据。

试验模态分析( experimental modal analysis)是振动与噪声学科在工程中求结构动力特性的一种非常重要的手段,它通过实验的方法得到被测结构的输入输出信号,求解传递函数方程得到结构特征参数。白车身作为汽车的主要框架结构,业界一般认为它对整车NVH性能的贡献率约达60%左右(承载式车身) ,其结构参数是改进与提高整车NVH性能的基础参数。对其进行实验模态分析逐渐成为新车开发中结构分析的一项主要内容]1[。

模态参数识别的主要任务是根据时域或频域的传递函数方程在模态坐标下对质量、刚度、阻尼等模态参数进行拟合,得出模态振型。试验模态分析经历了几十年的发展历程,从单自由度发展为多自由度,由单输入单输出发展为多输入多

3

输出,由局部估计发展为整体估计,新的方法层出不穷。目前广泛使用的最小二乘复指数法( PolyLSCE,简称LSCE) 和最小二乘频域法(LS-FD)。已经可以处理大部分的模态参数识别问题,但抗干扰能力较差,对于信噪比差的数据,稳态图比较紊乱。为解决以上问题,比利时卢温大学AUW-ERAER和GU ILLAUME等教授提出最小二乘复频域法( least squares complex frequency domain method,简称LSCF,商业名称为PolyMAX) ,采用离散时间频域模型,使用了快速递推的运算技巧,相比以前的方法有许多优点。由于具有较好的抗干扰能力、稳态图清晰且干净,是目前公认的最佳实验模态分析方法之一]2[。

4

5

2 试验模态分析

模态是机械振动的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程成为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。

2.1 模态试验理论

通过试验手段首先测得输入激励和输出响应的时域信号,对时域信号进行傅立叶变化求得频响函数(传递函数),得到系统的非参数模型;其次运用参数识别方法,求得系统的模态参数;最后进一步确定系统的物理参数。通过试验模态分析,得到白车身的各阶模态的频率、振型、阻尼等模态参数[2]。

汽车车身结构是一个无限多自由度的振动系统,对于多自由度系统而言,其振动的微分方程为:

[]{}[]{}[]{}(){}m x c x k x f t ++=

振动系统的传递函数为:

[][][]()(){}(){}2

s m s c k X s F s ++=

振动系统的第r 阶模态参数如下: (1)极点或复频率

:

dr r ωω=

dr r r j p ωσ--=* r = 1, 2, N

(2)模态频率:

dr ω 或 r ω;

(3)模态阻尼比 : r r r ωσ?/= ;

(4)模态振型(复模态或实模态): {}r φ;

(5)模态质量: {}[]{}r

T r

r m M φφ*

=;

(6)模态刚度: {

}[]{}r

T r

r

k K φφ*

=; ()r

r r

M K /2=ω (7)模态阻尼: {}[]{}*

T r

r

r

C c φφ=; ()22r r r r r r

C M M

σ?ω==;

2.2 试验测试系统组成

试验系统是由激振部分、拾振部分和分析、显示、记录部分组成。其中激振部分包括信号源、功率放大器、激振装置;拾振部分包括力传感器、响应传感器、加速度传感器、信号放大和智能采集系统;分析、显示、记录部分包括各种分析仪及其外围设备(显示、记录仪器等)。为了做好车身模态试验,试验前做了大量的准备工作,包括选择悬挂点,制作连接挂件,车身悬挂调整,激振点选择,测点定位等,正式试验前还进行了预备性试验,以确保整套测试系统(包括测量方法和试验条件)的可靠有效。

试验模态分析( experimental modal analysis)是振动与噪声学科在工程中求结构动力特性的一种非常重要的手段,它通过实验的方法得到被测结构的输入输出信号,求解传递函数方程得到结构特征参数。白车身作为汽车的主要框架结构,业界一般认为它对整车NVH性能的贡献率约达60%左右(承载式车身) ,其结构参数是改进与提高整车NVH性能的基础参数。对其进行实验模态分析逐渐成为新车开发中结构分析的一项主要内容。试验模态分析过程由试验准备过程、数字信号采集与处理和参数识别3个部分组成。实验准备过程包括实验平台的安装、实验品的吊装、实验品几何尺寸的绘制、传感器布点的选取、传感器的安装与调试等工作。数字信号采集与处理的过程包括加速度和力时域信号的采集、减噪处理;对基于频域的分析方法还需要进行时频变换与功率谱计算等工作。参数辨识的主要任务是根据时域或频域的传递函数方程在模态坐标下对质量、刚度、阻尼等模态参数进行拟合,得出模态振型。之后再根据每个点的模态振型还原出模态动画,完成实验模态分析的全过程[1]。

6

3 模态参数识别方法

在结构动力学研究领域中,模态参数识别是最为关键和根本的,它不仅在结构动态特性设计中起着至关重要的作用,也是识别结构系统很多其他参数的先决条件,模态参数识别与有限元分析技术一起成为解决现代复杂结构动力学问题的两大支柱。

3.1 模态参数识别主要方法

模态参数识别的主要任务是从测试所得的数据中,确定振动系统的模态参数,其中包括模态固有频率、模态阻尼比、模态质量、模态刚度及振型等。目前参数识别按参数域可分为频域法、时域法、混合域法。按激励方式不同可分为SISO法、SIMO法、MIMO法。

根据系统不同可将模态识别方法分为:SISO法(单输入单输出法)、SIMO 法(单输入多输出法)和MIMO法(多输入多输出法)。SISO法和SIMO法都属于单点激励法。单点激励对不太复杂的结构系统是有效而且常用的。但是对于大型复杂机构,单点激励就显得激励能量不够,且在传递过程中损耗很大,因此离激励点较远的地方,响应信号很弱,信噪比较小。若加大激励力,则容易产生局部响应过大,造成非线性现象。另外单点激励时,若激励点正好处于某阶模态的节点位置,对该阶模态来说,系统将称为不可控和不可观的,因此将无法辨识该阶模态,就会发生漏失模态的现象。对于单输入多输出系统,模态参数辨识一般只利用频响函数矩阵中的一列数据,因此能提供的信息量有限,影响辨识精度,对模态密集的情况,辨识能力较弱。

对多输入多输出频域辨识法可分为频域及时域两种。前者利用频响函数实测数据在频率域中进行参数识别;后者可利用脉冲响应函数数据,或直接根据实测响应数据,建立时域模型,在时间域内进行参数辨识。多输入多输出系统的参数辨识方法都是建立在“总体”、“同时”辨识的基础之上,因此它能充分利用所测得的全部信息,辨识精度高,识别是所得模态参数一致性好,从而减少了人为的干预与判断。因此多输入多输出模态参数辨识方法对高阻尼、密集模态,甚至重根都具有较高的辨识能力,在大型复杂结构的振动分析中被广泛应用。综上,对汽车白车身这种复杂机构进行模态分析应选用多输入多输出法。

7

频域法是由激励信号和响应信号,经信号处理,获得一组频响函数或传递函数,再通过曲线拟合方法求得模态参数。即对结构上某一点激励,同时测得激励点及响应点的时域信号,经A/D转换与FFT变换,变成频域信号,然后将频域数字信号进行运算,求得频率响应函数(简称频响函数),再按参数识别方法辨识出模态参数。

时域法由时域冲激响应函数,或工作载荷作用下的自由响应时域信号,直接识别模态参数。时域法无需将所测得的响应与激励的时间历程信号变换到频域中去,而是之间在时域中进行参数辨识。

频域法:

时域法:

时域法是近年才在国内外发展起来的一门新技术,它可以克服频域法的一些缺陷。特别是对大型复杂构件,如飞机、船舶及建筑物等受到风、浪及大地脉动的作用,它们在工作中承受的载荷很难测量,但响应信号很容易测得,直接利用响应的时域信号进行参数识别无疑是很有意义的。

在众多多输入多输出法中应用最广泛的是PolyMAX(最小二乘复频域法)及时域分析方法[1]。

8

9

3.2 最小二乘复频域法

3.2.1 最小二乘复频域法简介

实验模态分析经历了几十年的发展历程,从单自由度发展为多自由度,由单输入单输出发展为多输入多输出,由局部估计发展为整体估计,新的方法层出不穷。目前广泛使用的最小二乘复指数法( PolyLSCE,简称LSCE) 和最小二乘频域法(LS-FD)。已经可以处理大部分的模态参数识别问题,但抗干扰能力较差,对于信噪比差的数据,稳态图比较紊乱。为解决以上问题,比利时卢温大学AUW-ERAER 和GU ILLAUME 等教授提出最小二乘复频域法( least squares complex frequency domain method,简称LSCF,商业名称为PolyMAX) ,采用离散时间频域模型,使用了快速递推的运算技巧,相比以前的方法有许多优点。由于具有较好的抗干扰能力、稳态图清晰且干净,是目前公认的最佳实验模态分析方法之一。

3.2.2系统模型的确定

假设系统时域信号经过离散傅里叶变换后,输入参数矩阵为F (ω),输出参数矩阵为X (ω),频率响应函数为H (ω),可以得到一下关系:

()[]()[]()[]ωωωF X H =1- (3-1) 等式右边用多项式基本相和参数向量表达得

()()∑Ω==p

o r r

r X βωω

(3-2)

()()∑Ω==p

r r r F 0

αωω

假设系统为m 维输入l 维输出线性多自由度系统,βr

α

r

及其合集θ可表示

为 []T

r

αβθr

= (3-3)

其中

[]T

op

o o β

β

β

β

1

r

=

,(l ,,2,10

=?

)。βr 的每一个向量(β0o 到βop

)的维数是(p+1)×

m, 的维数是m (p+1)×m ,所以的维数是(l + m )(p+1)×m

求解即得到系统的零极点,继而推导出系统的振型[2]。

4 白车身模态试验

时域方法和PolyMAX是今天应用最广泛的两种模态识别方法,为了对比这两种方法,本文将分别使用这两种方法对某白车身进行模态参数识别,并对其结果进行分析。首先本文将探讨试验中白车身约束方式的选择及其合理性验证、激振点位置的选择、激振力方向的选择、测点的布置原则、试验测试系统的检验、模态数据可靠性检验等。

4.1 白车身参数

本次试验采用的是一辆AO轿车的白车身,其基本参数如表4.1所示:

表4.1某A0白车身基本参数

4.2 试验结构的支撑方式

在模态试验中,对系统固有特性影响最大的是几何边界条件,也就是试验结构的支撑条件。支撑条件一般有自由支撑、固定支撑和原装支撑。在白车身试验中,由于自由悬挂能有效避免环境振动和支撑刚度的影响,试验可重复性好,因此可采用四根橡皮绳将车身悬吊在刚性良好的支架上,使其处于近似的自由状态。采用自由支撑后,相当于给结构增加了柔软约束,刚体模态频率不再是零,弹性状态也会受到影响。但由于自由支撑的刚度、阻尼较小,结构的弹性模态不会受到很大影响。悬挂绳的要求:悬挂绳要足够软,以便保证刚体共振频率远低

10

11

于第一阶弹性体共振频率(一般要小于10%)。试验中悬挂橡皮绳固有频率为2Hz 左右,因此可以认为是自由支承。车辆坐标系定义为前进方向为x 轴负向,前进方向右侧为y 轴正向,垂直向上为z 轴正向,x ﹑y ﹑z 坐标符合右手定则。车身悬吊后,还应对车身进行调平,以保证非坐标平面上传感器拾振方向在测试中角度设置的准确性。y 方向的调整以车身底部加强筋作为调平基准;x 方向根据车身实际工作状况进行调整,通常选择车身底部纵梁为水平基准。测试采用多点全相干激振的方法,试验中采用2个电动激振器激励。激励的位置:选在车头纵梁的位置和纵梁后端,激振器通过一根细杆与力传感器相连,传感器与车身紧固连接,如图4.1和图4.2所示[3]:

图4.1 白车身悬挂方式示意图

图4.2 白车身悬挂方式

4.3 传感器的选择及布置原则

传感器应满足动态范围宽、工作频段宽、低频性能好、抗干扰能力强、灵敏度高、线性度好、体积小、质量轻的要求。测量动态响应通常采用压电式加速度传感器,激励力用阻抗头测量。与传感器相连的信号传输线要处于免受扭力、拉压力作用的位置,以保证试验数据采集的准确度。根据试验设置(频率范围、振动量级、允许的质量载荷大小等)选取合适传感器。试验选用ICP类型的10个三向振动加速度和2个力传感器,并校准。试验过程中由于采用的220V的交流电电源,设备有静电、漏电现象,故应将设备安全接地。测点布置应符合正确反映整车模态振型原则。轿车白车身模态所关注频率范围为0~200 Hz,通过合理布置传感器位置,测点数目可保持在100~200点,测点在白车身上分布应尽可能均匀。测点过少则很难反映被测部件的基本外形和振动特性,使模态振型不可视;测点过多则加大了试验的工作量和数据处理繁杂程度,故测点布置应遵循如下原则。

a. 总体上要能反映部件的基本特征。

b. 应布置在车身承载处,如底部的承载梁、侧面的立柱等。在试验中主要关注的部位,测点布置应密一些;对于规则的部件尽量采取对称布置。

c. 加速度传感器应安装在待测点的待测方向上,尽可能减小加速度传感器横向灵敏度带来的误差影响。

d. 测点尽量布置在刚度较大处,不应在振动节点上,否则会丢失模态。

根据测点布置原则,结合轿车白车身传感器具体布置要求,传感器布置如表1 所列。此外,拾振点的布置重点要考虑车体承载框架梁、车门和车窗框架、排气管悬吊点、发动机悬置点、副车架车身悬置点、悬架固定点等位置。对于面积很大的车身顶棚和行李箱则采用网格化布点方法。我们做的试验模型点数有325个主要为了考虑500Hz以内噪声一般验证有限元分析只提供到200Hz以内模态参数基本符合布置原则及测试要求。为了使这些测点的测量数据不混淆,需要在测量前将测点按顺序作标记,并通过移动传感器分批进行测量[3] [4] [5]。测点布置如图4.3所示:

12

图 4.3 测点布置如图

由图4.3可以看出,测点的布置较为均匀,且在白车身前后车身及底盘处分布较为密集而在车顶处较为稀疏。这是由于白车身前后车身及底盘较为复杂且是较易发生变形破损的地方。由于车身大部分表面是空间曲面,传感器的安装与坐标平面不平行,在模型中需要对此处测点进行欧拉角设定,使模型曲面上显示的测点坐标方向与布置的传感器轴向一致,从而在软件换算中可分别得到x﹑y、z 方向的振动分量,提高试验数据的可信度。

4.4 激励系统

4.4.1 激励方式

一般来讲,激励方式有单点激励、多点激励、和单点分区激励。

单点激励是最简单、最常用的激励方式。所谓单点激励是SISO(单输入单输出)多参数识别所要求的激励方式。对中小型结构的模态分析,采用单点激励即可获得满意效果。然而对大型复杂机构,单点激励往往丢失模态,或由于激励能量有限而得不到有效地高信噪比频响函数,有时甚至无法激起机构的整体振动,导致模态试验彻底失败,因此单点激励不适合对汽车的模态试验。

多点激励是指对多个点同事施加激振力的激振方式。显然,输入系统的激励能量会成倍增加,同时,也增加了激振的复杂性。多点激励方式是与相应的MIMO (多输入多输出)参数识别技术共同发展的。多点激励的主要特点为:(1)不易遗漏模态;

(2)输入能量大且传递均匀,获得的频响函数信噪比高;

13

(3)一次性获得频响函数矩阵,比单点激励分别求出的频响函数矩阵一致性要好。

对于较大型结构,采用多点激励能获得满意的频响函数,然而激励装置复杂。单点分区激励技术方法的基本思想是,将被测结构分成几个区,在每个区域内实施单点激励并测出该区内各点之间的频响函数;最后,在测出各区域激励点之间的频响函数,将各区频响函数联系起来。各区频响函数组成整体结构的频响函数,以此识别整体模态振型。

综上所述,对于白车身的模态分析,由于其机构复杂,应选用多点激励方法。

4.4.2 振动激励源的选择和比较

1)正弦激振稳态

即单频、步进式稳态激振,精度高、速度慢。

2)快速正弦扫描激振

本质为多频、瞬态激振,所得频响函数常发生峰谷后移和变钝,影响模态频率、阻尼和模态振型的识别精度。通过低频—高频—低频重复进行往复扫描及平均处理可改善模态频率的偏差,但不能改善模态阻尼的偏差。

3)随机激振

信号源可区分为纯随机、伪随机和猝发随机三种类型,最好能采用占空时

间可调的猝发随机信号源。

4)锤击激励

锤头大小选择:锤头大,锤击力大,在不损伤结构的前提下,尽量施加较

大的激振力。

锤头帽选择:一般备有钢质、铝质、尼龙、橡胶锤头帽供选择。锤头帽硬,冲击碰撞时间短,力信号频带宽。应依据所需分析频带选择适当的锤头帽。

锤击激励情况下,对力信号和响应信号最好能加可调的力窗和指数衰减窗,以提高测量信噪比。加指数衰减窗在表观上会导致系统阻尼加大,这可以在进行模态参数估计时,作相应扣除[6] [7]。

为了更加直观的表现不同激励方式的优缺点,制作了表4.2:

14

表4.2 不同激励方式的优缺点比较

在上述几种方法中,当前应用最为广泛的激励信号是猝发随机信号和冲击信

号。多点全相干激励要求激励信号必须为确定性信号,因此激励信号采用随机

猝发信号,它具有了周期随机信号的所有优点,而且测试速度更快。

4.4.3 设备传感器

根据试验设置(频率范围、振动量级、允许的质量载荷大小等)选取合适传感器。试验选用ICP类型的10个三向振动加速度和2个力传感器,并校准。试验过程中由于采用的220V的交流电电源,设备有静电、漏电现象,故应将设备安全接地。

本试验选用固定式激励系统,其优点是可根据各种激励信号对结构进行激振。但激振器与试件相连,对试件附加了一定的质量、阻尼和刚度,对结构的振动特性会有一定的影响。两者之间一般通过单向力传感器传递作用力,因此,为

15

避免激振力漏测,安装时必须保证力传递方向上是刚性的,而其它方向均为柔性。采用多点激励的方法使输入能量合理分配到整个试件上,最大限度地减少因激励点刚好选在所关注的某阶模态节线上而漏失模态的现象,有效避免单点激励的原点响应信号弱、信噪比低、无法检测结构激振方向以外的其它平面上模态等缺点。为减小激振器间的相互影响,满足输入信号不相关的要求,以及解决系统的非线性近似线性问题,该试验选用猝发随机信号作为激振信号,通过合理设置激振方向、多点激振多点输出的方法进行测试分析。激振点位置选在刚度较强的车身底部纵梁和发动机舱的承载梁部位,并考虑激振器实际安装的方便性。由于汽车在行驶中路面给车身激振能量中的80 %是z 向激励,其它方向相对较小,因此通过合理设置角度,使得振动能量传递在垂向占主导。车头前端激振器A 的横向角度设置为30°,纵向角度为5°,车尾激振器B 的纵向角度为30°。在安装时,需在激振头与板件之间安装转接头,使激振器在斜向的激振能量有效地传递到车身各位置[5] [6]。

4.5 试验测试系统检验

试验所关心的是白车身频率大约在200Hz以下的模态参数,本次试验采样频率为500Hz。为了降低测试中噪声的影响,采用平均技术来降低随机误差,平均段数为100段。整个试验系统连接安装完毕之后,在正式试验测试之前要对试验系统进行调试和验证,以保证试验所得数据真实可靠。

在本次试验中采用实频虚频峰值法对试验测试系统进行检测,所得的幅频和相频特性及实频虚频特性分别如图4.5.1-4.5.6所示。

16

图4.5.1 幅频特性图

图4.5.2 相频特性图

17

图4.5.3 实频特性图

图4.5.4 实频特性图

18

图4.5.5 虚频特性图

图4.5.6 虚频特性图

当系统的输入为正弦信号时,则输出的稳态响应也是一个正弦信号,其频率和输入信号的频率相同,但幅度和相位发生了变化,而变化取决于角频率ω。若把输出的稳态响应和输入正弦信号用复数表示,并求它们的复数比,则得

19

白车身模态分析试验方法研究 毕业设计

目录 中文摘要 (1) 英文摘要 (2) 1 绪论 (3) 2 试验模态分析 (5) 2.1模态试验理论 (5) 2.2试验测试系统组成 (6) 3 模态参数识别方法 (7) 3.1模态参数识别主要方法 (7) 3.2最小二乘复频域法 (9) 3.2.1最小二乘复频域法简介 (9) 3.2.2系统模型的确定 (9) 4 白车身模态试验 (10) 4.1白车身参数 (10) 4.2试验结构的支撑方式 (10) 4.3传感器的选择及布置原则 (12) 4.4激励系统 (13) 4.4.1激励方式 (13) 4.4.2振动激励源的选择和比较 (14) 4.4.3设备传感器 (15) 4.5试验测试系统检验 (16) 5 试验测试结果及分析 (21) 5.1稳态图 (21) 5.2模态频率与阻尼比 (23) 5.3模态振型 (24) 5.4模态试验的有效性 (26) 6 有限元分析结果与试验结果对比 (30) 结论 (33) 谢辞 (34) 参考文献 (35)

白车身模态试验方法研究 摘要:本文的目的在于研究模态分析参数识别不同方法之间的优缺点,重点是PolyMAX法和时域分析法之间的对比,以研究通过何种方法才能获得精 确地实验数据。为此本文分别采用多参考最小二乘复频域(PolyMAX) 法和时域分析法对结构模态参数进行识别,得到白车身各阶的模态图、 模态频率和振型并采用模态置信判据法(MAC)验证试验结果,比较二者 之间的优缺点,从而发现PolyMAX能提供比时域法法更多的稳定极点 并且有一个清晰地图标,确保一个用户独立和简洁明了的解释,大量简 化了鉴别过程。为进一步验证PolyMAX法的准确性,将PolyMAX分析 结果与有限元分析相对比,发现两者具有相当高的一致性。因此,本文 认为在白车身模态试验中PolyMAX法是最佳的试验模态分析方法。 关键词:白车身模态试验分析方法MIMO PolyMAX 1

模态分析实验报告

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

白车身模态分析作业指导书(修改)

文件编号: YJY·P ·0020·A1-2004 文件名称:白车身模态分析作业指导书 编制:日期: 审核:日期: 批准:日期:

发布日期:年月日实施日期:年月日 前言 为使本公司白车身模态分析规范化,参考国内外白车身模态分析的技术,结合本公司已经开发车型的经验,编制本分析作业指导书。意在对本公司分析人员在做白车身模态分析的过程中起指导作用,让不熟悉或者不太熟悉该分析的员工有所依据,提高工作效率和精度。本作业指导书将在本公司所有白车身模态分析中贯彻,并将在实践中进一步提高完善。 内容包括:前处理模型;分析软件的使用;工程载荷及求解的设置;分析结果后处理和评价标准等。 本标准于2004年9月起实施。 本标准由上海同济同捷科技股份有限公司技术总监室提出。 本标准由上海同济同捷科技股份有限公司技术总监室负责归口管理。 本标准主要起草人:谢颖、邓文彬

白车身模态分析流程 1、适用范围 任何车型的白车身。 2、分析的目标及意义 本分析旨在分析白车身的振动固有频率和振型,得到的数据可为车身结构设计和振动噪声分析提供参考。 3、前处理建模 3.1白车身模型(只包括焊接总成,不包括门、玻璃、内饰等螺栓紧固件),焊点用RBE2(6个自由度)模拟,焊点布置应符合实际情况,边界条件为自由。 3.2 网格大小和注意事项如下。 3.2.1建模标准(所有项均在HYPERMESH中检测)表1 在网格划分之前,一定要充分考虑该零件与其它零部件之间的连接关系。 3.2.2在hypermesh中注意事项: 3.2.2.1 单元网格总体要求:连续、均匀、美观,过渡平缓。

3.2.2.2 对于倒角,倒角两端点距离小于5mm时可删去(命令:geom\distance)。当倒角两端点距离大于5mm时,测一下倒角的弧长(命令:geom\length),如弧长小于10mm时划分一个单元,大于10mm,划分两排单元,如难以满足单元长度要求,可将倒角的一边toggle掉。对于孔,半径小于5mm时可删去,同时删去小于5mm的凸台和沉孔。 3.2.2.3对于对称件,只划分一个件的网格,另一个件使用镜像方法生成。对于一个单个零件如果是左右对称的,可将它从中间切开,划分一半即可(使用splitbody命令),对于单个零件判断其是否是左右对称的,可将切开的另一半镜像过去(使用transform命令),渲染后看是否重合 3.2.2.4对于一些比较小的零部件(比如小螺栓)根据其位置和尺寸及对分析目标的重要性可不进行网格划分 3.2.2.5 B柱之前的零件网格尺寸控制在10-15mm,对于B柱之后c柱之前的零件,可适当增大网格尺寸,定在15-20mm,c柱之后20-35mm划分时可根据具体情况进行调整(如对一些连接处可划分细一些); 3.2.2.6原则上存在焊点的翻边必须划分两排单元,识别焊边可察看各总成数模、或者是看参考车型以及去设计部门的相关负责人联系。在焊点的翻边上,如翻边长度小于10mm,在保证最小单元长度要求下,可适当将翻边加长。大于10mm 时,考虑划分两排单元,对不符合长度要求的单元进行必要的调整(如将翻边的边界toggle掉)。 原则上焊点位置由设计部门确定,在设计部门已提供焊点位置的情况下,采取以下操作步骤:1)在UG中检查焊点位置,若发现分布不合理的焊点,须与车身相关设计人员确认;2)将零件导入HYPERMESH,其中应包含该零件的焊点信息――点和圆圈线(导入前需确认在UG里已经将点、线、面分层);3)将含圆线圈的COMP隐藏,只显示零件和焊点,然后用GEOM CLEANUP/FIXED POINTS/ADD命令将焊点变成零件面上的硬点;4)划分网格并按标准检查好单元质量后,文件先以HM格式进行保存(须包含所有点、线、面和单元),然后将网格输出成*.bdf文件,再将焊点和圆圈线输出成*.igs(该文件的命名方法:在bdf文件名前加w。如:bdf文件53-01.bdf,则igs文件w53-01.igs);5)在PATRAN里装配时,将

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

汽车车门模态分析(初学者)

汽车模态分析 1 前言 模态是振动系统特性的一种表征,它构成了各种车身结构复杂振动的最基本的振动形态。为了在汽车使用中避免共振、降低噪声,需要知道结构振动的固有频率及其相应的振型。模态分析的最终目标是为了得到模态参数,为结构系统的动力特性分析、故障诊断和预报以及结构的动力特性的优化设计提供依据。 汽车在行驶过程中的激励一般分为路面激励、车轮不平衡激励、发动机激励、传动轴激励。路面激励一般由道路条件决定,目前在高速公路和一般城市较好路面上,此激励频率多出现在1-3Hz,一般对低频振动影响较大;因车轮不平衡引起的激励频率一般低于11Hz,随着现在轮辋制造质量及检测水平的提高,此激励分量较小,易于避免;发动机引起的激励频率一般在23Hz以上,此激励分量较大;城市中一般车速控制在50~80Km/h,高速公路上一般车速控制在 80~120 Km/h,传动轴的不平衡引起的振动的频率范围在40Hz以上,此激励分量较小。由这些外界激振源会引起车门产生共振,带来噪音,极大的降低了车辆的乘坐舒适性,造成扳件的抖动开裂,零部件的疲劳损坏,车门表面保护层的破坏,削弱车门的抗腐蚀能力等。 因此,为提高汽车产品的开发设计水平,达到优化设计的目标,需要对汽车车门进行模态分析,通过有限元计算来得到该结构在不同频率下的振型,避免因共振等原因引起的结构破坏。 2 车门有限元模型 2.1 几何特性 轿车车门一般由门外板、门内板、门窗框、门玻璃导槽、门铰链、门锁以及门窗附件等组成。内门板上有玻璃升降器、门锁附件等。内板由薄钢板冲压而成,其上分布有窝穴、空洞、加强筋,内板内侧焊有内板加强板。为了增强安全性,外板内侧一般通过防撞杆支撑架安装了防撞杆,窗框下装有加强板。内板与外板通过翻边、粘合、滚焊等方式结合。 2.2 有限元模型的建立 根据车门的几何模型划分网格,建立有限元模型如图1所示。

刘红_白车身模态分析与识别

白车身模态分析与识别 Analysis and Identify of Body In White 刘红,朱凌,门永新 吉利汽车研究院,浙江杭州 310000 摘要:白车身的模态分析可以通过试验和CAE两种途径进行。试验虽然能相对真实地反应试验车辆 的性能,但周期长、成本高且干扰因素多。CAE仿真分析白车身模态可以有效避开这些问题。同时, 结合模态识别的4点和24点法,CAE仿真能更准确、便捷地了解白车身模态性能。尤其在车辆开发前期,能有效指导车身设计。 关键词:白车身,NVH,模态,试验,识别,HyperGraph Abstract: BIW’s mode can be obtained through testing and CAE. Although testing can relatively reflect the true performance of the vehicle, it is expensive in both cost and time, as well as other unpredictable factors. Meanwhile, CAE can easily avoid these problems, and can more accurately and conveniently to obtain the performance, combining with the 4-point and 24-point method for the modal identification. Especially in the early stage of the vehicle development, CAE method can effectively guide the design of body. Key words: BIW, NVH, mode, test, identify, HyperGraph 1 概述 白车身模态分析作为整车NVH分析的一个基础环节,对整车NVH性能管控起着关键的作用。模态分析能够反映出结构在低频范围内的振动问题,尤其对避开路面和发动机激励尤为重要。一般4缸机的怠速激励在25Hz左右,路面激励在20Hz以内,故白车身一阶模态应在40Hz左右才能使得TB 的一阶模态避开上述两种激励,而如何准确地识别出白车身一阶模态成为车身设计的关键问题。 解决上面的问题,目前可用模态测试或者模态识别(CAE的方法)来判断,本文从这两个方面研究了白车身模态分析方法。 2 模态测试方法 目前试验模态分析技术已经成为解决振动噪声以及疲劳强度等实际问题的一项最重要、应用最广泛的技术手段【1】。通过模态试验识别出的汽车白车身的结构动力学特性对于乘坐舒适性和结构可靠性起着决定性的作用,是汽车新产品开发中结构分析的主要内容,特别是车身的低阶弹性模态是控制其振动噪声的关键基础性指标之一【2】。 2.1 测试方法简述 模态测试是同时测量结构的输入和输出信号而得到结构的频响函数,即通过激励和响应,推知结构的特性【3】。可以根据试验条件选择单点或多点激励,常用的做法是采用两个激振器产生随机信号对车身进行激励,两个激振器分别置于车身左后纵梁处以+Z方向激励和发动机舱右悬置安装点纵梁的+Y 方向激励,在车身上布置加速度传感器以采集车身结构的响应,试验状态如图1所示。

某商用车驾驶室白车身模态分析

龙源期刊网 https://www.360docs.net/doc/00555070.html, 某商用车驾驶室白车身模态分析 作者:谢小平,韩旭,陈国栋,周长江 来源:《湖南大学学报·自然科学版》2010年第05期 摘要:以某商用车驾驶室白车身为原型,利用模态分析方法对其动力学特征参数进行分析.在理论(正问题)和实验(反问题)两个互补的模态分析过程中,利用有限元模型进行理论模态分析,为实验模态分析的实施打下良好基础.分别采用最小二乘复指数法(LSCE)和最小二乘复频域法(LSCF)进行实验模态分析,得到各阶模态振型并对理论分析的结果进行修正.经过两种结果的比较和分析,最终得出准确的模态分析结果并对白车身原型提出改进意见.生产厂商依据改进意见进行工艺改进,通过用户实际使用证实了改进方案的有效性和正确性. 关键词: 商用车驾驶室;白车身;有限元;实验模态分析;LSCE;LSCF 中图分类号:TH113.1文献标识码:A Modal Analysis of Commercial Vehicle Cab’s Body-in-White XIE Xiao-ping+, HAN Xu, CHEN Guo-dong, ZHOU Chang-jiang (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Faculty of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082) Abstract: The theory modal analysis (TMA, forward problem) and experimental modal analysis(EMA, inverse problem) methods are both used to analysis dynamics characteristic parameters of one commercial vehicle cab’s body-in-white. Finite element modal analysis is carried out to get mode shape and lay down well basis to experimental modal analysis in TMA process. In EMA process, LSCE(Least Squares Complex exponent method) and LSCF (Least Squares Complex Frequency Domain method) methods are used to get mode shape and modify TMA results. With comparison to all results, the accurate conclusion can be reached and improvement opinion is brought forward to the prototype. The improvement projection was proved to be effective by consumers’utilization after manufacturer put it into applications. Keywords: commercial vehicle cab’s bod y-in-white; finite element method; experimental modal analysis; LSCE; LSCF 车辆在行使的过程中常因路面不平,车速和运动方向的变化,车轮、发动机和传动系的振动激励,以及齿轮的冲击等各种外部和内部激励,极易引起整车和局部振动。当外界激振频率与系统固有频率接近时,将产生共振[1]。

Abaqus模态分析实验报告

(一)创建部件 1:模块:部件 2:从菜单栏中选择部件→创建,弹出创建部件对话框 名称:LIAN_FuJian 模型空间:三维 类型:可变形 形状:实体 类型:拉伸 大约尺寸:2000,为部件最大尺寸的2倍 3:点击继续,进入草绘模式,为实体拉伸绘制截面草图。4:点击创建圆工具,绘制2个同心圆。大圆直径为1000,小圆直径为400。 5:点击创建构造:圆工具,绘制一个直径为700的构造圆。 6:点击创建构造工具,创建2条构造线,一并添加固定约束。 7:点击创建圆工具,以构造圆与竖直构造线的交点为圆心,绘制一个直径为100的圆。

8:点击环形阵列工具,点选刚才创建的圆为要阵列的实体,按下鼠标中键,弹出环形阵列对话框 个数:6 总角度:360 点击确定 阵列结果如下: 9:在绘图区按下鼠标中键,弹出编辑基本拉伸对话框 类型:指定深度 深度:200 点击确定,第一个部件绘制完成 10:创建第二个部件-轴:ZHOU。 (二)装配 1:模块:装配 2:点击创建实例工具,弹出创建实例对话框 创建实例:从部件 部件:按住Ctrl选取LIAN_FuJian与ZHOU这2个部件 实例类型:非独立(网格在部件上)

点击确定,装配体如下 2:点击平移实例工具,选择ZHOU为要平移的实例,点击完成。输入平移向量的起始点(0,0,0),回车;输入平移向量的终点(0,0,100),回车。再点击确定,平移后的装配体如下 3:点击合并/切割实例工具,弹出合并/切割实体对话框。部件名:ASM 运算:合并-几何 原始实体:禁用 相交边界:删除 点击继续,选择待合并的实例,框选整个模型,点击完成。4:在模型树下删除LIAN_FuJian-1和ZHOU-1 5:由于在接下来的分析中只需要用到ASM部件,故可以将LIAN_FuJian和ZHOU删除。 模块:部件 点击部件管理器工具,选中LIAN_FuJian和ZHOU,删除。

汽车车身模态分析研究综述

汽车车身模态分析研究综述 北京信息科技大学研1202班姓名:曹国栋学号:2012020045 摘要:车身是汽车的关键总成。它的构造决定了整车的力学特性,对白车身进行模态分析不仅能考察车身结构的整体刚度特性,而且可以指导人们对车身结构进行优化以及响应分析。因此,研究车身模态分析具有重要的意义。本文综述了近几年国内外在车身模态分析领域内的研究,总结了研究理论和试验方法,并进行归纳。最后,对未来的研究工作提出了一些展望。 关键词:车身;模态分析;有限元模态;试验模态;结构优化 0 前言 随着计算机技术的发展和仿真技术、有限元分析技术的提高,计算机辅助设计和分析技术几乎涵盖了涉及汽车性能的所有方面,如刚度、强度、疲劳寿命、振动噪声、运动与动力性分析、碰撞仿真和乘员保护、空气动力学特性等,各种计算机辅助设计软件为汽车设计提供了一个工具平台,极大地方便了汽车的设计。 车辆在行驶过程中,车身结构在各种振动源的激励下会产生振动,如发动机运转、路面不平以及高速行驶时风力引起的振动等。如果这些振源的激励频率接近于车身整体或局部的固有频率,便会发生共振现象,产生剧烈振动和噪声,甚至造成结构破坏。为提高汽车的安全性、舒适性和可靠性,就必须对车身结构的固有频率进行分析,通过结构设计避开各种振源的激励频率。 车身结构模态分析是新车型开发中有限元法应用的主要领域之一,是新产品开发中结构分析的主要内容。尤其是车身结构的低阶弹性模态,它不仅反映了汽车车身的整体刚度性能,而且是控制汽车常规振动的关键指标,应作为汽车新产品开发的强制性考核内容。有限元模态分析和试验模态分析方法是辨识汽车结构动态性能的一种有效的手段,在汽车车身动态性能研究中得到了广泛应用。采用有限元方法对白车身进行模态分析,识别出车身结构的模态参数,并通过模态试验验证了有限元模型的正确性,为改型设计提供参考依据,是汽车开发设计与优化的一般流程。 因此,研究车身结构模态分析,进行车身轻量化设计和优化,对于提高国产轿车的自开发与科技创新能力,具有重要的理论意义和工程实用价值。 1 车身模态分析的一般理论 1.1 模态分析基本理论 模态分析的经典定义即以模态矩阵作为变换矩阵,将线性定常系统振动微分方程组中的物理坐标进行坐标转换变到模态坐标上,从而使系统在原来坐标下的耦合方程变成一组互相独立的二阶常微分方程进而成为一组以模态坐标及模态参数描述的独立方程[1]。 在实际的结构动力分析中,一般将连续结构离散化为一个具有n个有限自由

模态分析在工程中的应用概述

模态分析在工程中的应用概述 学号:XXXXXX 姓名:XXX 模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析(FEA);如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为实验模态分析(EMA)。通常,模态分析都是指实验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析所寻求的最终目标在于改变机械结构系统由经验与类比和静态设计为动态、优化设计方法;在于借助试验与理论分析相结合的方法,对已有结构系统进行识别、分析和评价,从中找出结构系统在动态性能上所存在的问题,确保工程结构能安全可靠及有效地工作;在于根据现场测试的数据来这段及预报振动故障和进行噪声控制。通过这些方法为老产品的改进和新产品的设计提供可靠的依据。[1] 模态分析是一项综合性技术,可以应用于各个工程部门及各种工程结构。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息万变。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速Fourier 变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对实验导纳函数的曲线拟合,识别出结构物体的模态参数,从而建立起结构物体的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物体的实际振动的响应历程或响应谱。[2] 模态分析技术的应用可以归纳为以下几个方面:评价现有结构系统的动态特性,在新产品设计中进行结构动态特性的预估及优化设计,诊断及预报机构系统的故障,控制结构的辐射噪声,识别结构系统的载荷。[1] 下面对近几年国内模态分析在工程中各个方面的应用分别进行概述。 1.评价现有结构系统的动态特性 在处理结构的振动问题时,必须对其动态特性有全面的了解,而其动态特性

车体强度分析模态分析尺寸优化.

车体论文:CRH5动车组卧铺车体结构优化设计 【中文摘要】高速铁路是一个国家铁路运输现代化的重要标志。CRH5型高速动车组具有优良的高速运行品质,采用了轻量化高强度铝合金车体,大大减轻了车辆本身的质量,为动车组的高速运行创造了 条件。本文以CRH5型动车组的M2S车体为研究对象,对其进行了车体加高结构设计,并对加高后车体进行结构强度和刚度分析,模态分析 以及车体侧墙轻量化优化,为我国高速动车组车体的设计提供参考。本文主要完成以下几个方面的工作:1、CRH5型动车组的M2S车体进行结构加高设计;2、建立加高后的CRH5型动车组M2S车体的有限元模型;建模过程中对车体结构进行了适当的简化,并对焊接方式、附件质量进行了模拟处理。3、根据欧洲《EN12663》标准,对车体结构进行了10种主要组合工况下的强度分析,得出了应力和位移分布,并对结果进行了校核。最后总结了车体的应力分布情况和车体结构的设计特点;4、对加高后的车体结构进行了模态计算分析,得到整车空载状态和整备状态的前六阶振动频率和典型振型。空车状态和整备状态的一阶垂向弯曲频率均大于10Hz,满足规定要求;5、采用结构优化设计平台OptiStruct对加高车体的侧墙结构进行轻... 【英文摘要】High-speed railway is an important symbol of a national rail transport modernization. CRH5 high-speed EMU has excellent quality of high-speed operation;It uses a lightweight high strength aluminum alloy body, greatly

汽车车架的动力学分析--模态分析

北京科技大学 机械工程进展(论文) 题目:汽车车架的动力分析计算 (模态分析) 院别:机械工程学院 专业班级:机研106班 学生姓名: 学号: 导师: 评分: 2010年11月26日

轻型载货汽车车架模态分析 摘要:车架作为汽车的承载基体,安装着发动机、传动系、转向系、悬架、驾驶室、货厢等有关部件和总成,承受着传递给它的各种力和力矩。所以对车架的结构十分重要。本文主要采用有限元方法对车架的进行模态分析,研究了车架结构与其固有频率及其振型的关系, 给出车架在一定约束下的固有频率及固有振型,为解决车架结构的动力学问题和结构的改进提供了一定的依据。 关键词:有限元方法;车架;固有频率;模态分析 1 引言 车架是一个弹性系统,在外界的时变激励作用下将产生振动。当外界激振频率与系统固有频率接近时,将产生共振。共振不仅使乘员感到很不舒适,还会带来噪声和部件的疲劳损坏,威胁到车架的使用寿命和车辆安全。 车架是一个多自由度的弹性系统。因此,它也有无限多的固有振型,而作用在车架上的激励来自于悬架系统、路面、发动机、传动系等的振动,这些振动对车架的激励可以认为是全频率的,但是,路面和悬架系统对车架结构激励的特点一样,每种激励在所有频率范围内并不是等能量分布的,所以,试图在所有频率上消除作用在车架上的激励,与车架结构的某些振型的共振是不可能。因此,只有将注意力集中在各激励的能量集中的频率上,使之与所关心的车架的某阶振型不发生共振。因而对车架进行模态分析以掌握车架对激振力的响应,从而对车架设计方案的动态特性进行评价,己经成为车架设计过程中必要的工作[1]。 2 模态分析理论基础 在有限元分析程序中,振动方程表示为: 1-1 该方程可作为特征值问题,对无阻尼情况,方程可简化为: 1-2 其中。ω2(固有频率的平方)表示特征值;{μ}表示特征向量,在振动的物理过程 中表示振型,指示各个位置在不同方向振动幅值之间的比例关系,它不随时间变化。对有阻尼情况,振动方程可转化为:

有关模态分析的理解

模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程: (1)动态数据的采集及频响函数或脉冲响应函数分析 1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。 2)数据采集。SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。 3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时域建模。根据阻尼特性及频率耦合程度分为实模态或复模态模型等。

车辆系统振动的理论模态分析

振 动 与 冲 击 第20卷第2期 JOURNA L OF VI BRATION AND SHOCK V ol.20N o.22001  工程应用 车辆系统振动的理论模态分析 Ξ 陶泽光 李润方 林腾蛟 (重庆大学机械传动国家重点实验室,重庆 400044) 摘 要 将车体和转向架看成弹性体,采用有限元方法,建立用空间梁单元描述的具有50个自由度的车辆系统力 学模型,并以客车为例研究其垂向振动的固有特性,所得结果既反映系统动力学性能,又为动态响应计算和分析打下基础。 关键词:车辆动力学,模态分析,有限元法中图分类号:TH132.41 0 引 言 高速铁路运输以快速、节能、经济、安全和污染小 等优势,在与高速公路和航空等运输形式的竞争中迅速发展起来。列车运行速度的提高给机车车辆提出了许多新要求,带来了新的课题,如大的牵引动力、大的制动功率、剧烈的横向动力作用和更加明显的垂向越轨动力作用、复杂的高速气流、振动和噪声等。其中,振动和噪声是高速列车一个非常重要的问题,它既关系到高速列车运行的安全性,又关系到列车高速运行时的乘坐舒适度。 车辆系统是由车体、转向架构架、轮对,通过悬挂 元件联接起来的机械系统。通常,把车体及装载、转 向架构架及安装部件、轮对及装备视为刚体,作为刚体动力学系统,研究其动力特性[1,2],这方面的技术已比较成熟,有商品化的通用软件可供使用[3]。 本文将车体和转向架看成弹性体,采用有限元法,建立了用六自由度节点空间梁单元描述的车辆系统动力学模型,由于包括车辆的浮沉、点头垂向振动,车辆的横摆、侧滚和摇头横向振动的研究。在建立车辆系统离散化模型的基础上,计算车辆垂向振动的各阶固有频率和振型,为车辆系统的动态响应计算和分析打下基础 。 图1 车辆振动系统的有限元模型 1 车辆的动力学模型 将车辆振动系统简化为图1所示的分析模型,即 由车体、转向架和轮对通过弹簧与阻尼器连接起来的振动系统。其中,将车体和转向架看成空间弹性梁,每 Ξ西南交通大学牵引动力国家重点实验室开放课题基金资助项目 收稿日期:2000-10-10 修改稿收到日期:2000-11-20 第一作者 陶泽光 男,博士,副教授1963年12月生

白车身模态分析作业指导书

1、适用范围 任何车型的白车身。 2、分析的目标及意义 本分析旨在分析白车身的振动固有频率和振型,得到的数据可为车身结构设计和振动噪声分析提供参考。 3、前处理建模 白车身模型(只包括焊接总成,不包括门、玻璃、内饰等螺栓紧固件),焊点用RBE2(6个自由度)模拟,焊点布置应符合实际情况,边界条件为自由。网格划分参考网格划分标准。下图为某白车身有限元模型。 4、分析软件的使用 3D工程软件:UG(用于几何面修改和建立,并传送到分析软件) 有限元分析软件:HYPERMESH,PATRAN(用于前、后处理);NASTRAN(用于求解结果) 5、分析结果后处理及评价标准 通过模态分析求得除刚体模态外的200Hz以下的模态振型。以目标车的实验和分析结果为目标,主要的几阶整体弯扭模态频率应高于或至少等于目标车相对应的模态频率。 结构的动态响应由外界激励频率和结构本身的固有频率和相应振型决定。在结构设计时,应考虑这些因素。第一,尽量提高结构的刚度,以提高前几阶固有频率;第二,结构固有频率应尽量错开载荷激振频率2Hz以上。

微型车的激励一般最主要为路面激励、车轮不平衡激励、发动机的怠速激励。路面激励一般由道路条件决定,目前高速公路和一般城市较好路面上,此激励力频率多在1-2Hz。车轮不平衡激振频率取决于汽车的行驶车速。发动机的怠速激振频率取决于怠速转速和汽缸数。 6、成果提交形式 以报告的形式提交。 7、分析注意事项 7.1 首次递交NASTRAN求解前,须先检查确认不能有重复单元、自由 节点及未赋属性的单元,且MPC连接关系正确。 7.2 首次计算完毕后,导入结果文件检查分析结果,看是否漏焊点, 若漏焊处较多,则在结果中可能出现前六阶模态有非零值(前六阶应该为刚体模态,频率值接近零);如无漏焊,则除去前六阶刚体模态,看剩下的结果。 附图(某白车身模态分析除去刚体模态的前两阶振型): 第7阶振型云图第8阶振型云图

模态分析综述

模态分析综述 1、前言 最初是听师兄们说起“模态”这么名词的,但由于各种原因刚开始对模态没有过多的关注,后来选课的时候师兄们极力推荐褚老师的模态分析课,说以后用处很大,于是就毅然决然的选了褚老师的结构模态分析理论与应用这门课。初次上这课并不怎么听得懂,但却被褚老师幽默风趣的讲课风格所吸引!另外褚老师世界著名的振动噪声测量及分析解决方案供应商Brüel&K?jr中国公司外聘技术专家、技术总工程师的头衔也深深地震撼了我,并且也激发了我去深入了解模态的兴趣,于是在上网和查阅了一些书籍之后对模态分析有了一定的认识,然而遗憾的是目前对于常用的模态分析软件ansys还不是很熟练,所以也就只好先写一下自己对于模态分析的认知了,还望老师海涵! 模态分析是近代才被用来研究结构动力特性的一种方法,是被用在工程振动领域中的系统识别上的。模态是机械结构固有的振动特性,每一个模态都具有自己特定的固有频率、阻尼比和模态振型。我想这应该就像每个人都具有自己独特的DNA一样吧,可以根据这个特性来辨识每个人的身份。机械结构的这些模态参数通常是计算机或者实验分析来获得的,而进行计算或者分析的过程就被称之为模态分析。模态分析的过程应该和人类的DNA检测差不多吧。通常将通过试验把采集到的系统输入与输出信号经过参数识别获得模态参数的方法称为试验模态分析。通过模态分析的方法可以搞清楚结构物在某一个易受影响的频率范围内的各阶主要模态的特性,这样就可以预先知道结构在此频段内在外部或者内部各种振源作用下所产生的实际振动响应。也正因此模态分析成为了结构动态设计以及设备故障诊断的重要方法。其实这样看来,模态分析的过程真的和DNA检测相类似,通过DNA检测也可以知道某个人是否存在先天的生理病因,并及时的得到预防和治疗。 2、模态分析的发展过程 模态分析技术是起源于上世纪30年代所提出来的将机电进行比拟机械阻抗技术。然而在当时由于测试技术及计算机技术的限制,模态分析技术在很长的时期

铝合金地铁车体静强度和模态分析

铝合金地铁车体静强度和模态分析 以某城轨铝合金地铁为研究对象,根据铝合金地铁车体结构特点,简化该车体几何模型,建立相应的有限元模型。基于车体静强度计算标准,确定9种车体结构静强度的計算工况,在这些计算工况作用下,计算车体结构的静强度。计算在最大垂直载荷作用下车体结构刚度,以及车体结构模态与整备状态下车体结构模态。计算结果表明该铝合金地铁车体结构的刚度、静强度和模态均满足车体结构设计要求。 标签:铝合金车体;有限元;静强度;模态 0 引言 随着城市的快速发展,地铁作为各大城市的重要交通工具之一,研发水平在不断地提高,在车体新材料和新工艺方面的研究也越来越多。铝合金材料以密度小、密封性好和易于挤压成型等优点,越来越广泛地应用于铝合金地铁车体。为确保车辆在工作状态下安全可靠,车体结构必须要有足够的刚度和强度,满足相关的技术标准。目前车体结构的强度计算分析主要采用有限元法,为其结构改进和优化提供依据。 1 车体结构与有限元模型 本文以某城轨铝合金地铁中间车为研究对象,车体采用全长的大型中空铝合金挤压型材组焊成筒型整体承载结构,主体结构由底架、车顶、侧墙和端墙焊接而成。底架采用无中梁结构,主要有牵引梁、枕梁、边梁、横梁和地板组成。车顶由5块3种挤压模块用纵向焊缝拼焊、空调安装平台和受电弓安装平台等组成。侧墙由4种挤压模块用纵向焊缝拼焊和门立柱等组成。端墙由端角柱、门口立柱、墙板、侧顶弯梁和横梁拼焊而成。该铝合金地铁车体的长度、高度和最大宽度分别为22880mm、2725mm和3000mm。 在分析了铝合金车体的结构特点和材料的力学性能的基础上,采用HYPERWORKS有限元软件进行计算。采用SHELL单元离散车体结构,车体模型包括196万个单元和176万个节点。 2 计算工况和评定标准 依据《BS EN12663:2010 铁道应用-轨道车身的结构要求》,确定车体静强度计算工况。此次分析主要包括9个计算工况:(1)计算工况1:空载工况;(2)计算工况2:最大运转载荷工况;(3)计算工况3:空载压缩工况;(4)计算工况4:空载拉伸工况;(5)计算工况5:超员压缩工况;(6)计算工况6:超员拉伸工况;(7)计算工况7:两端抬车工况;(8)计算工况8:一端抬车工况;(9)计算工况9:三点支撑工况。同时计算车体结构模态和整备状态下车体结构模态。

相关文档
最新文档